
Tight Bounds on the Round Complexity of the
Distributed Maximum Coverage Problem

Sepehr Assadi

University of Pennsylvania

Joint work with Sanjeev Khanna (Penn)

Sepehr Assadi (Penn) Distributed Maximum Coverage SODA 2018



Maximum Coverage Problem
Given

a collection of sets S1, . . . , Sm from a universe [n], and
an integer parameter k

Find
k sets whose union covers the most number of elements.

A classical NP-hard optimization problem
Wide range of applications in various domains
An illustrative example of submodular maximization
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Distributed Maximum Coverage Problem
We are interested in the following distributed model:

1 There are p machines plus
an additional coordinator.

2 Each input set appears in
exactly one machine.
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Distributed Maximum Coverage Problem
We are interested in the following distributed model:

1 Communication happens
in rounds. In each round,

I Every machine
simultaneously sends a
message to the
coordinator.

I Next, the coordinator
responds with a single
message to each
machine.

2 After the last round, the
coordinator outputs the
answer.
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Efficiency
Main measures of efficiency in this model:

1 Approximation ratio of the
returned solution.

I Ideally
(

e
e−1

)
approximation.

2 Communication cost of the
protocol.

I Ideally Õ(n) communication.

3 Number of rounds of
computation.

I Ideally O(1) rounds.
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I Ideally Õ(n) communication.

3 Number of rounds of
computation.

I Ideally O(1) rounds.

Apx. Comm.

Sepehr Assadi (Penn) Distributed Maximum Coverage SODA 2018



Efficiency
Main measures of efficiency in this model:

1 Approximation ratio of the
returned solution.

I Ideally
(

e
e−1

)
approximation.

2 Communication cost of the
protocol.
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Motivation Behind the Model
Why this distributed model?

1 A natural abstraction of distributed computing that focuses on
number of rounds of parallel computation.

2 Closely related to other computational models such as dynamic
streams and MapReduce model.

3 Studying powers and limitations of many popular algorithmic
techniques such as linear sketching, composable coresets, and
sample-and-prune, through the lens of communication
complexity.

Sepehr Assadi (Penn) Distributed Maximum Coverage SODA 2018



Motivation Behind the Model
Why this distributed model?

1 A natural abstraction of distributed computing that focuses on
number of rounds of parallel computation.

2 Closely related to other computational models such as dynamic
streams and MapReduce model.

3 Studying powers and limitations of many popular algorithmic
techniques such as linear sketching, composable coresets, and
sample-and-prune, through the lens of communication
complexity.

Sepehr Assadi (Penn) Distributed Maximum Coverage SODA 2018



Motivation Behind the Model
Why this distributed model?

1 A natural abstraction of distributed computing that focuses on
number of rounds of parallel computation.

2 Closely related to other computational models such as dynamic
streams and MapReduce model.

3 Studying powers and limitations of many popular algorithmic
techniques such as linear sketching, composable coresets, and
sample-and-prune, through the lens of communication
complexity.

Sepehr Assadi (Penn) Distributed Maximum Coverage SODA 2018



Motivation Behind the Model
Why this distributed model?

1 A natural abstraction of distributed computing that focuses on
number of rounds of parallel computation.

2 Closely related to other computational models such as dynamic
streams and MapReduce model.

3 Studying powers and limitations of many popular algorithmic
techniques such as linear sketching, composable coresets, and
sample-and-prune, through the lens of communication
complexity.

Sepehr Assadi (Penn) Distributed Maximum Coverage SODA 2018



Previous Results
Two main categories:

Round efficient protocols
achieving O(1)-approximation
with large communication cost.

I O(1) rounds and k ·mΩ(1)

communication
[Kumar et al., 2013].
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Motivating Question

Does there exist a truly efficient distributed protocol for
maximum coverage, that is, a protocol that achieves Õ(n)
communication, O(1) rounds, and O(1) approximation?

Any barrier?

Not possible in one round using a restricted types of algorithms,
namely, composable coresets [Indyk et al., 2014].

At the same time, almost no multi-round lower bounds are known in
this model...
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Our Results
Our main result is a negative resolution of this question.

Theorem
Any poly(n) communication protocol that achieves O(1)
approximation requires Ω

(
log n

log log n

)
rounds of communication.

In general,

Theorem
For any integer r ≥ 1, any r-round protocol for distributed maximum
coverage either incurs k ·mΩ(1/r) communication per machine or has
approximation ratio kΩ(1/r) (here k and n are polynomially related).
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Our Results
We complement our lower bound by proving that its bounds are
almost tight.

Theorem
For any integer r ≥ 1, there are r-round protocols for distributed
maximum coverage that achieve,

1
(

e
e−1

)
-approximation with k ·mO(1/r) communication,

2 O(r · k1/r+1)-approximation with Õ(n) communication.
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Further Applications
Our results imply new algorithms and lower bounds for dynamic
streams and MapReduce model.

1 An Ω(log n)-pass lower bound for O(1)-approximation
semi-streaming algorithms in dynamic streams.

I In contrast, O(1)-approximation single-pass semi-streaming
algorithms exists in insertion-only streams and even sliding
windows [Badanidiyuru et al., 2014, McGregor and Vu, 2017,
Chen et al., 2016, Epasto et al., 2017].

2 An improved
(

e
e−1

)
-approximation algorithm in the MapReduce

model.
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The Lower Bound
Theorem
For any integer r ≥ 1, any r-round protocol for distributed maximum
coverage either incurs k ·mΩ(1/r) communication per machine or has
approximation ratio kΩ(1/r).
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High Level Approach
First Part:

1 Design a hard input distribution for one-round protocols.

I Each machine has one special set to contribute to the optimum
solution.

I This special set is hidden in the large collection of input sets to
this machine.

I To convey information about its special set, each machine needs
to convey information about most of its input sets.

2 Prove a communication lower bound for this distribution.

I We use information theoretic machinery to analyze this
distribution.
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High Level Approach
Second Part:
We apply the previous idea recursively:

1 We first create many instances of the coverage problem on a
smaller universe with fewer machines.

2 Each machine is participating in many such instances among
which, one is special but unknown to the machine.

3 We pack all these instances into one larger instance of the
coverage problem such that solving special instances is necessary
for any efficient solution.

4 As special instances are hidden in the first round, one needs to
solve them in the remaining rounds which is hard by induction.

Main tool: a generalization of the multi-party round-elimination
technique of [Alon et al., 2015].
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Analysis Sketch for r-Round Protocols
To prove a lower bound for r-round protocols, we create instances
with the following parameters:

1 Number of elements is nr.

2 Number of input sets is nO(r)
r .

3 Parameter kr and number of machines pr are equal to each
other.
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Analysis Sketch for r-Round Protocols

S is a large collection of sets each of
size nr−1 over � nr elements.

Machines are partitioned into blocks,
each of size pr−1.
Machines in each block are playing
in |S| many instances of
(r − 1)-round problem, each over a
universe Sj ∈ S.
We pick one of the instances in S as
special uniformly at random.
Across the blocks, elements in
special instance are unique, while
other elements are shared.

Collection S
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Analysis Sketch for r-Round Protocols
1 The machines need to solve the

(r − 1)-round instance between their
blocks and their special instance.

2 The first message M of a low
communication cost protocol π does
not reveal any useful information
about the special instance.

3 If π can solve Dr in r rounds, then
π |M should be able to solve Dr−1
in r − 1 rounds.

4 We can obtain a low communication
cost protocol π′ for solving Dr−1 in
r − 1 rounds by simulating π |M .

D̃r−1

Dr−1
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Analysis Sketch for r-Round Protocols
What is left to prove?

The machines really have to solve their special instance.

We need to design the set S carefully to satisfy this property.

We achieve this using a randomly generated set-system in the spirit
of the edifice construction of [Chakrabarti and Wirth, 2016].
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Analysis Sketch for r-Round Protocols
By optimizing the ratio between the parameters, we obtain:

A lower bound of kr ·mΩ(1/r)
r communication for ≈ k1/2r

r

approximation in r rounds.
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Summary
The efficiency triangle:

Approximation Communication

Rounds
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Summary
The efficiency triangle:

Approximation Communication

Rounds

This paper: Impossible to be efficient in all three measures
simultaneously!
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Summary
The efficiency triangle:

Approximation Communication

Rounds

[Badanidiyuru et al., 2014, McGregor and Vu, 2017].
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Summary
The efficiency triangle:

Approximation Communication

Rounds

[Kumar et al., 2013] and this paper.
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Summary
The efficiency triangle:

Approximation Communication

Rounds

This paper.
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Open Problems
Round-approximation tradeoffs for other distributed problems.

I Approximating maximum matching?

Dynamic semi-streaming algorithms for maximum coverage in
constant number of rounds.

I Our results imply
(

e
e−1

)
-approximation in O(log n) passes.

I kO(1/r)-approximation in r-passes?
I O(

√
k)-approximation in one pass?

Thank you!

Sepehr Assadi (Penn) Distributed Maximum Coverage SODA 2018



Open Problems
Round-approximation tradeoffs for other distributed problems.

I Approximating maximum matching?

Dynamic semi-streaming algorithms for maximum coverage in
constant number of rounds.

I Our results imply
(

e
e−1

)
-approximation in O(log n) passes.

I kO(1/r)-approximation in r-passes?
I O(

√
k)-approximation in one pass?

Thank you!

Sepehr Assadi (Penn) Distributed Maximum Coverage SODA 2018



Open Problems
Round-approximation tradeoffs for other distributed problems.

I Approximating maximum matching?

Dynamic semi-streaming algorithms for maximum coverage in
constant number of rounds.

I Our results imply
(

e
e−1

)
-approximation in O(log n) passes.

I kO(1/r)-approximation in r-passes?
I O(

√
k)-approximation in one pass?

Thank you!

Sepehr Assadi (Penn) Distributed Maximum Coverage SODA 2018



Open Problems
Round-approximation tradeoffs for other distributed problems.

I Approximating maximum matching?

Dynamic semi-streaming algorithms for maximum coverage in
constant number of rounds.

I Our results imply
(

e
e−1

)
-approximation in O(log n) passes.

I kO(1/r)-approximation in r-passes?
I O(

√
k)-approximation in one pass?

Thank you!

Sepehr Assadi (Penn) Distributed Maximum Coverage SODA 2018



Open Problems
Round-approximation tradeoffs for other distributed problems.

I Approximating maximum matching?

Dynamic semi-streaming algorithms for maximum coverage in
constant number of rounds.

I Our results imply
(

e
e−1

)
-approximation in O(log n) passes.

I kO(1/r)-approximation in r-passes?
I O(

√
k)-approximation in one pass?

Thank you!
Sepehr Assadi (Penn) Distributed Maximum Coverage SODA 2018



Alon, N., Nisan, N., Raz, R., and Weinstein, O. (2015).
Welfare maximization with limited interaction.
In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015,
pages 1499–1512.

Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., and Krause, A.
(2014).
Streaming submodular maximization: massive data
summarization on the fly.
In The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New York, NY,
USA - August 24 - 27, 2014, pages 671–680.

Chakrabarti, A. and Wirth, A. (2016).
Incidence geometries and the pass complexity of semi-streaming
set cover.

Sepehr Assadi (Penn) Distributed Maximum Coverage SODA 2018



In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, pages 1365–1373.

Chen, J., Nguyen, H. L., and Zhang, Q. (2016).
Submodular maximization over sliding windows.
CoRR, abs/1611.00129.

Epasto, A., Lattanzi, S., Vassilvitskii, S., and Zadimoghaddam,
M. (2017).
Submodular optimization over sliding windows.
In Proceedings of the 26th International Conference on World
Wide Web, WWW 2017, Perth, Australia, April 3-7, 2017, pages
421–430.
Indyk, P., Mahabadi, S., Mahdian, M., and Mirrokni, V. S.
(2014).
Composable core-sets for diversity and coverage maximization.

Sepehr Assadi (Penn) Distributed Maximum Coverage SODA 2018



In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS’14,
Snowbird, UT, USA, June 22-27, 2014, pages 100–108.

Kumar, R., Moseley, B., Vassilvitskii, S., and Vattani, A. (2013).
Fast greedy algorithms in mapreduce and streaming.
In 25th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’13, Montreal, QC, Canada - July 23 - 25,
2013, pages 1–10.

McGregor, A. and Vu, H. T. (2017).
Better streaming algorithms for the maximum coverage problem.
In 20th International Conference on Database Theory, ICDT
2017, March 21-24, 2017, Venice, Italy, pages 22:1–22:18.

Sepehr Assadi (Penn) Distributed Maximum Coverage SODA 2018


