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The Set Cover Problem
Input: A collection of m sets S1, . . . , Sm from a universe [n].

Goal: Choose a smallest subset C of the sets from S1, . . . , Sm
such that C covers [n], i.e., ⋃i∈C Si = [n].

We use OPT to denote the optimal solution size.
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The Set Cover Problem
A classic optimization problem with many applications:

Information retrieval,
I e.g., finding a smallest number of documents covering all the

topics in a given query.
Data mining,

I e.g., finding a smallest number of features explaining all positive
examples, i.e., a “minimal explanation” of a pattern.

Web search and advertising,
I e.g., finding a smallest number of impressions to reach a certain

set of users.
Operation research, machine learning, web host analysis, . . .
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The Set Cover Problem: Classical Setting
Theoretical aspects:

One of Karp’s original 21 NP-hard problems [Karp, 1972].
The greedy algorithm that picks the “best” set in each iteration
achieves ln (n) approximation [Johnson, 1974, Slav́ık, 1997].
No better approximation factor is possible in polynomial time
unless P = NP [Lund and Yannakakis, 1994, Feige, 1998,
Dinur and Steurer, 2014, Moshkovitz, 2015].

In practice,
The greedy algorithm is and surprisingly accurate.
Returned solution has < 10% · OPT sets more than the optimal
solution on a typical data set [Grossman and Wool, 1997,
Gomes et al., 2006, Cormode et al., 2010].

as long as the dataset is relatively small!
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The Set Cover Problem: Big Data Scenario
[Cormode et al., 2010]: A direct implementation of the greedy
algorithm scales surprisingly poorly when the data size grows.

Efficient on main memory
Inefficient on disk

One approach: the streaming model for the set cover problem
introduced by [Saha and Getoor, 2009].
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The Streaming Set Cover Problem
Model:

Sequential access to the sets:
I The input sets S1, . . . , Sm are presented one by one in a stream.

Small working memory:
I The streaming algorithm has a small space to maintain a

summary of the input sets.
Efficiency:

I The algorithm can make one or few passes over the stream and
should output the answer using only the stored summary.

Small space:
1 Semi-streaming space, i.e., Õ(n).
2 Sub-linear space, i.e., o(mn).
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The Streaming Set Cover Problem
Note. We do not restrict the computation time of the algorithms in
this model, e.g., allow exponential time computation.

For theoretical purposes: understanding the space complexity of
streaming algorithms in absence of time complexity restrictions.

For practical purposes: we rarely need the full power of such
exponential time computation anyway.
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State of the Art
Many interesting results: [Saha and Getoor, 2009,
Cormode et al., 2010, Emek and Rosén, 2014, Demaine et al., 2014,
Badanidiyuru et al., 2014, Indyk et al., 2015, Har-Peled et al., 2016,
Chakrabarti and Wirth, 2016, Assadi et al., 2016,
McGregor and Vu, 2016, Bateni et al., 2016].

In particular,
Complete resolution of the complexity of multi-pass
semi-streaming algorithms [Chakrabarti and Wirth, 2016].

Complete resolution of the complexity of single-pass sub-linear
space streaming algorithms [Assadi et al., 2016].

Short summary: to ensure efficiency, we need more than Õ(n) space
and more than one pass!
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State of the Art
The best known sub-linear space algorithm [Har-Peled et al., 2016]:

Constant approximation in sub-linear space and constant number of
passes!
Formally, O(p)-Approximation in Õ(m · nΘ(1/p)) space and p passes.
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Space

the space-pass tradeoff

[Har-Peled et al., 2016]:
Conjecture. This tradeoff is tight for
small approximation factors.
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State of the Art
The best known sub-linear space algorithm [Har-Peled et al., 2016]:
Constant approximation in sub-linear space and constant number of
passes!
Formally, O(p)-Approximation in Õ(m · nΘ(1/p)) space and p passes.

# of Passes

Apx

the pass-approximation
tradeoff

Not a typical pass-approximation
tradeoff!
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Motivating Questions
Can we obtain a fixed constant approximation to streaming set
cover while improving the space via a small number of passes?

What is the space-approximation tradeoff for multi-pass
streaming algorithms for set cover?

I We already know an upper bound result:

α-approximation in Õ(mnΘ(1/α)) space [Har-Peled et al., 2016].
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Motivating Questions
Can we obtain a fixed constant approximation to streaming set
cover while improving the space via a small number of passes?
Answer: No!

What is the space-approximation tradeoff for multi-pass
streaming algorithms for set cover?

I We already know an upper bound result:

α-approximation in Õ(mnΘ(1/α)) space [Har-Peled et al., 2016].

Answer: The above space-approximation tradeoff is essentially
tight even allowing polylog(n) passes over the stream!

Sepehr Assadi (Penn) PODS 2017



Our Main Result
Theorem
For α = o(log n), any p-pass α-approximation algorithm
(deterministic or randomized) for the streaming set cover requires
Ω̃
(

1
p
·mn1/α

)
space, even if the sets are arriving in a random order.

Remark.
The lower bound has nothing to do with the NP-hardness of
approximating set cover!
It holds in the regime when OPT = O(1) in which case set cover
admits a trivial poly-time algorithm in the classical setting.
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Further Results
We show that with proper modifications, the algorithm
of [Har-Peled et al., 2016] can be implemented in Õ(mn1/α)
space, matching our lower bound up to logarithmic factors.

Using similar ideas, we can also prove a tight lower bound for
the space complexity of (1− ε)-approximating the streaming
maximum coverage problem.
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Communication Complexity
We use communication complexity to prove our lower bound.

Two-player Communication Model:

Alice gets the sets S1, . . . , Sm and Bob gets T1, . . . , Tm.
Their goal is to compute an exact/approximate set cover of their
combined input.
Alice and Bob are allowed to communicate with each other to
compute the set cover.
Communication Complexity CC(SetCover): minimum amount
of communication needed to solve the problem w.p. ≥ 2/3.

S1, . . . , Sm T1, . . . , Tm
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Communication Complexity and Streaming
Fact. Any p-pass s-space streaming algorithm A for set cover
implies an O(p · s)-communication protocol.

S1, . . . , Sm

stream s
T1, . . . , Tm

stream t
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Communication Complexity and Streaming
Fact. Any p-pass s-space streaming algorithm A for set cover
implies an O(p · s)-communication protocol.

S1, . . . , Sm

stream s
T1, . . . , Tm

stream t

A(s)
A(s ◦ t)

...

Hence, space complexity of p-pass streaming algorithms for the set
cover problem ≥ 1

p
· CC(SetCover).
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Communication Complexity of Set Cover
Fix an α� log n. Define:
SetCover: the two-player communication problem of finding an
α-approximation to the set cover problem.

Theorem
CC(SetCover) = Ω̃(m · n1/α)

We create a distribution D := 1
2 · D

Y + 1
2 · D

N whereby:
1 Every instance sampled from DY (Yes instance), has OPT = 2.
2 Each instance sampled from DN (No instance), has OPT > 2α

w.p. 1− o(1).
3 Distinguishing between Yes and No instances requires Ω̃(mn1/α)

communication.
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A Hard Input Distribution for SetCover
We construct Alice and Bob’s input sets as follows:

1 Create m sets Z1, . . . , Zm:

I Each Zi is a random set of size ≈ n− n(1−1/α) chosen from [n].
I Think of creating Zi by (essentially) removing each element

from [n] w.p. ≈ 1/n1/α.

2 We create Si and Ti such that Si ∪ Ti = Zi:

I Each element e ∈ Zi goes to


Si w.p. 1/3
Ti w.p. 1/3
both Si and Ti o.w.

.
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I Think of creating Zi by (essentially) removing each element
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To create a Yes instance, we choose i? ∈ [m] uniformly at random
and let Zi = [n].
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A Hard Input Distribution for SetCover
OPT in Yes instances?

2; pick Si? and Ti? as Si? ∪ Ti? = Zi? = [n].

OPT in No instances? > 2α w.p. 1− o(1).
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A Hard Input Distribution for SetCover
OPT in Yes instances? 2; pick Si? and Ti? as Si? ∪ Ti? = Zi? = [n].

OPT in No instances? > 2α w.p. 1− o(1).

Claim. (Informal) Optimal solution either picks both Si and Ti or
neither of them.

Si ∪ Ti = Zi, hence covering everything except for n1−1/α

elements.
Si ∪ Tj covers ≈ 8n/9 elements as Si and Tj are two
independent random sets of size ≈ 2n/3.
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A Hard Input Distribution for SetCover
OPT in Yes instances? 2; pick Si? and Ti? as Si? ∪ Ti? = Zi? = [n].

OPT in No instances? > 2α w.p. 1− o(1).

Claim. W.p. 1− o(1), no α-subsets of Z1, . . . , Zm can cover [n].

The probability that a fixed element e ∈ [n] is not covered by a
fixed α-subset is: ≈

(
1/n1/α

)α
≈ 1

n

The expected number of uncovered elements by any fixed
α-subset is then ≈ 1.
Use some concentration result + union bound to finalize the
claim.
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The Lower Bound for Set Cover on D
Why distinguishing between Yes and No instances is hard?

Claim. For a fixed i ∈ [m], detecting whether Zi = [n] or
Zi = [n] \ (n1−1/α random elements ), requires Ω(n1/α)
communication.

Intuitively, to “catch” any of the missing elements, Alice and
Bob need to communicate Ω(n1/α) elements.

Can be formalized using a reduction from the set disjointness
problem.
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The Lower Bound for Set Cover on D
Why distinguishing between Yes and No instances is hard?

Claim. CC(SetCover) ≥ m × communication complexity of
distinguishing Zi = [n] and |Zi| = n− n1−1/α.

The input consists of m pairs (Si, Ti) and the index i? is
unknown to Alice and Bob.

They need to check each pair Si and Ti separately.

Can be formalized using information complexity and a direct
sum-style argument.

There are some subtle technical challenges in applying this idea!

Sepehr Assadi (Penn) PODS 2017



The Lower Bound for Set Cover on D
Why distinguishing between Yes and No instances is hard?
Claim. CC(SetCover) ≥ m × communication complexity of
distinguishing Zi = [n] and |Zi| = n− n1−1/α.

The input consists of m pairs (Si, Ti) and the index i? is
unknown to Alice and Bob.

They need to check each pair Si and Ti separately.

Can be formalized using information complexity and a direct
sum-style argument.

There are some subtle technical challenges in applying this idea!

Sepehr Assadi (Penn) PODS 2017



The Lower Bound for Set Cover on D
Why distinguishing between Yes and No instances is hard?
Claim. CC(SetCover) ≥ m × communication complexity of
distinguishing Zi = [n] and |Zi| = n− n1−1/α.

The input consists of m pairs (Si, Ti) and the index i? is
unknown to Alice and Bob.

They need to check each pair Si and Ti separately.

Can be formalized using information complexity and a direct
sum-style argument.

There are some subtle technical challenges in applying this idea!

Sepehr Assadi (Penn) PODS 2017



The Lower Bound for Set Cover on D
Why distinguishing between Yes and No instances is hard?
Claim. CC(SetCover) ≥ m × communication complexity of
distinguishing Zi = [n] and |Zi| = n− n1−1/α.

The input consists of m pairs (Si, Ti) and the index i? is
unknown to Alice and Bob.

They need to check each pair Si and Ti separately.

Can be formalized using information complexity and a direct
sum-style argument.

There are some subtle technical challenges in applying this idea!

Sepehr Assadi (Penn) PODS 2017



The Lower Bound for Set Cover on D
Why distinguishing between Yes and No instances is hard?
Claim. CC(SetCover) ≥ m × communication complexity of
distinguishing Zi = [n] and |Zi| = n− n1−1/α.

The input consists of m pairs (Si, Ti) and the index i? is
unknown to Alice and Bob.

They need to check each pair Si and Ti separately.

Can be formalized using information complexity and a direct
sum-style argument.

There are some subtle technical challenges in applying this idea!

Sepehr Assadi (Penn) PODS 2017



The Lower Bound for Set Cover on D
Why distinguishing between Yes and No instances is hard?
Claim. CC(SetCover) ≥ m × communication complexity of
distinguishing Zi = [n] and |Zi| = n− n1−1/α.

The input consists of m pairs (Si, Ti) and the index i? is
unknown to Alice and Bob.

They need to check each pair Si and Ti separately.

Can be formalized using information complexity and a direct
sum-style argument.

There are some subtle technical challenges in applying this idea!

Sepehr Assadi (Penn) PODS 2017



The Lower Bound for SetCover: Wrapup
Distinguishing between Yes and No instances of D requires

m · Ω̃(n1/α) = Ω̃(mn1/α)

bits of communication.

This implies a lower bound of Ω̃
(

1
p
·mn1/α

)
on the space complexity

of p-pass α-approximation streaming algorithm for set cover over
adversarialy ordered streams.

Some additional steps are required to extend this lower bound to
random order streams.
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Summary
For the multi-pass streaming set cover problem:

Θ(mn1/α) space is both sufficient and necessary for obtaining an
α-approximation.

This fully resolves the space-approximation tradeoff for
multi-pass streaming algorithms.

Open question: How many passes do we need to obtain the optimal
space complexity for α-approximation?

Best known upper bound is O(α) passes [Har-Peled et al., 2016].
We know it cannot be one pass [Assadi et al., 2016].
Conjectured by [Har-Peled et al., 2016] that Θ(α) is tight.
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