
Randomized Composable Coreset for Matching
and Vertex Cover

Sepehr Assadi

University of Pennsylvania

Joint work with Sanjeev Khanna (Penn)

Sepehr Assadi (Penn) SPAA 2017

Massive Graphs
Massive graphs abound in variety of applications: web graph, social
networks, biological networks, etc.

How to deal with computation over such massive graph inputs?

Sepehr Assadi (Penn) SPAA 2017

Massive Graphs
Massive graphs abound in variety of applications: web graph, social
networks, biological networks, etc.

How to deal with computation over such massive graph inputs?

Sepehr Assadi (Penn) SPAA 2017

Distributed Computing
A common approach: distributed computing.

1 Distribute the edges of the graph between some machines.

2 There is a communication network between the machines.

3 The machines communicate with each other to compute the
answer.

Sepehr Assadi (Penn) SPAA 2017

Distributed Computing
A common approach: distributed computing.

1 Distribute the edges of the graph between some machines.

2 There is a communication network between the machines.

3 The machines communicate with each other to compute the
answer.

Sepehr Assadi (Penn) SPAA 2017

Distributed Computing
A common approach: distributed computing.

1 Distribute the edges of the graph between some machines.

2 There is a communication network between the machines.

3 The machines communicate with each other to compute the
answer.

Sepehr Assadi (Penn) SPAA 2017

Distributed Computing
A common approach: distributed computing.

1 Distribute the edges of the graph between some machines.

2 There is a communication network between the machines.

3 The machines communicate with each other to compute the
answer.

Sepehr Assadi (Penn) SPAA 2017

Distributed Computing
A common approach: distributed computing.

1 Distribute the edges of the graph between some machines.

2 There is a communication network between the machines.

3 The machines communicate with each other to compute the
answer.

Main measures of efficiency: communication cost and round
complexity.

Sepehr Assadi (Penn) SPAA 2017

The Simultaneous Communication Model
We are interested in the simultaneous communication model.

1 There are k machines plus
an additional coordinator.

2 The input graph is
edge-partitioned between
the machines.

3 Each machine sends a
summary of its input to
the coordinator.

4 The coordinator computes
the answer based on the
summaries.

Sepehr Assadi (Penn) SPAA 2017

The Simultaneous Communication Model
We are interested in the simultaneous communication model.

1 There are k machines plus
an additional coordinator.

2 The input graph is
edge-partitioned between
the machines.

3 Each machine sends a
summary of its input to
the coordinator.

4 The coordinator computes
the answer based on the
summaries.

Coordinator

Machines
Sepehr Assadi (Penn) SPAA 2017

The Simultaneous Communication Model
We are interested in the simultaneous communication model.

1 There are k machines plus
an additional coordinator.

2 The input graph is
edge-partitioned between
the machines.

3 Each machine sends a
summary of its input to
the coordinator.

4 The coordinator computes
the answer based on the
summaries.

Coordinator

Machines
Sepehr Assadi (Penn) SPAA 2017

The Simultaneous Communication Model
We are interested in the simultaneous communication model.

1 There are k machines plus
an additional coordinator.

2 The input graph is
edge-partitioned between
the machines.

3 Each machine sends a
summary of its input to
the coordinator.

4 The coordinator computes
the answer based on the
summaries.

Coordinator

Machines
Sepehr Assadi (Penn) SPAA 2017

The Simultaneous Communication Model
We are interested in the simultaneous communication model.

1 There are k machines plus
an additional coordinator.

2 The input graph is
edge-partitioned between
the machines.

3 Each machine sends a
summary of its input to
the coordinator.

4 The coordinator computes
the answer based on the
summaries.

Coordinator

Machines
Sepehr Assadi (Penn) SPAA 2017

Why Simultaneous Model?
1 Simultaneous protocols are inherently round-optimal.

2 Communication cost is simply determined by the size of the
summary sent by each machine.

3 Applications to other models of computation:
I For example, lower bounds in dynamic streams.

Sepehr Assadi (Penn) SPAA 2017

Why Simultaneous Model?
1 Simultaneous protocols are inherently round-optimal.

2 Communication cost is simply determined by the size of the
summary sent by each machine.

3 Applications to other models of computation:
I For example, lower bounds in dynamic streams.

Sepehr Assadi (Penn) SPAA 2017

Why Simultaneous Model?
1 Simultaneous protocols are inherently round-optimal.

2 Communication cost is simply determined by the size of the
summary sent by each machine.

3 Applications to other models of computation:
I For example, lower bounds in dynamic streams.

Sepehr Assadi (Penn) SPAA 2017

Simultaneous Protocols
Many general techniques for designing simultaneous protocols,
including:

Linear sketches

Composable coresets

Mergable summaries

Sampling
. . .

Sepehr Assadi (Penn) SPAA 2017

Linear Sketches
We treat the input graph as a vector of edge multiplicities.

Summary of each machine is a linear projection of its input
subgraph.

Linearity of the sketches allows the coordinator to obtain a
sketch of the combined input.

The coordinator runs an arbitrary function on the combined
sketch to obtain the final answer.

Introduced for graph problems by Ahn, Guha, and
McGregor [Ahn et al., 2012a].

Sepehr Assadi (Penn) SPAA 2017

Linear Sketches
We treat the input graph as a vector of edge multiplicities.

Summary of each machine is a linear projection of its input
subgraph.

Linearity of the sketches allows the coordinator to obtain a
sketch of the combined input.

The coordinator runs an arbitrary function on the combined
sketch to obtain the final answer.

Introduced for graph problems by Ahn, Guha, and
McGregor [Ahn et al., 2012a].

Sepehr Assadi (Penn) SPAA 2017

Linear Sketches
We treat the input graph as a vector of edge multiplicities.

Summary of each machine is a linear projection of its input
subgraph.

Linearity of the sketches allows the coordinator to obtain a
sketch of the combined input.

The coordinator runs an arbitrary function on the combined
sketch to obtain the final answer.

Introduced for graph problems by Ahn, Guha, and
McGregor [Ahn et al., 2012a].

Sepehr Assadi (Penn) SPAA 2017

Linear Sketches
We treat the input graph as a vector of edge multiplicities.

Summary of each machine is a linear projection of its input
subgraph.

Linearity of the sketches allows the coordinator to obtain a
sketch of the combined input.

The coordinator runs an arbitrary function on the combined
sketch to obtain the final answer.

Introduced for graph problems by Ahn, Guha, and
McGregor [Ahn et al., 2012a].

Sepehr Assadi (Penn) SPAA 2017

Linear Sketches
We treat the input graph as a vector of edge multiplicities.

Summary of each machine is a linear projection of its input
subgraph.

Linearity of the sketches allows the coordinator to obtain a
sketch of the combined input.

The coordinator runs an arbitrary function on the combined
sketch to obtain the final answer.

Introduced for graph problems by Ahn, Guha, and
McGregor [Ahn et al., 2012a].

Sepehr Assadi (Penn) SPAA 2017

Composable Coresets
Summary of each machine is a suitably chosen subgraph of its
input.

Composability means that the union of the coresets for a
collection of graphs yields a coreset for the union of the graphs.

The coordinator solves the original problem over the combined
coreset to obtain the final answer.

Introduced by Indyk, Mahabadi, Mahdian, and
Mirrokni [Indyk et al., 2014].

Many graph problems admit natural composable coresets; for
instance, connectivity, sparsifiers, and spanners.

Sepehr Assadi (Penn) SPAA 2017

Composable Coresets
Summary of each machine is a suitably chosen subgraph of its
input.

Composability means that the union of the coresets for a
collection of graphs yields a coreset for the union of the graphs.

The coordinator solves the original problem over the combined
coreset to obtain the final answer.

Introduced by Indyk, Mahabadi, Mahdian, and
Mirrokni [Indyk et al., 2014].

Many graph problems admit natural composable coresets; for
instance, connectivity, sparsifiers, and spanners.

Sepehr Assadi (Penn) SPAA 2017

Composable Coresets
Summary of each machine is a suitably chosen subgraph of its
input.

Composability means that the union of the coresets for a
collection of graphs yields a coreset for the union of the graphs.

The coordinator solves the original problem over the combined
coreset to obtain the final answer.

Introduced by Indyk, Mahabadi, Mahdian, and
Mirrokni [Indyk et al., 2014].

Many graph problems admit natural composable coresets; for
instance, connectivity, sparsifiers, and spanners.

Sepehr Assadi (Penn) SPAA 2017

Composable Coresets
Summary of each machine is a suitably chosen subgraph of its
input.

Composability means that the union of the coresets for a
collection of graphs yields a coreset for the union of the graphs.

The coordinator solves the original problem over the combined
coreset to obtain the final answer.

Introduced by Indyk, Mahabadi, Mahdian, and
Mirrokni [Indyk et al., 2014].

Many graph problems admit natural composable coresets; for
instance, connectivity, sparsifiers, and spanners.

Sepehr Assadi (Penn) SPAA 2017

Composable Coresets
Summary of each machine is a suitably chosen subgraph of its
input.

Composability means that the union of the coresets for a
collection of graphs yields a coreset for the union of the graphs.

The coordinator solves the original problem over the combined
coreset to obtain the final answer.

Introduced by Indyk, Mahabadi, Mahdian, and
Mirrokni [Indyk et al., 2014].

Many graph problems admit natural composable coresets; for
instance, connectivity, sparsifiers, and spanners.

Sepehr Assadi (Penn) SPAA 2017

Previous Work
Successful applications of these two techniques have yielded Õ(n)
size summaries for several graph problems:

Connectivity, Minimum Spanning Tree, (Spectral) Sparsifiers,
Spanners, Densest Subgraph, Subgraph Counting, . . .

Two prominent problems are missing however:

Maximum Matching and Minimum Vertex Cover

Sepehr Assadi (Penn) SPAA 2017

Previous Work
Successful applications of these two techniques have yielded Õ(n)
size summaries for several graph problems:

Connectivity, Minimum Spanning Tree, (Spectral) Sparsifiers,
Spanners, Densest Subgraph, Subgraph Counting, . . .

Two prominent problems are missing however:

Maximum Matching and Minimum Vertex Cover

Sepehr Assadi (Penn) SPAA 2017

Previous Work
Successful applications of these two techniques have yielded Õ(n)
size summaries for several graph problems:

Connectivity, Minimum Spanning Tree, (Spectral) Sparsifiers,
Spanners, Densest Subgraph, Subgraph Counting, . . .

Two prominent problems are missing however:

Maximum Matching and Minimum Vertex Cover

Sepehr Assadi (Penn) SPAA 2017

Previous Work
Successful applications of these two techniques have yielded Õ(n)
size summaries for several graph problems:

Connectivity, Minimum Spanning Tree, (Spectral) Sparsifiers,
Spanners, Densest Subgraph, Subgraph Counting, . . .

Two prominent problems are missing however:

Maximum Matching and Minimum Vertex Cover

Sepehr Assadi (Penn) SPAA 2017

Matchings and Vertex Covers
Matching: A collection of vertex-disjoint edges.

Maximum Matching problem: Find a matching with a largest
number of edges.

Sepehr Assadi (Penn) SPAA 2017

Matchings and Vertex Covers
Matching: A collection of vertex-disjoint edges.

Maximum Matching problem: Find a matching with a largest
number of edges.

Sepehr Assadi (Penn) SPAA 2017

Matchings and Vertex Covers
Vertex Cover: A collection of vertices containing at least one
end point of every edge.

Minimum Vertex Cover problem: Find a vertex cover with a
smallest number of vertices.

Sepehr Assadi (Penn) SPAA 2017

Matchings and Vertex Covers
Vertex Cover: A collection of vertices containing at least one
end point of every edge.

Minimum Vertex Cover problem: Find a vertex cover with a
smallest number of vertices.

Sepehr Assadi (Penn) SPAA 2017

Previous Work: Matching and Vertex
It turned out that matching and vertex cover do not admit efficient
summaries!

[Assadi et al., 2016]:
Any simultaneous protocol that can compute an
no(1)-approximation for these problems requires summaries
of size n2−o(1).

As is traditional in this setting, this impossibility result is doubly
worst case:

Both the underlying graph and the partitioning of the input are
chosen adversarially!

Can we distribute the original input in a better way?

Sepehr Assadi (Penn) SPAA 2017

Previous Work: Matching and Vertex
It turned out that matching and vertex cover do not admit efficient
summaries!
[Assadi et al., 2016]:

Any simultaneous protocol that can compute an
no(1)-approximation for these problems requires summaries
of size n2−o(1).

As is traditional in this setting, this impossibility result is doubly
worst case:

Both the underlying graph and the partitioning of the input are
chosen adversarially!

Can we distribute the original input in a better way?

Sepehr Assadi (Penn) SPAA 2017

Previous Work: Matching and Vertex
It turned out that matching and vertex cover do not admit efficient
summaries!
[Assadi et al., 2016]:

Any simultaneous protocol that can compute an
no(1)-approximation for these problems requires summaries
of size n2−o(1).

As is traditional in this setting, this impossibility result is doubly
worst case:

Both the underlying graph and the partitioning of the input are
chosen adversarially!

Can we distribute the original input in a better way?

Sepehr Assadi (Penn) SPAA 2017

Previous Work: Matching and Vertex
It turned out that matching and vertex cover do not admit efficient
summaries!
[Assadi et al., 2016]:

Any simultaneous protocol that can compute an
no(1)-approximation for these problems requires summaries
of size n2−o(1).

As is traditional in this setting, this impossibility result is doubly
worst case:

Both the underlying graph and the partitioning of the input are
chosen adversarially!

Can we distribute the original input in a better way?

Sepehr Assadi (Penn) SPAA 2017

Previous Work: Matching and Vertex
It turned out that matching and vertex cover do not admit efficient
summaries!
[Assadi et al., 2016]:

Any simultaneous protocol that can compute an
no(1)-approximation for these problems requires summaries
of size n2−o(1).

As is traditional in this setting, this impossibility result is doubly
worst case:

Both the underlying graph and the partitioning of the input are
chosen adversarially!

Can we distribute the original input in a better way?

Sepehr Assadi (Penn) SPAA 2017

Our Results in a Nutshell
A natural data oblivious partitioning scheme completely alters this
landscape.

Our work:
Both matching and vertex cover admit efficient
simultaneous protocols provided that the edges of the graph
are partitioned randomly across the machines.

The idea that random partitioning can help was nicely illustrated
by [Mirrokni and Zadimoghaddam, 2015] and
[da Ponte Barbosa et al., 2015] on maximizing submodular functions.
Our work is the first illustration in the domain of graph problems.

Sepehr Assadi (Penn) SPAA 2017

Our Results in a Nutshell
A natural data oblivious partitioning scheme completely alters this
landscape.

Our work:
Both matching and vertex cover admit efficient
simultaneous protocols provided that the edges of the graph
are partitioned randomly across the machines.

The idea that random partitioning can help was nicely illustrated
by [Mirrokni and Zadimoghaddam, 2015] and
[da Ponte Barbosa et al., 2015] on maximizing submodular functions.
Our work is the first illustration in the domain of graph problems.

Sepehr Assadi (Penn) SPAA 2017

Our Results in a Nutshell
A natural data oblivious partitioning scheme completely alters this
landscape.

Our work:
Both matching and vertex cover admit efficient
simultaneous protocols provided that the edges of the graph
are partitioned randomly across the machines.

The idea that random partitioning can help was nicely illustrated
by [Mirrokni and Zadimoghaddam, 2015] and
[da Ponte Barbosa et al., 2015] on maximizing submodular functions.

Our work is the first illustration in the domain of graph problems.

Sepehr Assadi (Penn) SPAA 2017

Our Results in a Nutshell
A natural data oblivious partitioning scheme completely alters this
landscape.

Our work:
Both matching and vertex cover admit efficient
simultaneous protocols provided that the edges of the graph
are partitioned randomly across the machines.

The idea that random partitioning can help was nicely illustrated
by [Mirrokni and Zadimoghaddam, 2015] and
[da Ponte Barbosa et al., 2015] on maximizing submodular functions.
Our work is the first illustration in the domain of graph problems.

Sepehr Assadi (Penn) SPAA 2017

Randomized Composable Coresets
Define G(1), . . . , G(k) as a random partitioning of a graph G: each
edge e ∈ G is sent to one of the graphs uniformly at random.

Consider an algorithm ALG that given any graph G computes a
subgraph ALG(G) ⊆ G with at most s edges.

ALG outputs an α-approximation randomized composable coreset of
size s for a problem P iff:

P
(

ALG(G(1)) ∪ . . . ∪ ALG(G(k))
)

is an α-approximation for P (G)
with high probability (over the randomness of the partitioning).

Defined originally by [Mirrokni and Zadimoghaddam, 2015] in the
context of distributed submodular maximization.

Sepehr Assadi (Penn) SPAA 2017

Randomized Composable Coresets
Define G(1), . . . , G(k) as a random partitioning of a graph G: each
edge e ∈ G is sent to one of the graphs uniformly at random.

Consider an algorithm ALG that given any graph G computes a
subgraph ALG(G) ⊆ G with at most s edges.

ALG outputs an α-approximation randomized composable coreset of
size s for a problem P iff:

P
(

ALG(G(1)) ∪ . . . ∪ ALG(G(k))
)

is an α-approximation for P (G)
with high probability (over the randomness of the partitioning).

Defined originally by [Mirrokni and Zadimoghaddam, 2015] in the
context of distributed submodular maximization.

Sepehr Assadi (Penn) SPAA 2017

Randomized Composable Coresets
Define G(1), . . . , G(k) as a random partitioning of a graph G: each
edge e ∈ G is sent to one of the graphs uniformly at random.

Consider an algorithm ALG that given any graph G computes a
subgraph ALG(G) ⊆ G with at most s edges.

ALG outputs an α-approximation randomized composable coreset of
size s for a problem P iff:

P
(

ALG(G(1)) ∪ . . . ∪ ALG(G(k))
)

is an α-approximation for P (G)
with high probability (over the randomness of the partitioning).

Defined originally by [Mirrokni and Zadimoghaddam, 2015] in the
context of distributed submodular maximization.

Sepehr Assadi (Penn) SPAA 2017

Randomized Composable Coresets
Define G(1), . . . , G(k) as a random partitioning of a graph G: each
edge e ∈ G is sent to one of the graphs uniformly at random.

Consider an algorithm ALG that given any graph G computes a
subgraph ALG(G) ⊆ G with at most s edges.

ALG outputs an α-approximation randomized composable coreset of
size s for a problem P iff:

P
(

ALG(G(1)) ∪ . . . ∪ ALG(G(k))
)

is an α-approximation for P (G)
with high probability (over the randomness of the partitioning).

Defined originally by [Mirrokni and Zadimoghaddam, 2015] in the
context of distributed submodular maximization.

Sepehr Assadi (Penn) SPAA 2017

Randomized Composable Coresets
Define G(1), . . . , G(k) as a random partitioning of a graph G: each
edge e ∈ G is sent to one of the graphs uniformly at random.

Consider an algorithm ALG that given any graph G computes a
subgraph ALG(G) ⊆ G with at most s edges.

ALG outputs an α-approximation randomized composable coreset of
size s for a problem P iff:

P
(

ALG(G(1)) ∪ . . . ∪ ALG(G(k))
)

is an α-approximation for P (G)
with high probability (over the randomness of the partitioning).

Defined originally by [Mirrokni and Zadimoghaddam, 2015] in the
context of distributed submodular maximization.

Sepehr Assadi (Penn) SPAA 2017

Upper Bound Results: Maximum Matching
Greedy and local search are typical choices for composable coresets.

However, one can show that the greedy algorithm for matching, i.e.,
picking a maximal matching, performs poorly in general.

Our approach: pick a maximum matching!

Theorem
Any maximum matching is an O(1)-randomized composable coreset
of size n/2 for the matching problem.

Sepehr Assadi (Penn) SPAA 2017

Upper Bound Results: Maximum Matching
Greedy and local search are typical choices for composable coresets.

However, one can show that the greedy algorithm for matching, i.e.,
picking a maximal matching, performs poorly in general.

Our approach: pick a maximum matching!

Theorem
Any maximum matching is an O(1)-randomized composable coreset
of size n/2 for the matching problem.

Sepehr Assadi (Penn) SPAA 2017

Upper Bound Results: Maximum Matching
Greedy and local search are typical choices for composable coresets.

However, one can show that the greedy algorithm for matching, i.e.,
picking a maximal matching, performs poorly in general.

Our approach: pick a maximum matching!

Theorem
Any maximum matching is an O(1)-randomized composable coreset
of size n/2 for the matching problem.

Sepehr Assadi (Penn) SPAA 2017

Upper Bound Results: Maximum Matching
Greedy and local search are typical choices for composable coresets.

However, one can show that the greedy algorithm for matching, i.e.,
picking a maximal matching, performs poorly in general.

Our approach: pick a maximum matching!

Theorem
Any maximum matching is an O(1)-randomized composable coreset
of size n/2 for the matching problem.

Sepehr Assadi (Penn) SPAA 2017

Upper Bound Results: Vertex Cover
Can a minimum vertex cover also be used as a randomized
composable coreset for this problem?

Not really; consider a star with
k petals for example.

Unlike most problems that admit a composable coreset, the vertex
cover problem has a hard to verify feasibility constraint.

This motivates a slightly more general notion of composable coresets.

Sepehr Assadi (Penn) SPAA 2017

Upper Bound Results: Vertex Cover
Can a minimum vertex cover also be used as a randomized
composable coreset for this problem? Not really; consider a star with
k petals for example.

Unlike most problems that admit a composable coreset, the vertex
cover problem has a hard to verify feasibility constraint.

This motivates a slightly more general notion of composable coresets.

Sepehr Assadi (Penn) SPAA 2017

Upper Bound Results: Vertex Cover
Can a minimum vertex cover also be used as a randomized
composable coreset for this problem? Not really; consider a star with
k petals for example.

Unlike most problems that admit a composable coreset, the vertex
cover problem has a hard to verify feasibility constraint.

This motivates a slightly more general notion of composable coresets.

Sepehr Assadi (Penn) SPAA 2017

Upper Bound Results: Vertex Cover
Can a minimum vertex cover also be used as a randomized
composable coreset for this problem? Not really; consider a star with
k petals for example.

Unlike most problems that admit a composable coreset, the vertex
cover problem has a hard to verify feasibility constraint.

This motivates a slightly more general notion of composable coresets.

Sepehr Assadi (Penn) SPAA 2017

Composable Coresets for Vertex Cover
A (randomized) composable coreset for the vertex cover problem
contains both:

1 A subset of edges of the input graph to guide the coordinator on
the choice of the vertex cover.

2 An explicitly specified subset of vertices to be always included in
the final vertex cover

Size of a coreset: number of edges + number of specified vertices.

Sepehr Assadi (Penn) SPAA 2017

Composable Coresets for Vertex Cover
A (randomized) composable coreset for the vertex cover problem
contains both:

1 A subset of edges of the input graph to guide the coordinator on
the choice of the vertex cover.

2 An explicitly specified subset of vertices to be always included in
the final vertex cover

Size of a coreset: number of edges + number of specified vertices.

Sepehr Assadi (Penn) SPAA 2017

Composable Coresets for Vertex Cover
A (randomized) composable coreset for the vertex cover problem
contains both:

1 A subset of edges of the input graph to guide the coordinator on
the choice of the vertex cover.

2 An explicitly specified subset of vertices to be always included in
the final vertex cover

Size of a coreset: number of edges + number of specified vertices.

Sepehr Assadi (Penn) SPAA 2017

Composable Coresets for Vertex Cover
A (randomized) composable coreset for the vertex cover problem
contains both:

1 A subset of edges of the input graph to guide the coordinator on
the choice of the vertex cover.

2 An explicitly specified subset of vertices to be always included in
the final vertex cover

Size of a coreset: number of edges + number of specified vertices.

Sepehr Assadi (Penn) SPAA 2017

Upper Bound Results: Vertex Cover
The vertex cover problem admits an efficient randomized composable
coreset.

Theorem
There exists an O(log n)-approximation randomized composable
coreset of size O(n · log n) for the vertex cover problem.

Sepehr Assadi (Penn) SPAA 2017

Upper Bound Results: Vertex Cover
The vertex cover problem admits an efficient randomized composable
coreset.

Theorem
There exists an O(log n)-approximation randomized composable
coreset of size O(n · log n) for the vertex cover problem.

Sepehr Assadi (Penn) SPAA 2017

Lower Bound Results: Randomized Coresets
Why coresets of size Õ(n)?

Õ(n) space is a “sweet spot” for graph streaming algorithms:
typically the space needed to even store the answer.

However, such considrations only imply that size of all coresets
together need to be Ω(n).

Can we achieve coresets of size, say, Θ(n/k)? No!

Theorem
Any α-approximation randomized composable coreset requires,

Ω(n/α2) space for the matching problem, and,
Ω(n/α) space for the vertex cover problem.

Remark. These bounds are tight for all values of α.

Sepehr Assadi (Penn) SPAA 2017

Lower Bound Results: Randomized Coresets
Why coresets of size Õ(n)?

Õ(n) space is a “sweet spot” for graph streaming algorithms:
typically the space needed to even store the answer.

However, such considrations only imply that size of all coresets
together need to be Ω(n).

Can we achieve coresets of size, say, Θ(n/k)? No!

Theorem
Any α-approximation randomized composable coreset requires,

Ω(n/α2) space for the matching problem, and,
Ω(n/α) space for the vertex cover problem.

Remark. These bounds are tight for all values of α.

Sepehr Assadi (Penn) SPAA 2017

Lower Bound Results: Randomized Coresets
Why coresets of size Õ(n)?

Õ(n) space is a “sweet spot” for graph streaming algorithms:
typically the space needed to even store the answer.

However, such considrations only imply that size of all coresets
together need to be Ω(n).

Can we achieve coresets of size, say, Θ(n/k)? No!

Theorem
Any α-approximation randomized composable coreset requires,

Ω(n/α2) space for the matching problem, and,
Ω(n/α) space for the vertex cover problem.

Remark. These bounds are tight for all values of α.

Sepehr Assadi (Penn) SPAA 2017

Lower Bound Results: Randomized Coresets
Why coresets of size Õ(n)?

Õ(n) space is a “sweet spot” for graph streaming algorithms:
typically the space needed to even store the answer.

However, such considrations only imply that size of all coresets
together need to be Ω(n).

Can we achieve coresets of size, say, Θ(n/k)?

No!

Theorem
Any α-approximation randomized composable coreset requires,

Ω(n/α2) space for the matching problem, and,
Ω(n/α) space for the vertex cover problem.

Remark. These bounds are tight for all values of α.

Sepehr Assadi (Penn) SPAA 2017

Lower Bound Results: Randomized Coresets
Why coresets of size Õ(n)?

Õ(n) space is a “sweet spot” for graph streaming algorithms:
typically the space needed to even store the answer.

However, such considrations only imply that size of all coresets
together need to be Ω(n).

Can we achieve coresets of size, say, Θ(n/k)? No!

Theorem
Any α-approximation randomized composable coreset requires,

Ω(n/α2) space for the matching problem, and,
Ω(n/α) space for the vertex cover problem.

Remark. These bounds are tight for all values of α.

Sepehr Assadi (Penn) SPAA 2017

Lower Bound Results: Randomized Coresets
Why coresets of size Õ(n)?

Õ(n) space is a “sweet spot” for graph streaming algorithms:
typically the space needed to even store the answer.

However, such considrations only imply that size of all coresets
together need to be Ω(n).

Can we achieve coresets of size, say, Θ(n/k)? No!

Theorem
Any α-approximation randomized composable coreset requires,

Ω(n/α2) space for the matching problem, and,
Ω(n/α) space for the vertex cover problem.

Remark. These bounds are tight for all values of α.
Sepehr Assadi (Penn) SPAA 2017

Upper Bound Results: Distributed Computing
Our randomized composable coresets immediately imply simultaneous
distributed protocols:

Theorem
There exists simultaneous protocol with approximation guarantee

1 O(1) for the matching problem, and,
2 O(log n) for the vertex cover problem,

that require only Õ(k · n) total communication when the input is
randomly partitioned between k machines.

Sepehr Assadi (Penn) SPAA 2017

Upper Bound Results: Distributed Computing
Our randomized composable coresets immediately imply simultaneous
distributed protocols:

Theorem
There exists simultaneous protocol with approximation guarantee

1 O(1) for the matching problem, and,
2 O(log n) for the vertex cover problem,

that require only Õ(k · n) total communication when the input is
randomly partitioned between k machines.

Sepehr Assadi (Penn) SPAA 2017

Upper Bound Results: Distributed Computing
Remark. These result also imply MapReduce algorithms for
matching and vertex cover with the same approximation guarantee in
at most 2 rounds of computation and O(n

√
n) space per each

machine.

Our MapReduce algorithms outperform the previous algorithms for
these problems [Lattanzi et al., 2011, Ahn and Guha, 2015] in terms
of number of rounds, albeit with a larger approximation guarantee.

The number of rounds of a MapReduce algorithm usually determines
the dominant cost of the computation.

Sepehr Assadi (Penn) SPAA 2017

Upper Bound Results: Distributed Computing
Remark. These result also imply MapReduce algorithms for
matching and vertex cover with the same approximation guarantee in
at most 2 rounds of computation and O(n

√
n) space per each

machine.

Our MapReduce algorithms outperform the previous algorithms for
these problems [Lattanzi et al., 2011, Ahn and Guha, 2015] in terms
of number of rounds, albeit with a larger approximation guarantee.

The number of rounds of a MapReduce algorithm usually determines
the dominant cost of the computation.

Sepehr Assadi (Penn) SPAA 2017

Upper Bound Results: Distributed Computing
Remark. These result also imply MapReduce algorithms for
matching and vertex cover with the same approximation guarantee in
at most 2 rounds of computation and O(n

√
n) space per each

machine.

Our MapReduce algorithms outperform the previous algorithms for
these problems [Lattanzi et al., 2011, Ahn and Guha, 2015] in terms
of number of rounds, albeit with a larger approximation guarantee.

The number of rounds of a MapReduce algorithm usually determines
the dominant cost of the computation.

Sepehr Assadi (Penn) SPAA 2017

Lower Bound Results: Distributed Computing
Our lower bound on size of randomized composable coresets implies
that our distributed protocols are optimal among all coreset-based
protocols.

What about general protocols?

Theorem
Any α-approximation simultaneous protocol (not necessarily a
coreset) requires

Ω(nk/α2) communication for the matching problem, and,
Ω(nk/α) communication for the vertex cover problem,

even when the input is randomly partitioned across the k machines.

For adversarial partitions, an Ω(nk/α2) lower bound for matching
was known previously even for protocols that are allowed multiple
rounds of communication [Huang et al., 2015].

Sepehr Assadi (Penn) SPAA 2017

Lower Bound Results: Distributed Computing
Our lower bound on size of randomized composable coresets implies
that our distributed protocols are optimal among all coreset-based
protocols.
What about general protocols?

Theorem
Any α-approximation simultaneous protocol (not necessarily a
coreset) requires

Ω(nk/α2) communication for the matching problem, and,
Ω(nk/α) communication for the vertex cover problem,

even when the input is randomly partitioned across the k machines.

For adversarial partitions, an Ω(nk/α2) lower bound for matching
was known previously even for protocols that are allowed multiple
rounds of communication [Huang et al., 2015].

Sepehr Assadi (Penn) SPAA 2017

Lower Bound Results: Distributed Computing
Our lower bound on size of randomized composable coresets implies
that our distributed protocols are optimal among all coreset-based
protocols.
What about general protocols?

Theorem
Any α-approximation simultaneous protocol (not necessarily a
coreset) requires

Ω(nk/α2) communication for the matching problem, and,
Ω(nk/α) communication for the vertex cover problem,

even when the input is randomly partitioned across the k machines.

For adversarial partitions, an Ω(nk/α2) lower bound for matching
was known previously even for protocols that are allowed multiple
rounds of communication [Huang et al., 2015].

Sepehr Assadi (Penn) SPAA 2017

Lower Bound Results: Distributed Computing
Our lower bound on size of randomized composable coresets implies
that our distributed protocols are optimal among all coreset-based
protocols.
What about general protocols?

Theorem
Any α-approximation simultaneous protocol (not necessarily a
coreset) requires

Ω(nk/α2) communication for the matching problem, and,
Ω(nk/α) communication for the vertex cover problem,

even when the input is randomly partitioned across the k machines.

For adversarial partitions, an Ω(nk/α2) lower bound for matching
was known previously even for protocols that are allowed multiple
rounds of communication [Huang et al., 2015].

Sepehr Assadi (Penn) SPAA 2017

A Randomized Composable Coreset
for Matching

Sepehr Assadi (Penn) SPAA 2017

A Randomized Coreset for Matching
Theorem
Any maximum matching is an O(1)-randomized composable coreset
of size n/2 for the matching problem.

Let Mi be the maximum matching computed by machine i ∈ [k].

Consider running the greedy algorithm over the edges in M1, . . . ,Mk

in this order to obtain a matching M .

We prove that |M | = Ω(opt), where opt is the size of a maximum
matching in G.

This implies that there exists an O(1)-approximate matching in
M1 ∪ . . . ∪Mk.

Sepehr Assadi (Penn) SPAA 2017

A Randomized Coreset for Matching
Theorem
Any maximum matching is an O(1)-randomized composable coreset
of size n/2 for the matching problem.

Let Mi be the maximum matching computed by machine i ∈ [k].

Consider running the greedy algorithm over the edges in M1, . . . ,Mk

in this order to obtain a matching M .

We prove that |M | = Ω(opt), where opt is the size of a maximum
matching in G.

This implies that there exists an O(1)-approximate matching in
M1 ∪ . . . ∪Mk.

Sepehr Assadi (Penn) SPAA 2017

A Randomized Coreset for Matching
Theorem
Any maximum matching is an O(1)-randomized composable coreset
of size n/2 for the matching problem.

Let Mi be the maximum matching computed by machine i ∈ [k].

Consider running the greedy algorithm over the edges in M1, . . . ,Mk

in this order to obtain a matching M .

We prove that |M | = Ω(opt), where opt is the size of a maximum
matching in G.

This implies that there exists an O(1)-approximate matching in
M1 ∪ . . . ∪Mk.

Sepehr Assadi (Penn) SPAA 2017

A Randomized Coreset for Matching
Theorem
Any maximum matching is an O(1)-randomized composable coreset
of size n/2 for the matching problem.

Let Mi be the maximum matching computed by machine i ∈ [k].

Consider running the greedy algorithm over the edges in M1, . . . ,Mk

in this order to obtain a matching M .

We prove that |M | = Ω(opt), where opt is the size of a maximum
matching in G.

This implies that there exists an O(1)-approximate matching in
M1 ∪ . . . ∪Mk.

Sepehr Assadi (Penn) SPAA 2017

A Randomized Coreset for Matching
Theorem
Any maximum matching is an O(1)-randomized composable coreset
of size n/2 for the matching problem.

Let Mi be the maximum matching computed by machine i ∈ [k].

Consider running the greedy algorithm over the edges in M1, . . . ,Mk

in this order to obtain a matching M .

We prove that |M | = Ω(opt), where opt is the size of a maximum
matching in G.

This implies that there exists an O(1)-approximate matching in
M1 ∪ . . . ∪Mk.

Sepehr Assadi (Penn) SPAA 2017

Analysis Sketch: A Key Lemma
Lemma
At any step i ∈ [k], either the greedy matching is already of size
Ω(opt), or w.h.p., we can increase the size of the current matching
by adding Ω(opt/k) edges from Mi greedily.

This immediately implies that the matching output by the greedy
algorithm has size Ω(opt) w.h.p.

Sepehr Assadi (Penn) SPAA 2017

Analysis Sketch: A Key Lemma
Lemma
At any step i ∈ [k], either the greedy matching is already of size
Ω(opt), or w.h.p., we can increase the size of the current matching
by adding Ω(opt/k) edges from Mi greedily.

This immediately implies that the matching output by the greedy
algorithm has size Ω(opt) w.h.p.

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch

Consider the set of o(opt) already
matched vertices by the greedy
algorithm.

Define Eold as the set of edges in G(i)

incident on these already matched
vertices.
Define µold as size of a maximum
matching in G(i) using only edges in
Eold.

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch

Consider the set of o(opt) already
matched vertices by the greedy
algorithm.
Define Eold as the set of edges in G(i)

incident on these already matched
vertices.

Define µold as size of a maximum
matching in G(i) using only edges in
Eold.

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch

Consider the set of o(opt) already
matched vertices by the greedy
algorithm.
Define Eold as the set of edges in G(i)

incident on these already matched
vertices.
Define µold as size of a maximum
matching in G(i) using only edges in
Eold.

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
Claim. W.h.p. there is a matching of size ≥ µold + Ω(opt/k) in G(i).

Fix a maximum matching in Eold: at
most o(opt) vertices that were
previously unmatched are in the
matching.
Hence, G contains a matching of size
Ω(opt) outside the set of vertices
matched by µold.
By random partitioning, w.h.p.,
Ω(opt/k) such edges appear in G(i).
µold + Ω(opt/k) forms the desired
matching.

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
Claim. W.h.p. there is a matching of size ≥ µold + Ω(opt/k) in G(i).

Fix a maximum matching in Eold: at
most o(opt) vertices that were
previously unmatched are in the
matching.

Hence, G contains a matching of size
Ω(opt) outside the set of vertices
matched by µold.
By random partitioning, w.h.p.,
Ω(opt/k) such edges appear in G(i).
µold + Ω(opt/k) forms the desired
matching.

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
Claim. W.h.p. there is a matching of size ≥ µold + Ω(opt/k) in G(i).

Fix a maximum matching in Eold: at
most o(opt) vertices that were
previously unmatched are in the
matching.
Hence, G contains a matching of size
Ω(opt) outside the set of vertices
matched by µold.

By random partitioning, w.h.p.,
Ω(opt/k) such edges appear in G(i).
µold + Ω(opt/k) forms the desired
matching.

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
Claim. W.h.p. there is a matching of size ≥ µold + Ω(opt/k) in G(i).

Fix a maximum matching in Eold: at
most o(opt) vertices that were
previously unmatched are in the
matching.
Hence, G contains a matching of size
Ω(opt) outside the set of vertices
matched by µold.
By random partitioning, w.h.p.,
Ω(opt/k) such edges appear in G(i).

µold + Ω(opt/k) forms the desired
matching.

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
Claim. W.h.p. there is a matching of size ≥ µold + Ω(opt/k) in G(i).

Fix a maximum matching in Eold: at
most o(opt) vertices that were
previously unmatched are in the
matching.
Hence, G contains a matching of size
Ω(opt) outside the set of vertices
matched by µold.
By random partitioning, w.h.p.,
Ω(opt/k) such edges appear in G(i).
µold + Ω(opt/k) forms the desired
matching.

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
Claim. W.h.p. there is a matching of size ≥ µold + Ω(opt/k) in G(i).

Fix a maximum matching in Eold: at
most o(opt) vertices that were
previously unmatched are in the
matching.
Hence, G contains a matching of size
Ω(opt) outside the set of vertices
matched by µold.
By random partitioning, w.h.p.,
Ω(opt/k) such edges appear in G(i).
µold + Ω(opt/k) forms the desired
matching.

Corollary. Any maximum matching of G(i) contains Ω(opt/k) edges
that can be added to the greedy matching.

Sepehr Assadi (Penn) SPAA 2017

Randomized Composable Coreset for Matching
We showed that,

Theorem
Any maximum matching is an O(1)-randomized composable coreset
of size at most n/2 for the matching problem.

Sepehr Assadi (Penn) SPAA 2017

A Randomized Composable Coreset
for Vertex Cover

Sepehr Assadi (Penn) SPAA 2017

A Randomized Coreset for Vertex Cover
Theorem
There exists an O(log n)-approximation randomized composable
coreset of size O(n · log n) for the vertex cover problem.

Each machine computes a coreset using the following peeling process.

Iteratively remove high degree vertices and their neighboring edges;
specify any removed vertex to be added to the final vertex cover.

When the remaining graph is sufficiently sparse, send it as the coreset.

This peeling process was introduced originally
by [Parnas and Ron, 2007] in the context of sublinear time
algorithms.

Sepehr Assadi (Penn) SPAA 2017

A Randomized Coreset for Vertex Cover
Theorem
There exists an O(log n)-approximation randomized composable
coreset of size O(n · log n) for the vertex cover problem.

Each machine computes a coreset using the following peeling process.

Iteratively remove high degree vertices and their neighboring edges;
specify any removed vertex to be added to the final vertex cover.

When the remaining graph is sufficiently sparse, send it as the coreset.

This peeling process was introduced originally
by [Parnas and Ron, 2007] in the context of sublinear time
algorithms.

Sepehr Assadi (Penn) SPAA 2017

A Randomized Coreset for Vertex Cover
Theorem
There exists an O(log n)-approximation randomized composable
coreset of size O(n · log n) for the vertex cover problem.

Each machine computes a coreset using the following peeling process.

Iteratively remove high degree vertices and their neighboring edges;
specify any removed vertex to be added to the final vertex cover.

When the remaining graph is sufficiently sparse, send it as the coreset.

This peeling process was introduced originally
by [Parnas and Ron, 2007] in the context of sublinear time
algorithms.

Sepehr Assadi (Penn) SPAA 2017

A Randomized Coreset for Vertex Cover
Theorem
There exists an O(log n)-approximation randomized composable
coreset of size O(n · log n) for the vertex cover problem.

Each machine computes a coreset using the following peeling process.

Iteratively remove high degree vertices and their neighboring edges;
specify any removed vertex to be added to the final vertex cover.

When the remaining graph is sufficiently sparse, send it as the coreset.

This peeling process was introduced originally
by [Parnas and Ron, 2007] in the context of sublinear time
algorithms.

Sepehr Assadi (Penn) SPAA 2017

A Randomized Coreset for Vertex Cover
Theorem
There exists an O(log n)-approximation randomized composable
coreset of size O(n · log n) for the vertex cover problem.

Each machine computes a coreset using the following peeling process.

Iteratively remove high degree vertices and their neighboring edges;
specify any removed vertex to be added to the final vertex cover.

When the remaining graph is sufficiently sparse, send it as the coreset.

This peeling process was introduced originally
by [Parnas and Ron, 2007] in the context of sublinear time
algorithms.

Sepehr Assadi (Penn) SPAA 2017

A Randomized Coreset for Vertex Cover
The algorithm to compute the coreset on each machine i ∈ [k]:

1 Pick all vertices in G(i) with degree more than n/2k and add
them to the final vertex cover.

2 Remove these vertices from G(i) together with all their edges.

3 Continue with degree threshold n/4k and so on; stop when
the degree of each vertex is O(log n).

4 Return all edges in the remaining graph as the coreset.

Sepehr Assadi (Penn) SPAA 2017

A Randomized Coreset for Vertex Cover
The algorithm to compute the coreset on each machine i ∈ [k]:

1 Pick all vertices in G(i) with degree more than n/2k and add
them to the final vertex cover.

2 Remove these vertices from G(i) together with all their edges.

3 Continue with degree threshold n/4k and so on; stop when
the degree of each vertex is O(log n).

4 Return all edges in the remaining graph as the coreset.

Sepehr Assadi (Penn) SPAA 2017

A Randomized Coreset for Vertex Cover
The algorithm to compute the coreset on each machine i ∈ [k]:

1 Pick all vertices in G(i) with degree more than n/2k and add
them to the final vertex cover.

2 Remove these vertices from G(i) together with all their edges.

3 Continue with degree threshold n/4k and so on; stop when
the degree of each vertex is O(log n).

4 Return all edges in the remaining graph as the coreset.

Sepehr Assadi (Penn) SPAA 2017

A Randomized Coreset for Vertex Cover
The algorithm to compute the coreset on each machine i ∈ [k]:

1 Pick all vertices in G(i) with degree more than n/2k and add
them to the final vertex cover.

2 Remove these vertices from G(i) together with all their edges.

3 Continue with degree threshold n/4k and so on; stop when
the degree of each vertex is O(log n).

4 Return all edges in the remaining graph as the coreset.

Sepehr Assadi (Penn) SPAA 2017

A Randomized Coreset for Vertex Cover
The algorithm to compute the coreset on each machine i ∈ [k]:

1 Pick all vertices in G(i) with degree more than n/2k and add
them to the final vertex cover.

2 Remove these vertices from G(i) together with all their edges.

3 Continue with degree threshold n/4k and so on; stop when
the degree of each vertex is O(log n).

4 Return all edges in the remaining graph as the coreset.

Size of the coreset is clearly O(n · log n).

Sepehr Assadi (Penn) SPAA 2017

Analysis Sketch
Define opt as size of a minimum vertex cover in G.

It follows from the known results that each coreset only specifies
O(opt · log n) vertices to be added to the final vertex cover

Using this directly only implies an approximation ratio of O(k · log n),
i.e., a factor k worse than our goal.

We show that the set of all specified vertices across all coresets is of
size O(opt · log n).

This finalizes the proof as any edge not covered by any of specified
vertices is communicated in some coreset.

Sepehr Assadi (Penn) SPAA 2017

Analysis Sketch
Define opt as size of a minimum vertex cover in G.

It follows from the known results that each coreset only specifies
O(opt · log n) vertices to be added to the final vertex cover

Using this directly only implies an approximation ratio of O(k · log n),
i.e., a factor k worse than our goal.

We show that the set of all specified vertices across all coresets is of
size O(opt · log n).

This finalizes the proof as any edge not covered by any of specified
vertices is communicated in some coreset.

Sepehr Assadi (Penn) SPAA 2017

Analysis Sketch
Define opt as size of a minimum vertex cover in G.

It follows from the known results that each coreset only specifies
O(opt · log n) vertices to be added to the final vertex cover

Using this directly only implies an approximation ratio of O(k · log n),
i.e., a factor k worse than our goal.

We show that the set of all specified vertices across all coresets is of
size O(opt · log n).

This finalizes the proof as any edge not covered by any of specified
vertices is communicated in some coreset.

Sepehr Assadi (Penn) SPAA 2017

Analysis Sketch
Define opt as size of a minimum vertex cover in G.

It follows from the known results that each coreset only specifies
O(opt · log n) vertices to be added to the final vertex cover

Using this directly only implies an approximation ratio of O(k · log n),
i.e., a factor k worse than our goal.

We show that the set of all specified vertices across all coresets is of
size O(opt · log n).

This finalizes the proof as any edge not covered by any of specified
vertices is communicated in some coreset.

Sepehr Assadi (Penn) SPAA 2017

Analysis Sketch
Define opt as size of a minimum vertex cover in G.

It follows from the known results that each coreset only specifies
O(opt · log n) vertices to be added to the final vertex cover

Using this directly only implies an approximation ratio of O(k · log n),
i.e., a factor k worse than our goal.

We show that the set of all specified vertices across all coresets is of
size O(opt · log n).

This finalizes the proof as any edge not covered by any of specified
vertices is communicated in some coreset.

Sepehr Assadi (Penn) SPAA 2017

Analysis Sketch: A Key Lemma
Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Intuitively:
1 By random partitioning, degree of vertices is almost the same

across the coresets.
2 Hence, the same set of vertices should be peeled across in each

iteration.

Any problem?
1 The peeling process is quite sensitive to the exact degrees.
2 Slight changes in the degree can move vertices across iterations,

potentially leading to a cascading effect.

Sepehr Assadi (Penn) SPAA 2017

Analysis Sketch: A Key Lemma
Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Intuitively:
1 By random partitioning, degree of vertices is almost the same

across the coresets.

2 Hence, the same set of vertices should be peeled across in each
iteration.

Any problem?
1 The peeling process is quite sensitive to the exact degrees.
2 Slight changes in the degree can move vertices across iterations,

potentially leading to a cascading effect.

Sepehr Assadi (Penn) SPAA 2017

Analysis Sketch: A Key Lemma
Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Intuitively:
1 By random partitioning, degree of vertices is almost the same

across the coresets.
2 Hence, the same set of vertices should be peeled across in each

iteration.

Any problem?
1 The peeling process is quite sensitive to the exact degrees.
2 Slight changes in the degree can move vertices across iterations,

potentially leading to a cascading effect.

Sepehr Assadi (Penn) SPAA 2017

Analysis Sketch: A Key Lemma
Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Intuitively:
1 By random partitioning, degree of vertices is almost the same

across the coresets.
2 Hence, the same set of vertices should be peeled across in each

iteration.

Any problem?

1 The peeling process is quite sensitive to the exact degrees.
2 Slight changes in the degree can move vertices across iterations,

potentially leading to a cascading effect.

Sepehr Assadi (Penn) SPAA 2017

Analysis Sketch: A Key Lemma
Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Intuitively:
1 By random partitioning, degree of vertices is almost the same

across the coresets.
2 Hence, the same set of vertices should be peeled across in each

iteration.

Any problem?
1 The peeling process is quite sensitive to the exact degrees.

2 Slight changes in the degree can move vertices across iterations,
potentially leading to a cascading effect.

Sepehr Assadi (Penn) SPAA 2017

Analysis Sketch: A Key Lemma
Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Intuitively:
1 By random partitioning, degree of vertices is almost the same

across the coresets.
2 Hence, the same set of vertices should be peeled across in each

iteration.

Any problem?
1 The peeling process is quite sensitive to the exact degrees.
2 Slight changes in the degree can move vertices across iterations,

potentially leading to a cascading effect.
Sepehr Assadi (Penn) SPAA 2017

Analysis Sketch: A Key Lemma
Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Our approach:
1 Define a hypothetical peeling process that is aware of a

minimum vertex cover in G.

2 Prove that this peeling process never picks more than
O(opt · log n) vertices.

3 Show that the actual peeling process on each machine
“faithfully” mimics this hypothetical process.

Sepehr Assadi (Penn) SPAA 2017

Analysis Sketch: A Key Lemma
Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Our approach:
1 Define a hypothetical peeling process that is aware of a

minimum vertex cover in G.

2 Prove that this peeling process never picks more than
O(opt · log n) vertices.

3 Show that the actual peeling process on each machine
“faithfully” mimics this hypothetical process.

Sepehr Assadi (Penn) SPAA 2017

Analysis Sketch: A Key Lemma
Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Our approach:
1 Define a hypothetical peeling process that is aware of a

minimum vertex cover in G.

2 Prove that this peeling process never picks more than
O(opt · log n) vertices.

3 Show that the actual peeling process on each machine
“faithfully” mimics this hypothetical process.

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
Define O as a minimum vertex cover of G. The hypothetical peeling
process is as follows:

Remove all edges inside O.
Remove vertices with degree n

1.5 from O
and degree n

2.5 from V \O.
Remove all incident edges on these
vertices; continue with degree threshold

n
2·(1.5) from O and n

2·(2.5) from V \O.
Repeat the above process until the
degree threshold reaches Θ(k log n).

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
Define O as a minimum vertex cover of G. The hypothetical peeling
process is as follows:

Remove all edges inside O.

Remove vertices with degree n
1.5 from O

and degree n
2.5 from V \O.

Remove all incident edges on these
vertices; continue with degree threshold

n
2·(1.5) from O and n

2·(2.5) from V \O.
Repeat the above process until the
degree threshold reaches Θ(k log n).

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
Define O as a minimum vertex cover of G. The hypothetical peeling
process is as follows:

Remove all edges inside O.
Remove vertices with degree n

1.5 from O
and degree n

2.5 from V \O.

Remove all incident edges on these
vertices; continue with degree threshold

n
2·(1.5) from O and n

2·(2.5) from V \O.
Repeat the above process until the
degree threshold reaches Θ(k log n).

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
Define O as a minimum vertex cover of G. The hypothetical peeling
process is as follows:

Remove all edges inside O.
Remove vertices with degree n

1.5 from O
and degree n

2.5 from V \O.
Remove all incident edges on these
vertices; continue with degree threshold

n
2·(1.5) from O and n

2·(2.5) from V \O.

Repeat the above process until the
degree threshold reaches Θ(k log n).

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
Define O as a minimum vertex cover of G. The hypothetical peeling
process is as follows:

Remove all edges inside O.
Remove vertices with degree n

1.5 from O
and degree n

2.5 from V \O.
Remove all incident edges on these
vertices; continue with degree threshold

n
2·(1.5) from O and n

2·(2.5) from V \O.
Repeat the above process until the
degree threshold reaches Θ(k log n).

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
Define O as a minimum vertex cover of G. The hypothetical peeling
process is as follows:

Remove all edges inside O.
Remove vertices with degree n

1.5 from O
and degree n

2.5 from V \O.
Remove all incident edges on these
vertices; continue with degree threshold

n
2·(1.5) from O and n

2·(2.5) from V \O.
Repeat the above process until the
degree threshold reaches Θ(k log n).

Claim. The number of peeled vertices from
V \O in each iteration is at most 2 |O|.

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
Main Claim. For any machine i ∈ [k] and any iteration of the
peeling process:

For vertices in O: the set of peeled
vertices in the hypothetical process is a
subset of vertices peeled in the actual
coreset.

For vertices in V \O: the set of peeled
vertices in the hypothetical process is a
superset of vertices peeled in the actual
coreset.

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
Main Claim. For any machine i ∈ [k] and any iteration of the
peeling process:

For vertices in O: the set of peeled
vertices in the hypothetical process is a
subset of vertices peeled in the actual
coreset.

For vertices in V \O: the set of peeled
vertices in the hypothetical process is a
superset of vertices peeled in the actual
coreset.

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
Main Claim. For any machine i ∈ [k] and any iteration of the
peeling process:

For vertices in O: the set of peeled
vertices in the hypothetical process is a
subset of vertices peeled in the actual
coreset.

For vertices in V \O: the set of peeled
vertices in the hypothetical process is a
superset of vertices peeled in the actual
coreset.

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
Main Claim. For any machine i ∈ [k] and any iteration of the
peeling process:

For vertices in O: the set of peeled
vertices in the hypothetical process is a
subset of vertices peeled in the actual
coreset.

For vertices in V \O: the set of peeled
vertices in the hypothetical process is a
superset of vertices peeled in the actual
coreset.

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
Main Claim. For any machine i ∈ [k] and any iteration of the
peeling process:

For vertices in O: the set of peeled
vertices in the hypothetical process is a
subset of vertices peeled in the actual
coreset.

For vertices in V \O: the set of peeled
vertices in the hypothetical process is a
superset of vertices peeled in the actual
coreset.

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
In the first iteration, by random partitioning:

For vertices in O: the degree threshold
of peeling vertices in the hypothetical
process is larger than the actual coreset
(after scaling by k).
For vertices in V \O: the exact
opposite.

For vertices in O: the degree of
remaining vertices after peeling is
smaller in the hypothetical process
compared to the actual coreset.
For vertices in V \O: the exact
opposite.

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
In the first iteration, by random partitioning:

For vertices in O: the degree threshold
of peeling vertices in the hypothetical
process is larger than the actual coreset
(after scaling by k).

For vertices in V \O: the exact
opposite.

For vertices in O: the degree of
remaining vertices after peeling is
smaller in the hypothetical process
compared to the actual coreset.
For vertices in V \O: the exact
opposite.

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
In the first iteration, by random partitioning:

For vertices in O: the degree threshold
of peeling vertices in the hypothetical
process is larger than the actual coreset
(after scaling by k).

For vertices in V \O: the exact
opposite.

For vertices in O: the degree of
remaining vertices after peeling is
smaller in the hypothetical process
compared to the actual coreset.
For vertices in V \O: the exact
opposite.

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
In the first iteration, by random partitioning:

For vertices in O: the degree threshold
of peeling vertices in the hypothetical
process is larger than the actual coreset
(after scaling by k).
For vertices in V \O: the exact
opposite.

For vertices in O: the degree of
remaining vertices after peeling is
smaller in the hypothetical process
compared to the actual coreset.
For vertices in V \O: the exact
opposite.

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
In the first iteration, by random partitioning:

For vertices in O: the degree threshold
of peeling vertices in the hypothetical
process is larger than the actual coreset
(after scaling by k).
For vertices in V \O: the exact
opposite.

For vertices in O: the degree of
remaining vertices after peeling is
smaller in the hypothetical process
compared to the actual coreset.
For vertices in V \O: the exact
opposite.

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
In the first iteration, by random partitioning:

For vertices in O: the degree threshold
of peeling vertices in the hypothetical
process is larger than the actual coreset
(after scaling by k).
For vertices in V \O: the exact
opposite.

In the next iterations:

For vertices in O: the degree of
remaining vertices after peeling is
smaller in the hypothetical process
compared to the actual coreset.
For vertices in V \O: the exact
opposite.

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
In the first iteration, by random partitioning:

For vertices in O: the degree threshold
of peeling vertices in the hypothetical
process is larger than the actual coreset
(after scaling by k).
For vertices in V \O: the exact
opposite.

In the next iterations:
For vertices in O: the degree of
remaining vertices after peeling is
smaller in the hypothetical process
compared to the actual coreset.

For vertices in V \O: the exact
opposite.

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
In the first iteration, by random partitioning:

For vertices in O: the degree threshold
of peeling vertices in the hypothetical
process is larger than the actual coreset
(after scaling by k).
For vertices in V \O: the exact
opposite.

In the next iterations:
For vertices in O: the degree of
remaining vertices after peeling is
smaller in the hypothetical process
compared to the actual coreset.

For vertices in V \O: the exact
opposite.

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
In the first iteration, by random partitioning:

For vertices in O: the degree threshold
of peeling vertices in the hypothetical
process is larger than the actual coreset
(after scaling by k).
For vertices in V \O: the exact
opposite.

In the next iterations:
For vertices in O: the degree of
remaining vertices after peeling is
smaller in the hypothetical process
compared to the actual coreset.
For vertices in V \O: the exact
opposite.

O

V \O

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
To wrap-up:

1 Across the machines, the set of peeled vertices in V \O by the
coresets is a subset of peeled vertices by the hypothetical
process.

2 The set of peeled vertices in V \O by the hypothetical process
is of size O(opt · log n).

3 The remaining peeled vertices across the machines belong to O
and hence are of size O(opt).

Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
To wrap-up:

1 Across the machines, the set of peeled vertices in V \O by the
coresets is a subset of peeled vertices by the hypothetical
process.

2 The set of peeled vertices in V \O by the hypothetical process
is of size O(opt · log n).

3 The remaining peeled vertices across the machines belong to O
and hence are of size O(opt).

Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
To wrap-up:

1 Across the machines, the set of peeled vertices in V \O by the
coresets is a subset of peeled vertices by the hypothetical
process.

2 The set of peeled vertices in V \O by the hypothetical process
is of size O(opt · log n).

3 The remaining peeled vertices across the machines belong to O
and hence are of size O(opt).

Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
To wrap-up:

1 Across the machines, the set of peeled vertices in V \O by the
coresets is a subset of peeled vertices by the hypothetical
process.

2 The set of peeled vertices in V \O by the hypothetical process
is of size O(opt · log n).

3 The remaining peeled vertices across the machines belong to O
and hence are of size O(opt).

Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Sepehr Assadi (Penn) SPAA 2017

Proof Sketch
To wrap-up:

1 Across the machines, the set of peeled vertices in V \O by the
coresets is a subset of peeled vertices by the hypothetical
process.

2 The set of peeled vertices in V \O by the hypothetical process
is of size O(opt · log n).

3 The remaining peeled vertices across the machines belong to O
and hence are of size O(opt).

Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Sepehr Assadi (Penn) SPAA 2017

Randomized Composable Coreset for Vertex Cover
We showed that,

Theorem
There exists an O(log n)-approximation randomized composable
coreset of size O(n · log n) for the vertex cover problem.

Sepehr Assadi (Penn) SPAA 2017

Concluding Remarks
We provided efficient simultaneous protocols for matching and
vertex cover when the edges of the graph are partitioned
randomly across the machines.

Our protocols bypass the strong impossibility results known for
these problems under adversarially partitioned inputs.

Open problems:
Better approximation factors for matching and vertex cover?
Any super-linear (in n) lower bound for (1 + ε)-approximation of
matching under random partitions?
Randomized composable coresets for other problems?

I In particular, for obtaining a maximal matching?

Sepehr Assadi (Penn) SPAA 2017

Concluding Remarks
We provided efficient simultaneous protocols for matching and
vertex cover when the edges of the graph are partitioned
randomly across the machines.

Our protocols bypass the strong impossibility results known for
these problems under adversarially partitioned inputs.

Open problems:
Better approximation factors for matching and vertex cover?
Any super-linear (in n) lower bound for (1 + ε)-approximation of
matching under random partitions?
Randomized composable coresets for other problems?

I In particular, for obtaining a maximal matching?

Sepehr Assadi (Penn) SPAA 2017

Concluding Remarks
We provided efficient simultaneous protocols for matching and
vertex cover when the edges of the graph are partitioned
randomly across the machines.

Our protocols bypass the strong impossibility results known for
these problems under adversarially partitioned inputs.

Open problems:
Better approximation factors for matching and vertex cover?

Any super-linear (in n) lower bound for (1 + ε)-approximation of
matching under random partitions?
Randomized composable coresets for other problems?

I In particular, for obtaining a maximal matching?

Sepehr Assadi (Penn) SPAA 2017

Concluding Remarks
We provided efficient simultaneous protocols for matching and
vertex cover when the edges of the graph are partitioned
randomly across the machines.

Our protocols bypass the strong impossibility results known for
these problems under adversarially partitioned inputs.

Open problems:
Better approximation factors for matching and vertex cover?
Any super-linear (in n) lower bound for (1 + ε)-approximation of
matching under random partitions?

Randomized composable coresets for other problems?
I In particular, for obtaining a maximal matching?

Sepehr Assadi (Penn) SPAA 2017

Concluding Remarks
We provided efficient simultaneous protocols for matching and
vertex cover when the edges of the graph are partitioned
randomly across the machines.

Our protocols bypass the strong impossibility results known for
these problems under adversarially partitioned inputs.

Open problems:
Better approximation factors for matching and vertex cover?
Any super-linear (in n) lower bound for (1 + ε)-approximation of
matching under random partitions?
Randomized composable coresets for other problems?

I In particular, for obtaining a maximal matching?

Sepehr Assadi (Penn) SPAA 2017

Concluding Remarks
We provided efficient simultaneous protocols for matching and
vertex cover when the edges of the graph are partitioned
randomly across the machines.

Our protocols bypass the strong impossibility results known for
these problems under adversarially partitioned inputs.

Open problems:
Better approximation factors for matching and vertex cover?
Any super-linear (in n) lower bound for (1 + ε)-approximation of
matching under random partitions?
Randomized composable coresets for other problems?

I In particular, for obtaining a maximal matching?

Sepehr Assadi (Penn) SPAA 2017

Ahn, K. J. and Guha, S. (2015).
Access to data and number of iterations: Dual primal algorithms
for maximum matching under resource constraints.
In Proceedings of the 27th ACM on Symposium on Parallelism in
Algorithms and Architectures, SPAA 2015, Portland, OR, USA,
June 13-15, 2015, pages 202–211.

Ahn, K. J., Guha, S., and McGregor, A. (2012a).
Analyzing graph structure via linear measurements.
In Proceedings of the Twenty-third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’12, pages 459–467.
SIAM.
Ahn, K. J., Guha, S., and McGregor, A. (2012b).
Graph sketches: sparsification, spanners, and subgraphs.
In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2012,
Scottsdale, AZ, USA, May 20-24, 2012, pages 5–14.

Sepehr Assadi (Penn) SPAA 2017

Assadi, S., Khanna, S., Li, Y., and Yaroslavtsev, G. (2016).
Maximum matchings in dynamic graph streams and the
simultaneous communication model.
In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, pages 1345–1364.

Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., and Krause, A.
(2014).
Streaming submodular maximization: massive data
summarization on the fly.
In The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New York, NY,
USA - August 24 - 27, 2014, pages 671–680.

Balcan, M., Ehrlich, S., and Liang, Y. (2013).
Distributed k-means and k-median clustering on general
communication topologies.

Sepehr Assadi (Penn) SPAA 2017

In Advances in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States., pages 1995–2003.

Bateni, M., Bhaskara, A., Lattanzi, S., and Mirrokni, V. S.
(2014).
Distributed balanced clustering via mapping coresets.
In Advances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada, pages
2591–2599.
Bhattacharya, S., Henzinger, M., Nanongkai, D., and
Tsourakakis, C. E. (2015).
Space- and time-efficient algorithm for maintaining dense
subgraphs on one-pass dynamic streams.

Sepehr Assadi (Penn) SPAA 2017

In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 173–182.

Bulteau, L., Froese, V., Kutzkov, K., and Pagh, R. (2016).
Triangle counting in dynamic graph streams.
Algorithmica, 76(1):259–278.

Chitnis, R., Cormode, G., Esfandiari, H., Hajiaghayi, M.,
McGregor, A., Monemizadeh, M., and Vorotnikova, S. (2016).
Kernelization via sampling with applications to finding matchings
and related problems in dynamic graph streams.
In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, pages 1326–1344.

da Ponte Barbosa, R., Ene, A., Nguyen, H. L., and Ward, J.
(2015).

Sepehr Assadi (Penn) SPAA 2017

The power of randomization: Distributed submodular
maximization on massive datasets.
In Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, pages
1236–1244.
Huang, Z., Radunovic, B., Vojnovic, M., and Zhang, Q. (2015).
Communication complexity of approximate matching in
distributed graphs.
In 32nd International Symposium on Theoretical Aspects of
Computer Science, STACS 2015, March 4-7, 2015, Garching,
Germany, pages 460–473.

Indyk, P., Mahabadi, S., Mahdian, M., and Mirrokni, V. S.
(2014).
Composable core-sets for diversity and coverage maximization.
In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS’14,
Snowbird, UT, USA, June 22-27, 2014, pages 100–108.
Sepehr Assadi (Penn) SPAA 2017

Kapralov, M., Lee, Y. T., Musco, C., Musco, C., and Sidford, A.
(2014).
Single pass spectral sparsification in dynamic streams.
In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21,
2014, pages 561–570.

Kapralov, M. and Woodruff, D. (2014).
Spanners and sparsifiers in dynamic streams.
PODC.
Lattanzi, S., Moseley, B., Suri, S., and Vassilvitskii, S. (2011).
Filtering: a method for solving graph problems in mapreduce.
In SPAA 2011: Proceedings of the 23rd Annual ACM Symposium
on Parallelism in Algorithms and Architectures, San Jose, CA,
USA, June 4-6, 2011 (Co-located with FCRC 2011), pages 85–94.

McGregor, A., Tench, D., Vorotnikova, S., and Vu, H. T. (2015).
Densest subgraph in dynamic graph streams.
Sepehr Assadi (Penn) SPAA 2017

In Mathematical Foundations of Computer Science 2015 - 40th
International Symposium, MFCS 2015, Milan, Italy, August
24-28, 2015, Proceedings, Part II, pages 472–482.

Mirrokni, V. S. and Zadimoghaddam, M. (2015).
Randomized composable core-sets for distributed submodular
maximization.
In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 153–162.

Mirzasoleiman, B., Karbasi, A., Sarkar, R., and Krause, A.
(2013).
Distributed submodular maximization: Identifying representative
elements in massive data.
In Advances in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States., pages 2049–2057.
Sepehr Assadi (Penn) SPAA 2017

Parnas, M. and Ron, D. (2007).
Approximating the minimum vertex cover in sublinear time and a
connection to distributed algorithms.
Theor. Comput. Sci., 381(1-3):183–196.

Sepehr Assadi (Penn) SPAA 2017

