
Sublinear Algorithms for (∆ + 1) Vertex Coloring

Sepehr Assadi

University of Pennsylvania

Joint work with Yu Chen (Penn) and Sanjeev Khanna (Penn)

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Graph Coloring
A proper c-coloring of a graph G(V, E):

assigns a color from the palette {1, . . . , c} to all vertices V of G,
no monochromatic edges.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Graph Coloring
A proper c-coloring of a graph G(V, E):

assigns a color from the palette {1, . . . , c} to all vertices V of G,
no monochromatic edges.

a graph G

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Graph Coloring
A proper c-coloring of a graph G(V, E):

assigns a color from the palette {1, . . . , c} to all vertices V of G,
no monochromatic edges.

a palette of 4 colors

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Graph Coloring
A proper c-coloring of a graph G(V, E):

assigns a color from the palette {1, . . . , c} to all vertices V of G,
no monochromatic edges.

a proper 4-coloring of G

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Graph Coloring
A proper c-coloring of a graph G(V, E):

assigns a color from the palette {1, . . . , c} to all vertices V of G,
no monochromatic edges.

A central problem in graph theory and computer science.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Graph Coloring
A proper c-coloring of a graph G(V, E):

assigns a color from the palette {1, . . . , c} to all vertices V of G,
no monochromatic edges.

A central problem in graph theory and computer science.
Numerous applications to scheduling and symmetry breaking.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Graph Coloring
A proper c-coloring of a graph G(V, E):

assigns a color from the palette {1, . . . , c} to all vertices V of G,
no monochromatic edges.

A central problem in graph theory and computer science.
Numerous applications to scheduling and symmetry breaking.

An important and well-studied case: (∆ + 1) coloring

∆: maximum degree n: number of vertices.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Graph Coloring
A proper c-coloring of a graph G(V, E):

assigns a color from the palette {1, . . . , c} to all vertices V of G,
no monochromatic edges.

A central problem in graph theory and computer science.
Numerous applications to scheduling and symmetry breaking.

An important and well-studied case: (∆ + 1) coloring

∆: maximum degree n: number of vertices.

Every graph admits a (∆ + 1) coloring (tight for cliques and odd cycles).

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Graph Coloring
A proper c-coloring of a graph G(V, E):

assigns a color from the palette {1, . . . , c} to all vertices V of G,
no monochromatic edges.

A central problem in graph theory and computer science.
Numerous applications to scheduling and symmetry breaking.

An important and well-studied case: (∆ + 1) coloring

∆: maximum degree n: number of vertices.

Every graph admits a (∆ + 1) coloring (tight for cliques and odd cycles).

Any partial coloring can be extended to a proper (∆ + 1) coloring.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Graph Coloring
A proper c-coloring of a graph G(V, E):

assigns a color from the palette {1, . . . , c} to all vertices V of G,
no monochromatic edges.

A central problem in graph theory and computer science.
Numerous applications to scheduling and symmetry breaking.

An important and well-studied case: (∆ + 1) coloring

∆: maximum degree n: number of vertices.

Every graph admits a (∆ + 1) coloring (tight for cliques and odd cycles).

Any partial coloring can be extended to a proper (∆ + 1) coloring.

Closely related to a plethora of other problems: maximal independent set,
maximal matching, (2∆− 1) edge coloring, · · ·

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Greedy Algorithm for (∆ + 1) Coloring
On a graph G(V, E):

1 Iterate over vertices of V in arbitrary order,
2 Assign a color to each vertex that does not appear in its

neighborhood.

maximum degree is ∆ =⇒ we always find a color for every vertex.

An extremely simple algorithm.

Highly efficient: requires only linear time and space.

But is there an even more efficient algorithm? Sublinear Algorithms

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Greedy Algorithm for (∆ + 1) Coloring
On a graph G(V, E):

1 Iterate over vertices of V in arbitrary order,
2 Assign a color to each vertex that does not appear in its

neighborhood.

maximum degree is ∆ =⇒ we always find a color for every vertex.

An extremely simple algorithm.

Highly efficient: requires only linear time and space.

But is there an even more efficient algorithm? Sublinear Algorithms

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Greedy Algorithm for (∆ + 1) Coloring
On a graph G(V, E):

1 Iterate over vertices of V in arbitrary order,
2 Assign a color to each vertex that does not appear in its

neighborhood.

maximum degree is ∆ =⇒ we always find a color for every vertex.

An extremely simple algorithm.

Highly efficient: requires only linear time and space.

But is there an even more efficient algorithm? Sublinear Algorithms

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Greedy Algorithm for (∆ + 1) Coloring
On a graph G(V, E):

1 Iterate over vertices of V in arbitrary order,
2 Assign a color to each vertex that does not appear in its

neighborhood.

maximum degree is ∆ =⇒ we always find a color for every vertex.

An extremely simple algorithm.

Highly efficient: requires only linear time and space.

But is there an even more efficient algorithm? Sublinear Algorithms

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Greedy Algorithm for (∆ + 1) Coloring
On a graph G(V, E):

1 Iterate over vertices of V in arbitrary order,
2 Assign a color to each vertex that does not appear in its

neighborhood.

maximum degree is ∆ =⇒ we always find a color for every vertex.

An extremely simple algorithm.

Highly efficient: requires only linear time and space.

But is there an even more efficient algorithm?

Sublinear Algorithms

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Greedy Algorithm for (∆ + 1) Coloring
On a graph G(V, E):

1 Iterate over vertices of V in arbitrary order,
2 Assign a color to each vertex that does not appear in its

neighborhood.

maximum degree is ∆ =⇒ we always find a color for every vertex.

An extremely simple algorithm.

Highly efficient: requires only linear time and space.

But is there an even more efficient algorithm? Sublinear Algorithms

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Sublinear Algorithms

1 Sublinear time algorithms:
I Process the graph faster than even reading

the entire input.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Sublinear Algorithms

1 Sublinear time algorithms:
I Process the graph faster than even reading

the entire input.

2 Streaming algorithms:
I Process the graph on the fly with limited

memory.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Sublinear Algorithms

1 Sublinear time algorithms:
I Process the graph faster than even reading

the entire input.

2 Streaming algorithms:
I Process the graph on the fly with limited

memory.

3 Massively parallel computation (MPC)
algorithms:

I Process the graph in a distributed fashion
with limited communication.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Motivating Question

Can we design sublinear algorithms for (∆ + 1) coloring problem?

Probably not...
Similar problems to (∆ + 1) coloring are provably hard:

I Maximal independent set: no sublinear space streaming algorithm
I Maximal matching: no sublinear time algorithm

“Exact” problems are typically hard for sublinear algorithms: one
needs “approximation”.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Motivating Question

Can we design sublinear algorithms for (∆ + 1) coloring problem?

Probably not...

Similar problems to (∆ + 1) coloring are provably hard:
I Maximal independent set: no sublinear space streaming algorithm
I Maximal matching: no sublinear time algorithm

“Exact” problems are typically hard for sublinear algorithms: one
needs “approximation”.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Motivating Question

Can we design sublinear algorithms for (∆ + 1) coloring problem?

Probably not...
Similar problems to (∆ + 1) coloring are provably hard:

I Maximal independent set: no sublinear space streaming algorithm
I Maximal matching: no sublinear time algorithm

“Exact” problems are typically hard for sublinear algorithms: one
needs “approximation”.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Motivating Question

Can we design sublinear algorithms for (∆ + 1) coloring problem?

Probably not...
Similar problems to (∆ + 1) coloring are provably hard:

I Maximal independent set: no sublinear space streaming algorithm
I Maximal matching: no sublinear time algorithm

“Exact” problems are typically hard for sublinear algorithms: one
needs “approximation”.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results
Surprisingly, we present highly efficient sublinear algorithms for (∆ + 1)
coloring in all these models!

Our algorithms are randomized:
Output a (∆ + 1) coloring with high probability,
Otherwise output FAIL.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results
Surprisingly, we present highly efficient sublinear algorithms for (∆ + 1)
coloring in all these models!

Our algorithms are randomized:
Output a (∆ + 1) coloring with high probability,
Otherwise output FAIL.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results: Sublinear Time Algorithms
The standard query model for dense graphs:

Degree queries: what is degree of the vertex v?
Pair queries: is (u, v) an edge?
Neighbor queries: what is the k-th neighbor of the vertex v?

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results: Sublinear Time Algorithms
The standard query model for dense graphs:

Degree queries: what is degree of the vertex v?
Pair queries: is (u, v) an edge?
Neighbor queries: what is the k-th neighbor of the vertex v?

Prior Results:
No sublinear time algorithm for (∆ + 1) coloring.
Fastest algorithm: the greedy algorithm.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results: Sublinear Time Algorithms
The standard query model for dense graphs:

Degree queries: what is degree of the vertex v?
Pair queries: is (u, v) an edge?
Neighbor queries: what is the k-th neighbor of the vertex v?

Our Result:

An Õ
(
n
√

n
)

time algorithm for (∆ + 1) coloring.

Queries are chosen non-adaptively.
Ω(n
√

n) query lower bound even for adaptive algorithms.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results: Sublinear Time Algorithms
The standard query model for dense graphs:

Degree queries: what is degree of the vertex v?
Pair queries: is (u, v) an edge?
Neighbor queries: what is the k-th neighbor of the vertex v?

Our Result:

An Õ
(
n
√

n
)

time algorithm for (∆ + 1) coloring.

Queries are chosen non-adaptively.

Ω(n
√

n) query lower bound even for adaptive algorithms.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results: Sublinear Time Algorithms
The standard query model for dense graphs:

Degree queries: what is degree of the vertex v?
Pair queries: is (u, v) an edge?
Neighbor queries: what is the k-th neighbor of the vertex v?

Our Result:

An Õ
(
n
√

n
)

time algorithm for (∆ + 1) coloring.

Queries are chosen non-adaptively.
Ω(n
√

n) query lower bound even for adaptive algorithms.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results: Streaming Algorithms
Semi-streaming algorithms:

Edges are appearing one by one in a stream.
Process the stream in one pass and Õ(n) space.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results: Streaming Algorithms
Semi-streaming algorithms:

Edges are appearing one by one in a stream.
Process the stream in one pass and Õ(n) space.

Prior Results:

No streaming algorithm for (∆ + 1) coloring with o(n∆) space.
Parallel to our work. Easier problem of (∆ + o(∆)): a semi-streaming
algorithm by [Bera and Ghosh, 2018].

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results: Streaming Algorithms
Semi-streaming algorithms:

Edges are appearing one by one in a stream.
Process the stream in one pass and Õ(n) space.

Our Result:

A single-pass Õ(n) space streaming algorithm for (∆ + 1) coloring.

Ω(n) space is clearly necessary for this problem.
Our algorithm works even in dynamic graph streams.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results: Streaming Algorithms
Semi-streaming algorithms:

Edges are appearing one by one in a stream.
Process the stream in one pass and Õ(n) space.

Our Result:

A single-pass Õ(n) space streaming algorithm for (∆ + 1) coloring.

Ω(n) space is clearly necessary for this problem.

Our algorithm works even in dynamic graph streams.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results: Streaming Algorithms
Semi-streaming algorithms:

Edges are appearing one by one in a stream.
Process the stream in one pass and Õ(n) space.

Our Result:

A single-pass Õ(n) space streaming algorithm for (∆ + 1) coloring.

Ω(n) space is clearly necessary for this problem.
Our algorithm works even in dynamic graph streams.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results: MPC Algorithms
MPC algorithms with near-linear memory per-machine:

Edges are partitioned arbitrarily across multiple machines.
Machines can send and receive Õ(n) messages in synchronous rounds.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results: MPC Algorithms
MPC algorithms with near-linear memory per-machine:

Edges are partitioned arbitrarily across multiple machines.
Machines can send and receive Õ(n) messages in synchronous rounds.

Prior Results:

An O(log log ∆ · log∗ (n)) round algorithm with Õ(n) memory for
(∆ + 1) coloring [Parter, 2018].
Parallel to our work. the round-complexity improved to O(log∗ (n))
rounds [Parter and Su, 2018].
Easier problem of (∆ + o(∆)) coloring: an O(1) round algorithm with
n1+Ω(1) memory [Harvey et al., 2018].

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results: MPC Algorithms
MPC algorithms with near-linear memory per-machine:

Edges are partitioned arbitrarily across multiple machines.
Machines can send and receive Õ(n) messages in synchronous rounds.

Our Result:

An O(1) round Õ(n) memory MPC algorithm for (∆ + 1) coloring.

Our algorithm only requires one round assuming public randomness.
The first constant round MPC algorithm with Õ(n) memory for one
of “classic four local distributed graph problems”.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results: MPC Algorithms
MPC algorithms with near-linear memory per-machine:

Edges are partitioned arbitrarily across multiple machines.
Machines can send and receive Õ(n) messages in synchronous rounds.

Our Result:

An O(1) round Õ(n) memory MPC algorithm for (∆ + 1) coloring.

Our algorithm only requires one round assuming public randomness.

The first constant round MPC algorithm with Õ(n) memory for one
of “classic four local distributed graph problems”.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Results: MPC Algorithms
MPC algorithms with near-linear memory per-machine:

Edges are partitioned arbitrarily across multiple machines.
Machines can send and receive Õ(n) messages in synchronous rounds.

Our Result:

An O(1) round Õ(n) memory MPC algorithm for (∆ + 1) coloring.

Our algorithm only requires one round assuming public randomness.
The first constant round MPC algorithm with Õ(n) memory for one
of “classic four local distributed graph problems”.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Main Result
The central tool: a structural result for (∆ + 1) coloring.

Palette Sparsification Theorem.
For every vertex v, sample O(log n) colors L(v) from {1, . . . , ∆ + 1}.
W.h.p., G can be colored by coloring any vertex v from the list L(v).

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Main Result
The central tool: a structural result for (∆ + 1) coloring.

Palette Sparsification Theorem.
For every vertex v, sample O(log n) colors L(v) from {1, . . . , ∆ + 1}.
W.h.p., G can be colored by coloring any vertex v from the list L(v).

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Palette Sparsification: An Illustration

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Palette Sparsification: An Illustration

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Palette Sparsification: An Illustration

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Main Result
Why is palette sparsification theorem “useful”?

Sample colors L and throw out any edge (u, v) with L(u) ∩L(v) = ∅.
Only O(n · log2(n)) edges remain:

n∆ ·O(log n) ·O(log n

∆) = O(n · log2 n).

List-coloring of this new graph =⇒ (∆ + 1) coloring of G.

Non-adaptively sparsify a graph with O(n∆) edges down to Õ(n) edges;
still recover a proper (∆ + 1) coloring!

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Main Result
Why is palette sparsification theorem “useful”?

Sample colors L and throw out any edge (u, v) with L(u) ∩L(v) = ∅.

Only O(n · log2(n)) edges remain:

n∆ ·O(log n) ·O(log n

∆) = O(n · log2 n).

List-coloring of this new graph =⇒ (∆ + 1) coloring of G.

Non-adaptively sparsify a graph with O(n∆) edges down to Õ(n) edges;
still recover a proper (∆ + 1) coloring!

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Main Result
Why is palette sparsification theorem “useful”?

Sample colors L and throw out any edge (u, v) with L(u) ∩L(v) = ∅.
Only O(n · log2(n)) edges remain:

n∆ ·O(log n) ·O(log n

∆) = O(n · log2 n).

List-coloring of this new graph =⇒ (∆ + 1) coloring of G.

Non-adaptively sparsify a graph with O(n∆) edges down to Õ(n) edges;
still recover a proper (∆ + 1) coloring!

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Main Result
Why is palette sparsification theorem “useful”?

Sample colors L and throw out any edge (u, v) with L(u) ∩L(v) = ∅.
Only O(n · log2(n)) edges remain:

n∆ ·O(log n) ·O(log n

∆) = O(n · log2 n).

List-coloring of this new graph =⇒ (∆ + 1) coloring of G.

Non-adaptively sparsify a graph with O(n∆) edges down to Õ(n) edges;
still recover a proper (∆ + 1) coloring!

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Our Main Result
Why is palette sparsification theorem “useful”?

Sample colors L and throw out any edge (u, v) with L(u) ∩L(v) = ∅.
Only O(n · log2(n)) edges remain:

n∆ ·O(log n) ·O(log n

∆) = O(n · log2 n).

List-coloring of this new graph =⇒ (∆ + 1) coloring of G.

Non-adaptively sparsify a graph with O(n∆) edges down to Õ(n) edges;
still recover a proper (∆ + 1) coloring!

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Palette Sparsification: An Illustration

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Palette Sparsification: An Illustration

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Palette Sparsification: An Illustration

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Palette Sparsification Theorem

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Slight Reformulation
Graph coloring as an assignment problem:

Example. Coloring a 6-clique.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Slight Reformulation
Graph coloring as an assignment problem:

Example. Coloring a 6-clique.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Slight Reformulation
Graph coloring as an assignment problem:

Example. Coloring a 6-clique.

Original Graph Palette Graph

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Slight Reformulation
Graph coloring as an assignment problem:

Example. Coloring a 6-clique.

Original Graph Palette Graph

(∆ + 1) Coloring: Finding a perfect matching in the palette graph.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Slight Reformulation
Graph coloring as an assignment problem:

Example. Coloring a 6-clique.

Original Graph Palette Graph

Palette sparsification theorem: Random subgraphs of the palette graph
of a clique contain a perfect matching.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Slight Reformulation
Graph coloring as an assignment problem:

Example. Coloring a 6-clique.

Original Graph Palette Graph

Palette sparsification theorem: Random subgraphs of the palette graph
of a clique contain a perfect matching.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Slight Reformulation
Graph coloring as an assignment problem:

Another example. Coloring a 6-clique minus a perfect matching.

Original Graph Palette Graph

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Slight Reformulation
Graph coloring as an assignment problem:

Another example. Coloring a 6-clique minus a perfect matching.

Original Graph Palette Graph

(∆ + 1) Coloring: Finding a “good” subgraph in the palette graph.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Slight Reformulation
Graph coloring as an assignment problem:

Another example. Coloring a 6-clique minus a perfect matching.

Original Graph Palette Graph

Palette sparsification theorem: Random subgraphs of the palette graph
of a clique minus a perfect matching contain a “good” subgraph.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Slight Reformulation
Graph coloring as an assignment problem:

Another example. Coloring a 6-clique minus a perfect matching.

Original Graph Palette Graph

Palette sparsification theorem: Random subgraphs of the palette graph
of a clique minus a perfect matching contain a “good” subgraph.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Slight Reformulation
General reformulation. Find a subgraph of the palette graph:

Degree exactly one for vertices on left.
Neighbors of vertices on right can only be an independent set in the
original graph.

Palette sparsification theorem reduces to a random graph theory question.

The reformulation is quite helpful when graphs are “almost” clique.

But not that helpful for graphs that are “far from” cliques.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Slight Reformulation
General reformulation. Find a subgraph of the palette graph:

Degree exactly one for vertices on left.

Neighbors of vertices on right can only be an independent set in the
original graph.

Palette sparsification theorem reduces to a random graph theory question.

The reformulation is quite helpful when graphs are “almost” clique.

But not that helpful for graphs that are “far from” cliques.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Slight Reformulation
General reformulation. Find a subgraph of the palette graph:

Degree exactly one for vertices on left.
Neighbors of vertices on right can only be an independent set in the
original graph.

Palette sparsification theorem reduces to a random graph theory question.

The reformulation is quite helpful when graphs are “almost” clique.

But not that helpful for graphs that are “far from” cliques.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Slight Reformulation
General reformulation. Find a subgraph of the palette graph:

Degree exactly one for vertices on left.
Neighbors of vertices on right can only be an independent set in the
original graph.

Palette sparsification theorem reduces to a random graph theory question.

The reformulation is quite helpful when graphs are “almost” clique.

But not that helpful for graphs that are “far from” cliques.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Slight Reformulation
General reformulation. Find a subgraph of the palette graph:

Degree exactly one for vertices on left.
Neighbors of vertices on right can only be an independent set in the
original graph.

Palette sparsification theorem reduces to a random graph theory question.

The reformulation is quite helpful when graphs are “almost” clique.

But not that helpful for graphs that are “far from” cliques.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Slight Reformulation
General reformulation. Find a subgraph of the palette graph:

Degree exactly one for vertices on left.
Neighbors of vertices on right can only be an independent set in the
original graph.

Palette sparsification theorem reduces to a random graph theory question.

The reformulation is quite helpful when graphs are “almost” clique.

But not that helpful for graphs that are “far from” cliques.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Handling Graphs that are Far From Cliques
The other extreme case: low degree graphs.

Example. A graph where all vertices have degree ≤ ∆/2.

A simple coloring procedure:

1 Pick a color uniformly at random from {1, . . . , ∆ + 1} for all
uncolored vertices.

2 Assign the color to each vertex if it is not assigned to its neighbors in
this iteration or previous ones.

3 Repeat until all vertices are colored.

Every vertex has constant probability of being colored in each iteration.
After O(log n) iterations, all vertices are colored.

This proves the palette sparsification theorem for low degree graphs.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Handling Graphs that are Far From Cliques
The other extreme case: low degree graphs.
Example. A graph where all vertices have degree ≤ ∆/2.

A simple coloring procedure:

1 Pick a color uniformly at random from {1, . . . , ∆ + 1} for all
uncolored vertices.

2 Assign the color to each vertex if it is not assigned to its neighbors in
this iteration or previous ones.

3 Repeat until all vertices are colored.

Every vertex has constant probability of being colored in each iteration.
After O(log n) iterations, all vertices are colored.

This proves the palette sparsification theorem for low degree graphs.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Handling Graphs that are Far From Cliques
The other extreme case: low degree graphs.
Example. A graph where all vertices have degree ≤ ∆/2.

A simple coloring procedure:

1 Pick a color uniformly at random from {1, . . . , ∆ + 1} for all
uncolored vertices.

2 Assign the color to each vertex if it is not assigned to its neighbors in
this iteration or previous ones.

3 Repeat until all vertices are colored.

Every vertex has constant probability of being colored in each iteration.
After O(log n) iterations, all vertices are colored.

This proves the palette sparsification theorem for low degree graphs.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Handling Graphs that are Far From Cliques
The other extreme case: low degree graphs.
Example. A graph where all vertices have degree ≤ ∆/2.

A simple coloring procedure:

1 Pick a color uniformly at random from {1, . . . , ∆ + 1} for all
uncolored vertices.

2 Assign the color to each vertex if it is not assigned to its neighbors in
this iteration or previous ones.

3 Repeat until all vertices are colored.

Every vertex has constant probability of being colored in each iteration.
After O(log n) iterations, all vertices are colored.

This proves the palette sparsification theorem for low degree graphs.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Handling Graphs that are Far From Cliques
The other extreme case: low degree graphs.
Example. A graph where all vertices have degree ≤ ∆/2.

A simple coloring procedure:

1 Pick a color uniformly at random from {1, . . . , ∆ + 1} for all
uncolored vertices.

2 Assign the color to each vertex if it is not assigned to its neighbors in
this iteration or previous ones.

3 Repeat until all vertices are colored.

Every vertex has constant probability of being colored in each iteration.
After O(log n) iterations, all vertices are colored.

This proves the palette sparsification theorem for low degree graphs.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Handling Graphs that are Far From Cliques
The other extreme case: low degree graphs.
Example. A graph where all vertices have degree ≤ ∆/2.

A simple coloring procedure:

1 Pick a color uniformly at random from {1, . . . , ∆ + 1} for all
uncolored vertices.

2 Assign the color to each vertex if it is not assigned to its neighbors in
this iteration or previous ones.

3 Repeat until all vertices are colored.

Every vertex has constant probability of being colored in each iteration.
After O(log n) iterations, all vertices are colored.

This proves the palette sparsification theorem for low degree graphs.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Handling Graphs that are Far From Cliques
The other extreme case: low degree graphs.
Example. A graph where all vertices have degree ≤ ∆/2.

A simple coloring procedure:

1 Pick a color uniformly at random from {1, . . . , ∆ + 1} for all
uncolored vertices.

2 Assign the color to each vertex if it is not assigned to its neighbors in
this iteration or previous ones.

3 Repeat until all vertices are colored.

Every vertex has constant probability of being colored in each iteration.

After O(log n) iterations, all vertices are colored.

This proves the palette sparsification theorem for low degree graphs.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Handling Graphs that are Far From Cliques
The other extreme case: low degree graphs.
Example. A graph where all vertices have degree ≤ ∆/2.

A simple coloring procedure:

1 Pick a color uniformly at random from {1, . . . , ∆ + 1} for all
uncolored vertices.

2 Assign the color to each vertex if it is not assigned to its neighbors in
this iteration or previous ones.

3 Repeat until all vertices are colored.

Every vertex has constant probability of being colored in each iteration.
After O(log n) iterations, all vertices are colored.

This proves the palette sparsification theorem for low degree graphs.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Handling Graphs that are Far From Cliques
The other extreme case: low degree graphs.
Example. A graph where all vertices have degree ≤ ∆/2.

A simple coloring procedure:

1 Pick a color uniformly at random from {1, . . . , ∆ + 1} for all
uncolored vertices.

2 Assign the color to each vertex if it is not assigned to its neighbors in
this iteration or previous ones.

3 Repeat until all vertices are colored.

Every vertex has constant probability of being colored in each iteration.
After O(log n) iterations, all vertices are colored.

This proves the palette sparsification theorem for low degree graphs.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

General Proof?
General proof requires interpolating between these two extreme cases:

Cliques
Assignment in random graphs

Low Degree
Graphs

Direct simulation of greedy

Neither approach seems to work for the other extreme case.

Our approach: Decompose the graph into dense and sparse regions, then
apply the previous ideas to each part.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

General Proof?
General proof requires interpolating between these two extreme cases:

Cliques
Assignment in random graphs

Low Degree
Graphs

Direct simulation of greedy

Neither approach seems to work for the other extreme case.

Our approach: Decompose the graph into dense and sparse regions, then
apply the previous ideas to each part.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

General Proof?
General proof requires interpolating between these two extreme cases:

Cliques
Assignment in random graphs

Low Degree
Graphs

Direct simulation of greedy

Neither approach seems to work for the other extreme case.

Our approach: Decompose the graph into dense and sparse regions, then
apply the previous ideas to each part.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Network Decomposition
We exploit and modify the decomposition of Harris, Schneider, and
Su [Harris et al., 2016] for distributed (∆ + 1) coloring.

Extended HSS Decomposition: For any ε ∈ (0, 1), any graph G(V, E) can
be decomposed into:

Sparse vertices: Neighborhood of each sparse vertex is missing at
least ε ·

(∆
2
)

edges.
A collection of almost-cliques: Each almost-clique C:

I

I every vertex in C has ≤ ε∆ neighbors outside C.
I every vertex in C has ≤ ε∆ non-neighbors inside C.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Network Decomposition
We exploit and modify the decomposition of Harris, Schneider, and
Su [Harris et al., 2016] for distributed (∆ + 1) coloring.

Extended HSS Decomposition: For any ε ∈ (0, 1), any graph G(V, E) can
be decomposed into:

Sparse vertices: Neighborhood of each sparse vertex is missing at
least ε ·

(∆
2
)

edges.
A collection of almost-cliques: Each almost-clique C:

I

I every vertex in C has ≤ ε∆ neighbors outside C.
I every vertex in C has ≤ ε∆ non-neighbors inside C.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Network Decomposition
We exploit and modify the decomposition of Harris, Schneider, and
Su [Harris et al., 2016] for distributed (∆ + 1) coloring.

Extended HSS Decomposition: For any ε ∈ (0, 1), any graph G(V, E) can
be decomposed into:

Sparse vertices: Neighborhood of each sparse vertex is missing at
least ε ·

(∆
2
)

edges.

A collection of almost-cliques: Each almost-clique C:

I

I every vertex in C has ≤ ε∆ neighbors outside C.
I every vertex in C has ≤ ε∆ non-neighbors inside C.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Network Decomposition
We exploit and modify the decomposition of Harris, Schneider, and
Su [Harris et al., 2016] for distributed (∆ + 1) coloring.

Extended HSS Decomposition: For any ε ∈ (0, 1), any graph G(V, E) can
be decomposed into:

Sparse vertices: Neighborhood of each sparse vertex is missing at
least ε ·

(∆
2
)

edges.

A collection of almost-cliques: Each almost-clique C:

I

I every vertex in C has ≤ ε∆ neighbors outside C.
I every vertex in C has ≤ ε∆ non-neighbors inside C.

a sparse
vertex

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Network Decomposition
We exploit and modify the decomposition of Harris, Schneider, and
Su [Harris et al., 2016] for distributed (∆ + 1) coloring.

Extended HSS Decomposition: For any ε ∈ (0, 1), any graph G(V, E) can
be decomposed into:

Sparse vertices: Neighborhood of each sparse vertex is missing at
least ε ·

(∆
2
)

edges.
A collection of almost-cliques: Each almost-clique C:

I

I every vertex in C has ≤ ε∆ neighbors outside C.
I every vertex in C has ≤ ε∆ non-neighbors inside C.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Network Decomposition
We exploit and modify the decomposition of Harris, Schneider, and
Su [Harris et al., 2016] for distributed (∆ + 1) coloring.

Extended HSS Decomposition: For any ε ∈ (0, 1), any graph G(V, E) can
be decomposed into:

Sparse vertices: Neighborhood of each sparse vertex is missing at
least ε ·

(∆
2
)

edges.
A collection of almost-cliques: Each almost-clique C:

I contains (1± ε) ∆ vertices.
I every vertex in C has ≤ ε∆ neighbors outside C.
I every vertex in C has ≤ ε∆ non-neighbors inside C.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Network Decomposition
We exploit and modify the decomposition of Harris, Schneider, and
Su [Harris et al., 2016] for distributed (∆ + 1) coloring.
Extended HSS Decomposition: For any ε ∈ (0, 1), any graph G(V, E) can
be decomposed into:

Sparse vertices: Neighborhood of each sparse vertex is missing at
least ε ·

(∆
2
)

edges.
A collection of almost-cliques: Each almost-clique C:

I contains (1± ε) ∆ vertices.
I every vertex in C has ≤ ε∆ neighbors outside C.
I every vertex in C has ≤ ε∆ non-neighbors inside C.

an almost-
clique

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

A Network Decomposition
We exploit and modify the decomposition of Harris, Schneider, and
Su [Harris et al., 2016] for distributed (∆ + 1) coloring.

Extended HSS Decomposition: For any ε ∈ (0, 1), any graph G(V, E) can
be decomposed into:

Sparse vertices: Neighborhood of each sparse vertex is missing at
least ε ·

(∆
2
)

edges.
A collection of almost-cliques: Each almost-clique C:

I contains (1± ε) ∆ vertices.
I every vertex in C has ≤ ε∆ neighbors outside C.
I every vertex in C has ≤ ε∆ non-neighbors inside C.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Proof Strategy of Palette Sparsification Theorem

Palette Sparsification Theorem.
For every vertex v, sample O(log n) colors L(v) from {1, . . . , ∆ + 1}.
W.h.p., G can be colored by coloring any vertex v from the list L(v).

1 Fix an extended HSS decomposition of the graph for ε ≈ 0.001.
2 Part one: Use the first half of colors in L(·) to color sparse vertices.

I Easy part: The simulation argument does the trick here also!

3 Part two: Iterate over the almost-cliques one by one and color each
one using the remaining half of L(·).

I Hard part: We need a generalization of ideas before in the assignment
reformulation for almost-cliques.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Proof Strategy of Palette Sparsification Theorem

Palette Sparsification Theorem.
For every vertex v, sample O(log n) colors L(v) from {1, . . . , ∆ + 1}.
W.h.p., G can be colored by coloring any vertex v from the list L(v).

1 Fix an extended HSS decomposition of the graph for ε ≈ 0.001.

2 Part one: Use the first half of colors in L(·) to color sparse vertices.
I Easy part: The simulation argument does the trick here also!

3 Part two: Iterate over the almost-cliques one by one and color each
one using the remaining half of L(·).

I Hard part: We need a generalization of ideas before in the assignment
reformulation for almost-cliques.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Proof Strategy of Palette Sparsification Theorem

Palette Sparsification Theorem.
For every vertex v, sample O(log n) colors L(v) from {1, . . . , ∆ + 1}.
W.h.p., G can be colored by coloring any vertex v from the list L(v).

1 Fix an extended HSS decomposition of the graph for ε ≈ 0.001.
2 Part one: Use the first half of colors in L(·) to color sparse vertices.

I Easy part: The simulation argument does the trick here also!

3 Part two: Iterate over the almost-cliques one by one and color each
one using the remaining half of L(·).

I Hard part: We need a generalization of ideas before in the assignment
reformulation for almost-cliques.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Proof Strategy of Palette Sparsification Theorem

Palette Sparsification Theorem.
For every vertex v, sample O(log n) colors L(v) from {1, . . . , ∆ + 1}.
W.h.p., G can be colored by coloring any vertex v from the list L(v).

1 Fix an extended HSS decomposition of the graph for ε ≈ 0.001.
2 Part one: Use the first half of colors in L(·) to color sparse vertices.

I Easy part: The simulation argument does the trick here also!

3 Part two: Iterate over the almost-cliques one by one and color each
one using the remaining half of L(·).

I Hard part: We need a generalization of ideas before in the assignment
reformulation for almost-cliques.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Proof Strategy of Palette Sparsification Theorem

Palette Sparsification Theorem.
For every vertex v, sample O(log n) colors L(v) from {1, . . . , ∆ + 1}.
W.h.p., G can be colored by coloring any vertex v from the list L(v).

1 Fix an extended HSS decomposition of the graph for ε ≈ 0.001.
2 Part one: Use the first half of colors in L(·) to color sparse vertices.

I Easy part: The simulation argument does the trick here also!

3 Part two: Iterate over the almost-cliques one by one and color each
one using the remaining half of L(·).

I Hard part: We need a generalization of ideas before in the assignment
reformulation for almost-cliques.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Proof Strategy of Palette Sparsification Theorem

Palette Sparsification Theorem.
For every vertex v, sample O(log n) colors L(v) from {1, . . . , ∆ + 1}.
W.h.p., G can be colored by coloring any vertex v from the list L(v).

1 Fix an extended HSS decomposition of the graph for ε ≈ 0.001.
2 Part one: Use the first half of colors in L(·) to color sparse vertices.

I Easy part: The simulation argument does the trick here also!

3 Part two: Iterate over the almost-cliques one by one and color each
one using the remaining half of L(·).

I Hard part: We need a generalization of ideas before in the assignment
reformulation for almost-cliques.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Proof Strategy: An Illustration

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Proof Strategy: An Illustration

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Proof Strategy: An Illustration

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Proof Strategy: An Illustration

Almost-Clique Palette Graph

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Proof Strategy: An Illustration

Almost-Clique Palette Graph

Our main technical result: Random subgraphs of palette graphs for
almost-cliques contain a “good” subgraph.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Proof Strategy: An Illustration

Almost-Clique Palette Graph

Our main technical result: Random subgraphs of palette graphs for
almost-cliques contain a “good” subgraph.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Proof Strategy: An Illustration

Almost-Clique Palette Graph

Our main technical result: Random subgraphs of palette graphs for
almost-cliques contain a “good” subgraph.

Main challenge: vertices in an almost-clique may have some colored
neighbors outside while the almost-clique may have size > ∆ + 1.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Proof Strategy: An Illustration

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Proof Strategy: An Illustration

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Sublinear Algorithms from
Palette Sparsification Theorem

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Sublinear Algorithms
All our sublinear algorithms are as follows:

1 Use palette sparsification to get a sparsified subgraph (conflict-graph).
2 Find a list-coloring of the conflict-graph.

The conflict-graph can be found efficiently in each model:

Sublinear time: Find it using Õ(min
{

n∆, n2

∆

}
) queries.

Streaming: Store its Õ(n) edges in the stream.
MPC: Send its Õ(n) edges to a single machine.

Conflict-graph has all the information needed for list-coloring.

This gives us our sublinear algorithms modulo a caveat...

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Sublinear Algorithms
All our sublinear algorithms are as follows:

1 Use palette sparsification to get a sparsified subgraph (conflict-graph).
2 Find a list-coloring of the conflict-graph.

The conflict-graph can be found efficiently in each model:

Sublinear time: Find it using Õ(min
{

n∆, n2

∆

}
) queries.

Streaming: Store its Õ(n) edges in the stream.
MPC: Send its Õ(n) edges to a single machine.

Conflict-graph has all the information needed for list-coloring.

This gives us our sublinear algorithms modulo a caveat...

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Sublinear Algorithms
All our sublinear algorithms are as follows:

1 Use palette sparsification to get a sparsified subgraph (conflict-graph).
2 Find a list-coloring of the conflict-graph.

The conflict-graph can be found efficiently in each model:

Sublinear time: Find it using Õ(min
{

n∆, n2

∆

}
) queries.

Streaming: Store its Õ(n) edges in the stream.
MPC: Send its Õ(n) edges to a single machine.

Conflict-graph has all the information needed for list-coloring.

This gives us our sublinear algorithms modulo a caveat...

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Sublinear Algorithms
All our sublinear algorithms are as follows:

1 Use palette sparsification to get a sparsified subgraph (conflict-graph).
2 Find a list-coloring of the conflict-graph.

The conflict-graph can be found efficiently in each model:

Sublinear time: Find it using Õ(min
{

n∆, n2

∆

}
) queries.

Streaming: Store its Õ(n) edges in the stream.
MPC: Send its Õ(n) edges to a single machine.

Conflict-graph has all the information needed for list-coloring.

This gives us our sublinear algorithms modulo a caveat...

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Sublinear Algorithms
All our sublinear algorithms are as follows:

1 Use palette sparsification to get a sparsified subgraph (conflict-graph).
2 Find a list-coloring of the conflict-graph.

The conflict-graph can be found efficiently in each model:

Sublinear time: Find it using Õ(min
{

n∆, n2

∆

}
) queries.

Streaming: Store its Õ(n) edges in the stream.
MPC: Send its Õ(n) edges to a single machine.

Conflict-graph has all the information needed for list-coloring.

This gives us our sublinear algorithms modulo a caveat...

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Sublinear Algorithms
All our sublinear algorithms are as follows:

1 Use palette sparsification to get a sparsified subgraph (conflict-graph).
2 Find a list-coloring of the conflict-graph.

The conflict-graph can be found efficiently in each model:

Sublinear time: Find it using Õ(min
{

n∆, n2

∆

}
) queries.

Streaming: Store its Õ(n) edges in the stream.
MPC: Send its Õ(n) edges to a single machine.

Conflict-graph has all the information needed for list-coloring.

This gives us our sublinear algorithms modulo a caveat...

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Sublinear Algorithms
Caveat. Palette sparsification theorem is an information-theoretic result
not a computational one.

Information-theoretically, we only need the conflict-graph.
But computationally, list-coloring is NP-hard.

We further address this issue:
Palette sparsification theorem can be made algorithmic assuming we
are given an (approximate) decomposition.

I Given the decomposition, we find the list-coloring in Õ(n
√

n) time.
We design sublinear algorithms for finding an approximate
decomposition in each model.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Sublinear Algorithms
Caveat. Palette sparsification theorem is an information-theoretic result
not a computational one.

Information-theoretically, we only need the conflict-graph.
But computationally, list-coloring is NP-hard.

We further address this issue:
Palette sparsification theorem can be made algorithmic assuming we
are given an (approximate) decomposition.

I Given the decomposition, we find the list-coloring in Õ(n
√

n) time.
We design sublinear algorithms for finding an approximate
decomposition in each model.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Sublinear Algorithms
Caveat. Palette sparsification theorem is an information-theoretic result
not a computational one.

Information-theoretically, we only need the conflict-graph.
But computationally, list-coloring is NP-hard.

We further address this issue:

Palette sparsification theorem can be made algorithmic assuming we
are given an (approximate) decomposition.

I Given the decomposition, we find the list-coloring in Õ(n
√

n) time.
We design sublinear algorithms for finding an approximate
decomposition in each model.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Sublinear Algorithms
Caveat. Palette sparsification theorem is an information-theoretic result
not a computational one.

Information-theoretically, we only need the conflict-graph.
But computationally, list-coloring is NP-hard.

We further address this issue:
Palette sparsification theorem can be made algorithmic assuming we
are given an (approximate) decomposition.

I Given the decomposition, we find the list-coloring in Õ(n
√

n) time.
We design sublinear algorithms for finding an approximate
decomposition in each model.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Sublinear Algorithms
Caveat. Palette sparsification theorem is an information-theoretic result
not a computational one.

Information-theoretically, we only need the conflict-graph.
But computationally, list-coloring is NP-hard.

We further address this issue:
Palette sparsification theorem can be made algorithmic assuming we
are given an (approximate) decomposition.

I Given the decomposition, we find the list-coloring in Õ(n
√

n) time.

We design sublinear algorithms for finding an approximate
decomposition in each model.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

The Sublinear Algorithms
Caveat. Palette sparsification theorem is an information-theoretic result
not a computational one.

Information-theoretically, we only need the conflict-graph.
But computationally, list-coloring is NP-hard.

We further address this issue:
Palette sparsification theorem can be made algorithmic assuming we
are given an (approximate) decomposition.

I Given the decomposition, we find the list-coloring in Õ(n
√

n) time.
We design sublinear algorithms for finding an approximate
decomposition in each model.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Concluding Remarks

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Concluding Remarks
We obtained the following sublinear algorithms for (∆ + 1) coloring:

An Õ(n
√

n) time algorithm in the standard query model.

A single-pass Õ(n) space algorithm in the streaming model.

An O(1) round Õ(n) memory algorithm in the MPC model.

The central tool: Palette Sparsification Theorem.

Open Problems
Deterministic sublinear algorithms: streaming (∆ + 1) coloring?
Sublinear complexity of related problems: multi-pass streaming/query
complexity of maximal independent set?
Beyond greedy algorithms for sublinear algorithms: Can non-adaptive
sparsification help other problems?

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Concluding Remarks
We obtained the following sublinear algorithms for (∆ + 1) coloring:

An Õ(n
√

n) time algorithm in the standard query model.

A single-pass Õ(n) space algorithm in the streaming model.

An O(1) round Õ(n) memory algorithm in the MPC model.

The central tool: Palette Sparsification Theorem.

Open Problems
Deterministic sublinear algorithms: streaming (∆ + 1) coloring?
Sublinear complexity of related problems: multi-pass streaming/query
complexity of maximal independent set?
Beyond greedy algorithms for sublinear algorithms: Can non-adaptive
sparsification help other problems?

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Concluding Remarks
We obtained the following sublinear algorithms for (∆ + 1) coloring:

An Õ(n
√

n) time algorithm in the standard query model.

A single-pass Õ(n) space algorithm in the streaming model.

An O(1) round Õ(n) memory algorithm in the MPC model.

The central tool: Palette Sparsification Theorem.

Open Problems
Deterministic sublinear algorithms: streaming (∆ + 1) coloring?

Sublinear complexity of related problems: multi-pass streaming/query
complexity of maximal independent set?
Beyond greedy algorithms for sublinear algorithms: Can non-adaptive
sparsification help other problems?

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Concluding Remarks
We obtained the following sublinear algorithms for (∆ + 1) coloring:

An Õ(n
√

n) time algorithm in the standard query model.

A single-pass Õ(n) space algorithm in the streaming model.

An O(1) round Õ(n) memory algorithm in the MPC model.

The central tool: Palette Sparsification Theorem.

Open Problems
Deterministic sublinear algorithms: streaming (∆ + 1) coloring?
Sublinear complexity of related problems: multi-pass streaming/query
complexity of maximal independent set?

Beyond greedy algorithms for sublinear algorithms: Can non-adaptive
sparsification help other problems?

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Concluding Remarks
We obtained the following sublinear algorithms for (∆ + 1) coloring:

An Õ(n
√

n) time algorithm in the standard query model.

A single-pass Õ(n) space algorithm in the streaming model.

An O(1) round Õ(n) memory algorithm in the MPC model.

The central tool: Palette Sparsification Theorem.

Open Problems
Deterministic sublinear algorithms: streaming (∆ + 1) coloring?
Sublinear complexity of related problems: multi-pass streaming/query
complexity of maximal independent set?
Beyond greedy algorithms for sublinear algorithms: Can non-adaptive
sparsification help other problems?

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Bera, S. K. and Ghosh, P. (2018).
Coloring in graph streams.
CoRR, abs/1807.07640.

Harris, D. G., Schneider, J., and Su, H.-H. (2016).
Distributed (∆+ 1)-coloring in sublogarithmic rounds.
In Proceedings of the forty-eighth annual ACM symposium on Theory
of Computing, pages 465–478. ACM.

Harvey, N. J. A., Liaw, C., and Liu, P. (2018).
Greedy and local ratio algorithms in the mapreduce model.
In Proceedings of the 30th on Symposium on Parallelism in
Algorithms and Architectures, SPAA 2018, Vienna, Austria, July
16-18, 2018, pages 43–52.

Parter, M. (2018).
(∆ + 1) coloring in the congested clique model.
In 45th International Colloquium on Automata, Languages, and
Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic,
pages 160:1–160:14.
Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

Parter, M. and Su, H. (2018).
Randomized (∆ + 1)-coloring in O(log∗ ∆) congested clique rounds.
In 32nd International Symposium on Distributed Computing, DISC
2018, New Orleans, LA, USA, October 15-19, 2018, pages 39:1–39:18.

Sepehr Assadi (Penn) Sublinear (∆ + 1) Coloring Simons Workshop on Sublinear Algorithms

