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The Set Cover Problem
Input: A collection of m sets S1, . . . , Sm from a universe [n].

Goal: Choose a smallest subset C of the sets from S1, . . . , Sm
such that C covers [n], i.e., ⋃i∈C Si = [n].

The sets maybe weighted in general.
We use OPT to denote the optimal solution size/weight.
Approximation vs Estimation:

α-approximation: output a set cover of size at most α · OPT
plus a certificate of coverage for each element e ∈ [n].
α-estimation: output an estimate for the size of minimum set
cover in range [OPT, α · OPT].
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The Set Cover Problem
A classic optimization problem with many applications.

A well-understood problem in the classical setting:
I Admits a poly-time greedy lnn-approximation algorithm.
I No poly-time (1− ε) · lnn-estimation algorithm unless P = NP.

This talk: space complexity of approximating the set cover
problem in the streaming model.
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The Streaming Set Cover Problem
Model:

The input sets S1, . . . , Sm are presented one by one in a stream.
The streaming algorithm has a small space to maintain a
summary of the input sets.
At the end, the algorithm outputs an exact/approximate set
cover using this summary.

Introduced originally by [SG09] and further studied in several recent
works [ER14, DIMV14, IMV15, CW16, HPIMV16].

Remark. We are not concerned with poly-time computability in this
model.
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State of the Art for Single-Pass Algorithms

Result Space Performance Ratio
Exact O(mn) 1

[IMV15] Ω(mn) 3/2− ε
[ER14] O(n) O(

√
n)

[ER14] Ω(m) o(
√
n)

Many known results for multi-pass algorithms as
well: [SG09, IMV15, CW16] . . .
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Our First Result
A tight space-approximation tradeoff for single-pass streaming
algorithms:

Theorem
For any α = o(

√
n), Θ̃(mn/α) space is both sufficient and necessary

for α-approximating the set cover problem.
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α-Approximation in Õ(mn/α) space
A simple algorithm for (weighted) set cover:

1 Guess OPT and ignore sets with weight > OPT.

2 Prune: Include a set if it covers more than n/α new elements
and remove these elements from the universe.
(at most α sets would be included with total weight ≤ α · OPT)

3 Store all remaining sets over the new universe.
(each remaining set contains < n/α elements and hence they can all
be stored in O(mn/α) space)

4 Solve the store set cover instance optimally to cover the elements
remained uncovered by the prune step.

Our lower bound shows that this simple algorithm is essentially the
best possible in terms of space requirement!
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Approximation vs Estimation
Previous upper bounds are for the approximation problem, while
lower bounds are for estimation.

However, our Ω(mn/α) lower bound strongly relies on the fact that
we are solving the approximation problem and not simply estimating
the value of the optimal set cover.

Question: Can it be that estimation is strictly easier than
approximation?

Sepehr Assadi (Penn) Symposium on Theory of Computing



Approximation vs Estimation
Previous upper bounds are for the approximation problem, while
lower bounds are for estimation.

However, our Ω(mn/α) lower bound strongly relies on the fact that
we are solving the approximation problem and not simply estimating
the value of the optimal set cover.

Question: Can it be that estimation is strictly easier than
approximation?

Sepehr Assadi (Penn) Symposium on Theory of Computing



Approximation vs Estimation
Previous upper bounds are for the approximation problem, while
lower bounds are for estimation.

However, our Ω(mn/α) lower bound strongly relies on the fact that
we are solving the approximation problem and not simply estimating
the value of the optimal set cover.

Question: Can it be that estimation is strictly easier than
approximation?

Sepehr Assadi (Penn) Symposium on Theory of Computing



Our Second Result
Estimation is indeed distinctly easier!

Theorem
For any α = o(

√
n), there exists a randomized α-estimation

Õ(mn/α2) space algorithm for the streaming set cover problem.

Works in general for any covering integer program, and in particular
for weighted set-cover or set multi-cover problem.
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Our Third Result
The factor α gap between space requirements of approximation
versus estimation algorithms for streaming set cover is tight.

Theorem
For any α = o(

√
n), any randomized algorithm that α-estimates the

set cover problem requires Ω̃(mn/α2) space.

This lower bound holds even for random arrival streams.
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Ω(mn/α) Space is Necessary to Compute an
α-Approximate Set Cover
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Communication Complexity
We use communication complexity paradigm to prove our lower
bound.

One-way Two-player Communication Model:
Alice gets a private input X and Bob gets a private input Y .
Their goal is to compute a function P (X, Y ).
Alice is allowed to send a single message M to Bob.
Bob uses the message M plus his input to compute
f(M,Y ) ≈ P (X, Y ).

Communication Complexity CC(P ): the minimum length of a
message for any protocol that solves P with probability at least 2/3.
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Connection to Streaming Complexity
Space needed by any streaming algorithm for a problem P is at least
the communication complexity of P .

Alice

X

Bob A(s1 ◦ s2)

Y

Stream:

s1 s2

A(s1)
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A Hard Input Distribution for Set Cover

Theorem
CC(α-Approximate Set Cover) = Ω(mn/α)

Alice and Bob each gets a collection of sets.
Alice sends a single message to Bob and Bob outputs an
α-approximate set cover.

Sepehr Assadi (Penn) Symposium on Theory of Computing



A Hard Input Distribution for Set Cover

Theorem
CC(α-Approximate Set Cover) = Ω(mn/α)

Alice and Bob each gets a collection of sets.
Alice sends a single message to Bob and Bob outputs an
α-approximate set cover.

Sepehr Assadi (Penn) Symposium on Theory of Computing



A Hard Input Distribution for Set Cover
Input Distribution D:

[n]
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Bob: a single set T of
size n− 6α:

Si∗
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A Hard Input Distribution for Set Cover
Input Distribution D:

Alice: a collection of
m sets S1, . . . , Sm.

S1, . . . , Sm
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A Hard Input Distribution for Set Cover
Input Distribution D:

Alice: a collection of
m sets S1, . . . , Sm.

Bob: a single set T .

T

[n]
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A Hard Input Distribution for Set Cover

The optimal set cover size is
at most 3:

Use T ,Si∗ , and one more set
for covering the special ele-
ment.

[n]
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Proof Sketch
Why D is a hard distribution?

Claim
Solving set cover on D is equivalent to identifying the special
element.

1 Bob can identify the set Si∗ with small communication.
2 Bob knows using T and Si∗ he can cover all but a single

element, i.e., the special element e.
3 Bob’s task is then to identify the special element in T .

Identify = find a small enough subset of T that contains e.
In other words, trap the special element e.

4 Bob can then cover the trap-set using sets other than Si∗ .
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Proof Sketch
How small is small enough for the trap-set size?

1 Optimal set cover size is at most 3, hence Bob is allowed to use
up to 3α sets in the set cover.

2 The trap-set needs to be coverable by < 3α sets other than Si∗ .
3 The near orthogonality of the sets implies that the trap-set has

to be of size < 3α.
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Proof Sketch
Why D is a hard distribution?

Claim
Suppose Alice only has a single set, i.e., only Si∗ ; then, trapping the
special element requires full knowledge of Alice’s set.

Trap problem: the communication problem of trapping the special
element, when Alice has a single set S and Bob has a single set
A ∪ {e}.
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Proof Sketch
Lemma

CC(Trap) = Ω(n/α)

Intuitively,
1 If Alice sends o(n/α) bits, only o(1) fraction of the set S is

revealed to Bob.
2 Since A is chosen uniformly at random from S, Bob can only

determine o(1) fraction of A that belongs to S.
3 Consequently, Bob can only trap the special element by a set of

size (1− o(1)) |A| > 3α.

We formalize this using an information-theoretic argument and a
novel reduction from the Index problem.
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Proof Sketch
Why D is a hard distribution?

Claim
When i∗ is not known to Alice, trapping the special element requires
m times more communication:

CC(α-Approximate Set Cover) ≈ m · CC(Trap)

Intuitively,
1 The index i∗ is unknown to Alice, hence Alice’s message

essentially needs to solve Trap for most indices i ∈ [m].
2 The sets are chosen independently, hence information sent for

one set cannot be used for solving Trap on another set.

We formalize this using information complexity and a direct-sum style
argument.
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Summary
Hence,

CC(α-Approximate Set Cover) ≈ Ω(mn/α)

Communication complexity is also a lower bound on the space
complexity of the streaming algorithms:

Theorem
For any α = o(

√
n), Ω(mn/α) space is necessary for

α-approximating the set cover problem.

Moreover, this space-approximation tradeoff is tight.
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Õ(mn/α2) Space is Sufficient for α-Estimating
Set Cover
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An α-Estimation Algorithm in Õ(mn/α2) Space
We show that,

Theorem
There exists a single-pass streaming that α-estimates the weighted
set cover problem in Õ(mn/α2) space.

These ideas can be further generalized to estimate optimal solution
value of any covering integer program.
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α-Approximation in Õ(mn/α) space
A simple algorithm for (weighted) set cover:

1 Guess OPT and ignore sets with weight > OPT.
2 Prune: Include a set if it covers more than n/α new elements

and remove these elements from the universe.
(at most α sets would be included with total weight ≤ α · OPT)

3 Store all remaining sets over the new universe.
(each remaining set contains < n/α elements and hence they can all
be stored in O(mn/α) space)

4 Solve the store set cover instance optimally to cover the elements
remained uncovered by the prune step.
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Element Sampling
How to save another factor α to achieve O(mn/α2) when the goal is
only estimating?

Element Sampling:
Sample each element with probability 1/α and work with the
sampled universe in the second phase of the algorithm.
Store the sampled instance completely (after pruning).
(each set has ≤ n/α2 elements in the sampled universe and hence
total space requirement is O(mn/α2))

The hope is that the sampling procedure reduces the weight of the
optimal set cover by a factor of at most α.

Sepehr Assadi (Penn) Symposium on Theory of Computing



Element Sampling
How to save another factor α to achieve O(mn/α2) when the goal is
only estimating?

Element Sampling:
Sample each element with probability 1/α and work with the
sampled universe in the second phase of the algorithm.
Store the sampled instance completely (after pruning).
(each set has ≤ n/α2 elements in the sampled universe and hence
total space requirement is O(mn/α2))

The hope is that the sampling procedure reduces the weight of the
optimal set cover by a factor of at most α.

Sepehr Assadi (Penn) Symposium on Theory of Computing



Element Sampling
Let
I be an instance of the weighted set cover problem.
Iα be an instance obtained from I by sampling each element of
the universe [n] with probability 1/α.

Clearly, OPT(Iα) ≤ OPT(I).
Ideally, we also want OPT(Iα) ≥ OPT(I)/α with probability Ω(1).
This way, we can use OPT(Iα) as a proxy for OPT(I).

But is this true?
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Element Sampling
This is not true in general.
Consider the following instance I with n sets:

S1 = {1} with weight W � n.
Si = {i} for i > 1 with weight 1.

Clearly,
OPT(I) = (n− 1) +W

Pr
[
OPT(Iα) ≥ OPT(I)/α

]
= o(1)

The problem is existence of elements that are too expensive to cover.
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Element Sampling Lemma
For each element e ∈ [n], define Cost(e) to be the minimum
weight of any set that covers e.
Define Cost(I) := maxe∈[n] Cost(e).

Cost(I) is clearly a lower bound on OPT(I).

Lemma (Element Sampling Lemma)
For any instance I, let Iα be an instance obtained by sampling each
element independently with probability ln (n)

α
, then,

Pr
[
OPT(Iα) + Cost(I) ≥ OPT(I)

α

]
≥ 1

2
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Upper Bound Statement

Theorem
For any α = o(

√
n), Θ̃(mn/α2) space is sufficient for α-estimating

the weighted set cover problem.

Moreover, this space-estimation tradeoff is tight.
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Summary of Our Results
For the set cover problem in single-pass streams,

α-approximation:
Θ̃(mn/α) space is necessary and sufficient.

α-estimation:
Θ̃(mn/α2) space is necessary and sufficient.

Our results resolve the space-complexity of set cover in single-pass
streams.
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Questions?
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