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Matchings in Graphs
Matching: A collection of vertex-disjoint edges.

Maximum Matching problem: Find a matching with a largest
number of edges.

Parameters:
I n: number of vertices in the graph G.
I opt(G): size of any maximum matching in G.
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The Maximum Matching Problem
Maximum matching is a fundamental optimization problem with
various applications.

Studied extensively in numerous models: classical, online,
parallel, streaming, distributed, ...

In this talk, we focus on the stochastic matching problem.

Sepehr Assadi (Penn) Beating Half in Stochastic Matching EC 2017



The Maximum Matching Problem
Maximum matching is a fundamental optimization problem with
various applications.

Studied extensively in numerous models: classical, online,
parallel, streaming, distributed, ...

In this talk, we focus on the stochastic matching problem.

Sepehr Assadi (Penn) Beating Half in Stochastic Matching EC 2017



The Maximum Matching Problem
Maximum matching is a fundamental optimization problem with
various applications.

Studied extensively in numerous models: classical, online,
parallel, streaming, distributed, ...

In this talk, we focus on the stochastic matching problem.

Sepehr Assadi (Penn) Beating Half in Stochastic Matching EC 2017



The Stochastic Matching Problem
For any graph G(V, E) and parameter p ∈ (0, 1):

A realization of G is a subgraph Gp(V, Ep) of G created by picking
each edge e ∈ E independently and w.p. p in Ep.
The stochastic matching problem:

Input: A graph G and a parameter p ∈ (0, 1).
Output: a sparse subgraph H of G that preserves the maximum
matching size in realizations of G.

E
[
opt(Hp)

]
≈ E

[
opt(Gp)

]

Introduced originally by Blum, Dickerson, Haghtalab, Procaccia,
Sandholm, and Sharma (EC 2015) [Blum et al., 2015].

Sepehr Assadi (Penn) Beating Half in Stochastic Matching EC 2017



The Stochastic Matching Problem
For any graph G(V, E) and parameter p ∈ (0, 1):
A realization of G is a subgraph Gp(V, Ep) of G created by picking
each edge e ∈ E independently and w.p. p in Ep.

The stochastic matching problem:
Input: A graph G and a parameter p ∈ (0, 1).
Output: a sparse subgraph H of G that preserves the maximum
matching size in realizations of G.

E
[
opt(Hp)

]
≈ E

[
opt(Gp)

]

Introduced originally by Blum, Dickerson, Haghtalab, Procaccia,
Sandholm, and Sharma (EC 2015) [Blum et al., 2015].

Sepehr Assadi (Penn) Beating Half in Stochastic Matching EC 2017



The Stochastic Matching Problem
For any graph G(V, E) and parameter p ∈ (0, 1):
A realization of G is a subgraph Gp(V, Ep) of G created by picking
each edge e ∈ E independently and w.p. p in Ep.
The stochastic matching problem:

Input: A graph G and a parameter p ∈ (0, 1).
Output: a sparse subgraph H of G that preserves the maximum
matching size in realizations of G.

E
[
opt(Hp)

]
≈ E

[
opt(Gp)

]

Introduced originally by Blum, Dickerson, Haghtalab, Procaccia,
Sandholm, and Sharma (EC 2015) [Blum et al., 2015].

Sepehr Assadi (Penn) Beating Half in Stochastic Matching EC 2017



The Stochastic Matching Problem
For any graph G(V, E) and parameter p ∈ (0, 1):
A realization of G is a subgraph Gp(V, Ep) of G created by picking
each edge e ∈ E independently and w.p. p in Ep.
The stochastic matching problem:

Input: A graph G and a parameter p ∈ (0, 1).
Output: a sparse subgraph H of G that preserves the maximum
matching size in realizations of G.

E
[
opt(Hp)

]
≈ E

[
opt(Gp)

]

Introduced originally by Blum, Dickerson, Haghtalab, Procaccia,
Sandholm, and Sharma (EC 2015) [Blum et al., 2015].

Sepehr Assadi (Penn) Beating Half in Stochastic Matching EC 2017



The Stochastic Matching Problem
For any graph G(V, E) and parameter p ∈ (0, 1):
A realization of G is a subgraph Gp(V, Ep) of G created by picking
each edge e ∈ E independently and w.p. p in Ep.
The stochastic matching problem:

Input: A graph G and a parameter p ∈ (0, 1).
Output: a sparse subgraph H of G that preserves the maximum
matching size in realizations of G.

E
[
opt(Hp)

]
≈ E

[
opt(Gp)

]

Introduced originally by Blum, Dickerson, Haghtalab, Procaccia,
Sandholm, and Sharma (EC 2015) [Blum et al., 2015].

Sepehr Assadi (Penn) Beating Half in Stochastic Matching EC 2017



An Example
Graph G: Subgraph H:

A realization Gp: A realization Hp:
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Motivation
Beyond its theoretical interest, the stochastic matching problem is
motivated by its application to kidney exchange:

Patient-Donor pairs form the vertices of the graph G.
There is an edge between any two vertices that a kidney
exchange is a possibility.
Additional expensive and time consuming tests are needed to
make sure an edge realizes, i.e., the exchange can indeed happen.
We know that each possible edge is realized with some relatively
small constant probability.
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Motivation
The goal in kidney exchange:

Find the largest number of patient-donor pairs that can perform
a kidney exchange, i.e., find a maximum matching.

At the same time, test each patient-donor pair only a small
number of times.

To save on time, the test needs to be done in parallel, i.e.,
non-adaptively.

This is precisely the setting of the stochastic matching problem!

Sepehr Assadi (Penn) Beating Half in Stochastic Matching EC 2017



Motivation
The goal in kidney exchange:

Find the largest number of patient-donor pairs that can perform
a kidney exchange, i.e., find a maximum matching.

At the same time, test each patient-donor pair only a small
number of times.

To save on time, the test needs to be done in parallel, i.e.,
non-adaptively.

This is precisely the setting of the stochastic matching problem!

Sepehr Assadi (Penn) Beating Half in Stochastic Matching EC 2017



Motivation
The goal in kidney exchange:

Find the largest number of patient-donor pairs that can perform
a kidney exchange, i.e., find a maximum matching.

At the same time, test each patient-donor pair only a small
number of times.

To save on time, the test needs to be done in parallel, i.e.,
non-adaptively.

This is precisely the setting of the stochastic matching problem!

Sepehr Assadi (Penn) Beating Half in Stochastic Matching EC 2017



Motivation
The goal in kidney exchange:

Find the largest number of patient-donor pairs that can perform
a kidney exchange, i.e., find a maximum matching.

At the same time, test each patient-donor pair only a small
number of times.

To save on time, the test needs to be done in parallel, i.e.,
non-adaptively.

This is precisely the setting of the stochastic matching problem!

Sepehr Assadi (Penn) Beating Half in Stochastic Matching EC 2017



Motivation
The goal in kidney exchange:

Find the largest number of patient-donor pairs that can perform
a kidney exchange, i.e., find a maximum matching.

At the same time, test each patient-donor pair only a small
number of times.

To save on time, the test needs to be done in parallel, i.e.,
non-adaptively.

This is precisely the setting of the stochastic matching problem!

Sepehr Assadi (Penn) Beating Half in Stochastic Matching EC 2017



Naive Approaches
Trivial “solutions”?

1 Let H be the graph G itself.
Pros. Exact answer.
Cons. Subgraph H may have Θ(n2) edges, i.e., is not sparse.

2 Let H be some maximum matching of G.
Pros. Subgraph H is quite sparse, i.e., has at most n/2 edges.
Cons. Approximation ratio is only p.
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Better Solutions
Are there better solutions?

A better solution would be a subgraph H with Op(1) maximum
degree and a fixed constant approximation (independent of p).

The answer is indeed Yes!

[Blum et al., 2015]: (0.5− ε)-approximation with a subgraph H of
maximum degree

(
1
p

)Θ( 1
ε

)
.

[Assadi et al., 2016]: (0.5− ε)-approximation with a subgraph H of
maximum degree only O

(
log (1/εp)

εp

)
.
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Even Better Solutions
Can we obtain better approximation factors?

Both previous approaches in [Blum et al., 2015, Assadi et al., 2016]
are heavily tailored for achieving only a half approximation.

Question. Can we beat the half approximation factor for the
stochastic matching problem?
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Our Result
One can indeed do better than a half approximation!

Theorem
There exists a subgraph H of maximum degree only O

(
log (1/p)

p

)
that

achieves an approximation ratio of
1 0.52 for vanishingly small probabilities p.

2 0.5 + ε∗ for some absolute constant ε∗ > 0 for any p.
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Our Result
One can indeed do better than a half approximation!

Theorem
There exists a subgraph H of maximum degree only O

(
log (1/p)

p

)
that

achieves an approximation ratio of
1 0.52 for vanishingly small probabilities p.

2 0.5 + ε∗ for some absolute constant ε∗ > 0 for any p.

Vanishingly small probabilities:
any p ≤ p∗ for some absolute constant p∗ > 0.
a common assumption in many stochastic matching
problems [Mehta and Panigrahi, 2012, Mehta et al., 2015].
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Our Result
One can indeed do better than a half approximation!

Theorem
There exists a subgraph H of maximum degree only O

(
log (1/p)

p

)
that

achieves an approximation ratio of
1 0.52 for vanishingly small probabilities p.
2 0.5 + ε∗ for some absolute constant ε∗ > 0 for any p.

Remark.The degree bound of Ω
(

1
p

)
is required by any algorithm

that achieves a constant factor approximation.
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Previous Approaches
The previous algorithm of [Assadi et al., 2016]:

MatchingCover(G, t):

1 Pick t edge-disjoint matchings M1, . . . , Mt in G as subgraph H.
2 Mi is a maximum matching in G \M1 ∪ . . . ∪Mi−1.

Matching-Cover Lemma ([Assadi et al., 2016]). Let:
1 M1, . . . , Mt = MatchingCover(G, t) for t ≈ 1/p.
2 L := mini∈[t] |Mi| = |Mt|.

There exists a matching of size L± o(L) in each realization of
H(V, M1 ∪ . . . ∪Mt) w.h.p.
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Previous Approaches
The previous algorithm of [Assadi et al., 2016]:

Claim. The MatchingCover algorithm achieves ≈ 0.5
approximation.

Case 1. L ≥ 0.5 · opt: apply the Matching-Cover Lemma!

Case 2. L < 0.5 · opt: we already picked half the edges of the
optimal solution in H!

Remark. The approximation ratio of 0.5 is the limit of this greedy
approach.
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Our Approach
Our approach is motivated by the following two questions:

1 In order for opt(Gp) to be large in expectation, does the graph
G need to have a specific structure?

2 If the answer is yes, can we also exploit this structure to design a
better algorithm?
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Our Approach: First Step
What can be said about G if Gp has a matching of size opt in
expectation?

Intuitively, G needs to have many edge-disjoint matchings of size opt.

To make this formal, we need to relax the requirement from finding
many edge-disjoint matchings, to finding a large b-matching.

We prove that,

Lemma (b-Matching Lemma)
Let b =

⌊
1
p

⌋
; any graph G(V, E) such that E [opt(Gp)] = opt has a

b-matching of size (b− 1) · opt.

Remark. The bounds in the b-Matching Lemma are tight.
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Our Approach: Second Step
We already showed that there exists essentially 1/p edge-disjoint
matchings of size opt in G.

However, this is not sufficient for a direct application of the
Matching-Cover Lemma.

Instead, we use the existence of these large matchings in G to
augment the answer returned by the MatchingCover algorithm.
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A New Algorithm
1 Pick a maximum

(
1
p

)
-matching, denoted by B, from G.

2 Run the MatchingCover algorithm over G \B. Let EMC be
the output of MatchingCover.

3 Return B ∪ EMC as the subgraph H.

Claim. E [opt(H(V, B ∪ EMC))] ≥ (0.5 + ε∗) · E [opt(G(V, E))], for
some absolute constant ε∗ > 0.
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Analysis Sketch
Let M be the maximum matching in the realization of EMC .

Using a similar greedy argument, one can show that if |M | < opt/2
we are already done.
Hence, let us assume that |M | = opt/2.

We have not yet realized the edges in the
(

1
p

)
-matching B. These

edges are realized independent of M .

By the b-Matching Lemma, size of the
(

1
p

)
-matching B is

(essentially) ≥ opt/p.

Use the realized edges in B to augment the matching M .
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Analysis Sketch
Plan: Use the realized edges in B to augment the matching M .

Case 1. Some edges of B are not incident on
vertices of M .

I We prove that a relatively large matching is
realized in this part of B.

I This realized edges can be directly added to
M forming a matching M∗ of size
(0.5 + ε∗) · opt.

M
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Analysis Sketch
Plan: Use the realized edges in B to augment the matching M .

Case 2. Most edges of B are incident on
vertices of M .

I Claim. There are a relatively large number
of vertex-disjoint length-three augmenting
paths of M in Bp.

I By augmenting M in all these paths, we get
a matching M∗ of size (0.5 + ε∗) · opt.

M

B
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Analysis Sketch
Claim. Number of vertex-disjoint length-three augmenting paths is
relatively large.

The proof is rather involved considering all details.

Two steps:
1 Formalize the number of these paths as a non-linear

minimization program.

minimize
∑

i∈[|M|] f(p) ·
(
1− e−p·d(vi)

)
·max {d(ui)− 1, 0}

subject to
∑

i∈[|M|] d(ui) + d(vi) = |B|
d(ui), d(vi) ∈

[
1
p

]
i = 1, . . . , |M |

2 Analyze the optimal solution of this minimization program to
lower bound the number of such paths.
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Analysis Sketch: Wrap-up
To wrap-up, we can show that the expected size of the matching in
B ∪ EMC is at least (0.5 + ε∗) · opt where:

ε∗ ≥ 0.02 for sufficiently small values of p.
ε∗ ≈ 0.001 for any values of p.

Theorem
There exists a subgraph H of maximum degree only O

(
log (1/p)

p

)
that

achieves an approximation ratio of
1 0.52 for vanishingly small probabilities p.
2 0.5 + ε∗ for some absolute constant ε∗ > 0 for any p.
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Concluding Remarks
We presented the first non-adaptive algorithm for the stochastic
matching problem with approximation ratio better than half.

Additionally, the maximum-degree bound in our algorithm is
almost optimal for any constant factor approximation.

Open problems:
Can we further improve the approximation ratio? Perhaps, a
direct application of the b-Matching Lemma?

Is (1− ε)-approximation with a subgraph of max-degree f(p, ε)
possible or there is a non-trivial upper bound on the
approximation ratio of non-adaptive algorithms?
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