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Massive Graphs
Massive graphs abound in variety of applications: web graph, social
networks, biological networks, etc.

How to deal with computation over such massive graph inputs?
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Distributed Computing
A common approach: distributed computing.

1 Distribute the edges of the graph between some machines.

2 There is a communication network between the machines.

3 The machines communicate with each other to compute the
answer.
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Distributed Computing
A common approach: distributed computing.

1 Distribute the edges of the graph between some machines.

2 There is a communication network between the machines.

3 The machines communicate with each other to compute the
answer.

Main measures of efficiency: communication cost and round
complexity.
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The Simultaneous Communication Model
We are interested in the simultaneous communication model.

1 There are k machines plus
an additional coordinator.

2 The input graph is
edge-partitioned between
the machines.

3 Each machine sends a
summary of its input to
the coordinator.

4 The coordinator computes
the answer based on the
summaries.
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Why Simultaneous Model?
1 Simultaneous protocols are inherently round-optimal.

2 Communication cost is simply determined by the size of the
summary sent by each machine.

3 Applications to other models of computation:
I For example, lower bounds in dynamic streams.
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Simultaneous Protocols
Many general techniques for designing simultaneous protocols,
including:

Linear sketches

Composable coresets

Mergable summaries

Sampling
. . .
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Linear Sketches
We treat the input graph as a vector of edge multiplicities.

Summary of each machine is a linear projection of its input
subgraph.

Linearity of the sketches allows the coordinator to obtain a
sketch of the combined input.

The coordinator runs an arbitrary function on the combined
sketch to obtain the final answer.

Introduced for graph problems by Ahn, Guha, and
McGregor [Ahn et al., 2012a].
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Composable Coresets
Summary of each machine is a suitably chosen subgraph of its
input.

Composability means that the union of the coresets for a
collection of graphs yields a coreset for the union of the graphs.

The coordinator solves the original problem over the combined
coreset to obtain the final answer.

Introduced by Indyk, Mahabadi, Mahdian, and
Mirrokni [Indyk et al., 2014].

Many graph problems admit natural composable coresets; for
instance, connectivity, sparsifiers, and spanners.
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Previous Work
Successful applications of these two techniques have yielded Õ(n)
size summaries for several graph problems:

Connectivity, Minimum Spanning Tree, (Spectral) Sparsifiers,
Spanners, Densest Subgraph, Subgraph Counting, . . .

Two prominent problems are missing however:

Maximum Matching and Minimum Vertex Cover
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Matchings and Vertex Covers
Matching: A collection of vertex-disjoint edges.

Maximum Matching problem: Find a matching with a largest
number of edges.
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Matchings and Vertex Covers
Vertex Cover: A collection of vertices containing at least one
end point of every edge.

Minimum Vertex Cover problem: Find a vertex cover with a
smallest number of vertices.
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Previous Work: Matching and Vertex
It turned out that matching and vertex cover do not admit efficient
summaries!

[Assadi et al., 2016]:
Any simultaneous protocol that can compute an
no(1)-approximation for these problems requires summaries
of size n2−o(1).

As is traditional in this setting, this impossibility result is doubly
worst case:

Both the underlying graph and the partitioning of the input are
chosen adversarially!

Can we distribute the original input in a better way?
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Our Results in a Nutshell
A natural data oblivious partitioning scheme completely alters this
landscape.

Our work:
Both matching and vertex cover admit efficient
simultaneous protocols provided that the edges of the graph
are partitioned randomly across the machines.

The idea that random partitioning can help was nicely illustrated
by [Mirrokni and Zadimoghaddam, 2015] and
[da Ponte Barbosa et al., 2015] on maximizing submodular functions.
Our work is the first illustration in the domain of graph problems.
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Randomized Composable Coresets
Define G(1), . . . , G(k) as a random partitioning of a graph G: each
edge e ∈ G is sent to one of the graphs uniformly at random.

Consider an algorithm ALG that given any graph G computes a
subgraph ALG(G) ⊆ G with at most s edges.

ALG outputs an α-approximation randomized composable coreset of
size s for a problem P iff:

P
(

ALG(G(1)) ∪ . . . ∪ ALG(G(k))
)

is an α-approximation for P (G)
with high probability (over the randomness of the partitioning).

Defined originally by [Mirrokni and Zadimoghaddam, 2015] in the
context of distributed submodular maximization.
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Upper Bound Results: Maximum Matching
Greedy and local search are typical choices for composable coresets.

However, one can show that the greedy algorithm for matching, i.e.,
picking a maximal matching, performs poorly in general.

Our approach: pick a maximum matching!

Theorem
Any maximum matching is an O(1)-randomized composable coreset
of size n/2 for the matching problem.
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Upper Bound Results: Vertex Cover
Can a minimum vertex cover also be used as a randomized
composable coreset for this problem?

Not really; consider a star with
k petals for example.

Unlike most problems that admit a composable coreset, the vertex
cover problem has a hard to verify feasibility constraint.

This motivates a slightly more general notion of composable coresets.
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Composable Coresets for Vertex Cover
A (randomized) composable coreset for the vertex cover problem
contains both:

1 A subset of edges of the input graph to guide the coordinator on
the choice of the vertex cover.

2 An explicitly specified subset of vertices to be always included in
the final vertex cover

Size of a coreset: number of edges + number of specified vertices.
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Upper Bound Results: Vertex Cover
The vertex cover problem admits an efficient randomized composable
coreset.

Theorem
There exists an O(log n)-approximation randomized composable
coreset of size O(n · log n) for the vertex cover problem.
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Lower Bound Results: Randomized Coresets
Why coresets of size Õ(n)?

Õ(n) space is a “sweet spot” for graph streaming algorithms:
typically the space needed to even store the answer.

However, such considrations only imply that size of all coresets
together need to be Ω(n).

Can we achieve coresets of size, say, Θ(n/k)? No!

Theorem
Any α-approximation randomized composable coreset requires,

Ω(n/α2) space for the matching problem, and,
Ω(n/α) space for the vertex cover problem.

Remark. These bounds are tight for all values of α.
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Õ(n) space is a “sweet spot” for graph streaming algorithms:
typically the space needed to even store the answer.

However, such considrations only imply that size of all coresets
together need to be Ω(n).

Can we achieve coresets of size, say, Θ(n/k)? No!

Theorem
Any α-approximation randomized composable coreset requires,

Ω(n/α2) space for the matching problem, and,
Ω(n/α) space for the vertex cover problem.

Remark. These bounds are tight for all values of α.

Sepehr Assadi (Penn) SPAA 2017



Lower Bound Results: Randomized Coresets
Why coresets of size Õ(n)?
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Upper Bound Results: Distributed Computing
Our randomized composable coresets immediately imply simultaneous
distributed protocols:

Theorem
There exists simultaneous protocol with approximation guarantee

1 O(1) for the matching problem, and,
2 O(log n) for the vertex cover problem,

that require only Õ(k · n) total communication when the input is
randomly partitioned between k machines.
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Upper Bound Results: Distributed Computing
Remark. These result also imply MapReduce algorithms for
matching and vertex cover with the same approximation guarantee in
at most 2 rounds of computation and O(n

√
n) space per each

machine.

Our MapReduce algorithms outperform the previous algorithms for
these problems [Lattanzi et al., 2011, Ahn and Guha, 2015] in terms
of number of rounds, albeit with a larger approximation guarantee.

The number of rounds of a MapReduce algorithm usually determines
the dominant cost of the computation.
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Lower Bound Results: Distributed Computing
Our lower bound on size of randomized composable coresets implies
that our distributed protocols are optimal among all coreset-based
protocols.

What about general protocols?

Theorem
Any α-approximation simultaneous protocol (not necessarily a
coreset) requires

Ω(nk/α2) communication for the matching problem, and,
Ω(nk/α) communication for the vertex cover problem,

even when the input is randomly partitioned across the k machines.

For adversarial partitions, an Ω(nk/α2) lower bound for matching
was known previously even for protocols that are allowed multiple
rounds of communication [Huang et al., 2015].
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A Randomized Composable Coreset
for Matching
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A Randomized Coreset for Matching
Theorem
Any maximum matching is an O(1)-randomized composable coreset
of size n/2 for the matching problem.

Let Mi be the maximum matching computed by machine i ∈ [k].

Consider running the greedy algorithm over the edges in M1, . . . ,Mk

in this order to obtain a matching M .

We prove that |M | = Ω(opt), where opt is the size of a maximum
matching in G.

This implies that there exists an O(1)-approximate matching in
M1 ∪ . . . ∪Mk.
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Analysis Sketch: A Key Lemma
Lemma
At any step i ∈ [k], either the greedy matching is already of size
Ω(opt), or w.h.p., we can increase the size of the current matching
by adding Ω(opt/k) edges from Mi greedily.

This immediately implies that the matching output by the greedy
algorithm has size Ω(opt) w.h.p.
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Proof Sketch

Consider the set of o(opt) already
matched vertices by the greedy
algorithm.

Define Eold as the set of edges in G(i)

incident on these already matched
vertices.
Define µold as size of a maximum
matching in G(i) using only edges in
Eold.
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Proof Sketch
Claim. W.h.p. there is a matching of size ≥ µold + Ω(opt/k) in G(i).

Fix a maximum matching in Eold: at
most o(opt) vertices that were
previously unmatched are in the
matching.
Hence, G contains a matching of size
Ω(opt) outside the set of vertices
matched by µold.
By random partitioning, w.h.p.,
Ω(opt/k) such edges appear in G(i).
µold + Ω(opt/k) forms the desired
matching.
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Proof Sketch
Claim. W.h.p. there is a matching of size ≥ µold + Ω(opt/k) in G(i).

Fix a maximum matching in Eold: at
most o(opt) vertices that were
previously unmatched are in the
matching.
Hence, G contains a matching of size
Ω(opt) outside the set of vertices
matched by µold.
By random partitioning, w.h.p.,
Ω(opt/k) such edges appear in G(i).
µold + Ω(opt/k) forms the desired
matching.

Corollary. Any maximum matching of G(i) contains Ω(opt/k) edges
that can be added to the greedy matching.
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Randomized Composable Coreset for Matching
We showed that,

Theorem
Any maximum matching is an O(1)-randomized composable coreset
of size at most n/2 for the matching problem.
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A Randomized Composable Coreset
for Vertex Cover
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A Randomized Coreset for Vertex Cover
Theorem
There exists an O(log n)-approximation randomized composable
coreset of size O(n · log n) for the vertex cover problem.

Each machine computes a coreset using the following peeling process.

Iteratively remove high degree vertices and their neighboring edges;
specify any removed vertex to be added to the final vertex cover.

When the remaining graph is sufficiently sparse, send it as the coreset.

This peeling process was introduced originally
by [Parnas and Ron, 2007] in the context of sublinear time
algorithms.
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A Randomized Coreset for Vertex Cover
The algorithm to compute the coreset on each machine i ∈ [k]:

1 Pick all vertices in G(i) with degree more than n/2k and add
them to the final vertex cover.

2 Remove these vertices from G(i) together with all their edges.

3 Continue with degree threshold n/4k and so on; stop when
the degree of each vertex is O(log n).

4 Return all edges in the remaining graph as the coreset.
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A Randomized Coreset for Vertex Cover
The algorithm to compute the coreset on each machine i ∈ [k]:

1 Pick all vertices in G(i) with degree more than n/2k and add
them to the final vertex cover.

2 Remove these vertices from G(i) together with all their edges.

3 Continue with degree threshold n/4k and so on; stop when
the degree of each vertex is O(log n).

4 Return all edges in the remaining graph as the coreset.

Size of the coreset is clearly O(n · log n).
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Analysis Sketch
Define opt as size of a minimum vertex cover in G.

It follows from the known results that each coreset only specifies
O(opt · log n) vertices to be added to the final vertex cover

Using this directly only implies an approximation ratio of O(k · log n),
i.e., a factor k worse than our goal.

We show that the set of all specified vertices across all coresets is of
size O(opt · log n).

This finalizes the proof as any edge not covered by any of specified
vertices is communicated in some coreset.
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Analysis Sketch: A Key Lemma
Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Intuitively:
1 By random partitioning, degree of vertices is almost the same

across the coresets.
2 Hence, the same set of vertices should be peeled across in each

iteration.

Any problem?
1 The peeling process is quite sensitive to the exact degrees.
2 Slight changes in the degree can move vertices across iterations,

potentially leading to a cascading effect.

Sepehr Assadi (Penn) SPAA 2017



Analysis Sketch: A Key Lemma
Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Intuitively:
1 By random partitioning, degree of vertices is almost the same

across the coresets.

2 Hence, the same set of vertices should be peeled across in each
iteration.

Any problem?
1 The peeling process is quite sensitive to the exact degrees.
2 Slight changes in the degree can move vertices across iterations,

potentially leading to a cascading effect.

Sepehr Assadi (Penn) SPAA 2017



Analysis Sketch: A Key Lemma
Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Intuitively:
1 By random partitioning, degree of vertices is almost the same

across the coresets.
2 Hence, the same set of vertices should be peeled across in each

iteration.

Any problem?
1 The peeling process is quite sensitive to the exact degrees.
2 Slight changes in the degree can move vertices across iterations,

potentially leading to a cascading effect.

Sepehr Assadi (Penn) SPAA 2017



Analysis Sketch: A Key Lemma
Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Intuitively:
1 By random partitioning, degree of vertices is almost the same

across the coresets.
2 Hence, the same set of vertices should be peeled across in each

iteration.

Any problem?

1 The peeling process is quite sensitive to the exact degrees.
2 Slight changes in the degree can move vertices across iterations,

potentially leading to a cascading effect.

Sepehr Assadi (Penn) SPAA 2017



Analysis Sketch: A Key Lemma
Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Intuitively:
1 By random partitioning, degree of vertices is almost the same

across the coresets.
2 Hence, the same set of vertices should be peeled across in each

iteration.

Any problem?
1 The peeling process is quite sensitive to the exact degrees.

2 Slight changes in the degree can move vertices across iterations,
potentially leading to a cascading effect.

Sepehr Assadi (Penn) SPAA 2017



Analysis Sketch: A Key Lemma
Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Intuitively:
1 By random partitioning, degree of vertices is almost the same

across the coresets.
2 Hence, the same set of vertices should be peeled across in each

iteration.

Any problem?
1 The peeling process is quite sensitive to the exact degrees.
2 Slight changes in the degree can move vertices across iterations,

potentially leading to a cascading effect.
Sepehr Assadi (Penn) SPAA 2017



Analysis Sketch: A Key Lemma
Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.

Our approach:
1 Define a hypothetical peeling process that is aware of a

minimum vertex cover in G.

2 Prove that this peeling process never picks more than
O(opt · log n) vertices.

3 Show that the actual peeling process on each machine
“faithfully” mimics this hypothetical process.
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Proof Sketch
Define O as a minimum vertex cover of G. The hypothetical peeling
process is as follows:

Remove all edges inside O.
Remove vertices with degree n

1.5 from O
and degree n

2.5 from V \O.
Remove all incident edges on these
vertices; continue with degree threshold

n
2·(1.5) from O and n

2·(2.5) from V \O.
Repeat the above process until the
degree threshold reaches Θ(k log n).

O

V \O
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Proof Sketch
Define O as a minimum vertex cover of G. The hypothetical peeling
process is as follows:

Remove all edges inside O.
Remove vertices with degree n

1.5 from O
and degree n

2.5 from V \O.
Remove all incident edges on these
vertices; continue with degree threshold

n
2·(1.5) from O and n

2·(2.5) from V \O.
Repeat the above process until the
degree threshold reaches Θ(k log n).

Claim. The number of peeled vertices from
V \O in each iteration is at most 2 |O|.

O

V \O
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Proof Sketch
Main Claim. For any machine i ∈ [k] and any iteration of the
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Proof Sketch
In the first iteration, by random partitioning:

For vertices in O: the degree threshold
of peeling vertices in the hypothetical
process is larger than the actual coreset
(after scaling by k).
For vertices in V \O: the exact
opposite.

For vertices in O: the degree of
remaining vertices after peeling is
smaller in the hypothetical process
compared to the actual coreset.
For vertices in V \O: the exact
opposite.
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Proof Sketch
To wrap-up:

1 Across the machines, the set of peeled vertices in V \O by the
coresets is a subset of peeled vertices by the hypothetical
process.

2 The set of peeled vertices in V \O by the hypothetical process
is of size O(opt · log n).

3 The remaining peeled vertices across the machines belong to O
and hence are of size O(opt).

Lemma
W.h.p. at most O(opt · log n) vertices are specified to be added to
the final vertex cover in total.
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Randomized Composable Coreset for Vertex Cover
We showed that,

Theorem
There exists an O(log n)-approximation randomized composable
coreset of size O(n · log n) for the vertex cover problem.
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Concluding Remarks
We provided efficient simultaneous protocols for matching and
vertex cover when the edges of the graph are partitioned
randomly across the machines.

Our protocols bypass the strong impossibility results known for
these problems under adversarially partitioned inputs.

Open problems:
Better approximation factors for matching and vertex cover?
Any super-linear (in n) lower bound for (1 + ε)-approximation of
matching under random partitions?
Randomized composable coresets for other problems?

I In particular, for obtaining a maximal matching?
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