
Tight Space-Approximation Tradeoff for the
Multi-Pass Streaming Set Cover Problem

Sepehr Assadi

University of Pennsylvania

Sepehr Assadi (Penn) PODS 2017

The Set Cover Problem
Input: A collection of m sets S1, . . . , Sm from a universe [n].

Goal: Choose a smallest subset C of the sets from S1, . . . , Sm
such that C covers [n], i.e., ⋃i∈C Si = [n].

We use OPT to denote the optimal solution size.

Sepehr Assadi (Penn) PODS 2017

The Set Cover Problem
Input: A collection of m sets S1, . . . , Sm from a universe [n].

Goal: Choose a smallest subset C of the sets from S1, . . . , Sm
such that C covers [n], i.e., ⋃i∈C Si = [n].

We use OPT to denote the optimal solution size.

Sepehr Assadi (Penn) PODS 2017

The Set Cover Problem
A classic optimization problem with many applications:

Information retrieval,
I e.g., finding a smallest number of documents covering all the

topics in a given query.
Data mining,

I e.g., finding a smallest number of features explaining all positive
examples, i.e., a “minimal explanation” of a pattern.

Web search and advertising,
I e.g., finding a smallest number of impressions to reach a certain

set of users.
Operation research, machine learning, web host analysis, . . .

Sepehr Assadi (Penn) PODS 2017

The Set Cover Problem
A classic optimization problem with many applications:

Information retrieval,
I e.g., finding a smallest number of documents covering all the

topics in a given query.

Data mining,
I e.g., finding a smallest number of features explaining all positive

examples, i.e., a “minimal explanation” of a pattern.
Web search and advertising,

I e.g., finding a smallest number of impressions to reach a certain
set of users.

Operation research, machine learning, web host analysis, . . .

Sepehr Assadi (Penn) PODS 2017

The Set Cover Problem
A classic optimization problem with many applications:

Information retrieval,
I e.g., finding a smallest number of documents covering all the

topics in a given query.
Data mining,

I e.g., finding a smallest number of features explaining all positive
examples, i.e., a “minimal explanation” of a pattern.

Web search and advertising,
I e.g., finding a smallest number of impressions to reach a certain

set of users.
Operation research, machine learning, web host analysis, . . .

Sepehr Assadi (Penn) PODS 2017

The Set Cover Problem
A classic optimization problem with many applications:

Information retrieval,
I e.g., finding a smallest number of documents covering all the

topics in a given query.
Data mining,

I e.g., finding a smallest number of features explaining all positive
examples, i.e., a “minimal explanation” of a pattern.

Web search and advertising,
I e.g., finding a smallest number of impressions to reach a certain

set of users.

Operation research, machine learning, web host analysis, . . .

Sepehr Assadi (Penn) PODS 2017

The Set Cover Problem
A classic optimization problem with many applications:

Information retrieval,
I e.g., finding a smallest number of documents covering all the

topics in a given query.
Data mining,

I e.g., finding a smallest number of features explaining all positive
examples, i.e., a “minimal explanation” of a pattern.

Web search and advertising,
I e.g., finding a smallest number of impressions to reach a certain

set of users.
Operation research, machine learning, web host analysis, . . .

Sepehr Assadi (Penn) PODS 2017

The Set Cover Problem: Classical Setting
Theoretical aspects:

One of Karp’s original 21 NP-hard problems [Karp, 1972].
The greedy algorithm that picks the “best” set in each iteration
achieves ln (n) approximation [Johnson, 1974, Slav́ık, 1997].
No better approximation factor is possible in polynomial time
unless P = NP [Lund and Yannakakis, 1994, Feige, 1998,
Dinur and Steurer, 2014, Moshkovitz, 2015].

In practice,
The greedy algorithm is and surprisingly accurate.
Returned solution has < 10% · OPT sets more than the optimal
solution on a typical data set [Grossman and Wool, 1997,
Gomes et al., 2006, Cormode et al., 2010].

as long as the dataset is relatively small!

Sepehr Assadi (Penn) PODS 2017

The Set Cover Problem: Classical Setting
Theoretical aspects:

One of Karp’s original 21 NP-hard problems [Karp, 1972].
The greedy algorithm that picks the “best” set in each iteration
achieves ln (n) approximation [Johnson, 1974, Slav́ık, 1997].
No better approximation factor is possible in polynomial time
unless P = NP [Lund and Yannakakis, 1994, Feige, 1998,
Dinur and Steurer, 2014, Moshkovitz, 2015].

In practice,
The greedy algorithm is highly efficient and surprisingly accurate.
Returned solution has < 10% · OPT sets more than the optimal
solution on a typical data set [Grossman and Wool, 1997,
Gomes et al., 2006, Cormode et al., 2010].

as long as the dataset is relatively small!

Sepehr Assadi (Penn) PODS 2017

The Set Cover Problem: Classical Setting
Theoretical aspects:

One of Karp’s original 21 NP-hard problems [Karp, 1972].
The greedy algorithm that picks the “best” set in each iteration
achieves ln (n) approximation [Johnson, 1974, Slav́ık, 1997].
No better approximation factor is possible in polynomial time
unless P = NP [Lund and Yannakakis, 1994, Feige, 1998,
Dinur and Steurer, 2014, Moshkovitz, 2015].

In practice,
The greedy algorithm is highly efficient and surprisingly accurate.
Returned solution has < 10% · OPT sets more than the optimal
solution on a typical data set [Grossman and Wool, 1997,
Gomes et al., 2006, Cormode et al., 2010].

as long as the dataset is relatively small!
Sepehr Assadi (Penn) PODS 2017

The Set Cover Problem: Big Data Scenario
[Cormode et al., 2010]: A direct implementation of the greedy
algorithm scales surprisingly poorly when the data size grows.

Efficient on main memory
Inefficient on disk

One approach: the streaming model for the set cover problem
introduced by [Saha and Getoor, 2009].

Sepehr Assadi (Penn) PODS 2017

The Set Cover Problem: Big Data Scenario
[Cormode et al., 2010]: A direct implementation of the greedy
algorithm scales surprisingly poorly when the data size grows.

Efficient on main memory
Inefficient on disk

One approach: the streaming model for the set cover problem
introduced by [Saha and Getoor, 2009].

Sepehr Assadi (Penn) PODS 2017

The Streaming Set Cover Problem
Model:

Sequential access to the sets:
I The input sets S1, . . . , Sm are presented one by one in a stream.

Small working memory:
I The streaming algorithm has a small space to maintain a

summary of the input sets.
Efficiency:

I The algorithm can make one or few passes over the stream and
should output the answer using only the stored summary.

Small space:
1 Semi-streaming space, i.e., Õ(n).
2 Sub-linear space, i.e., o(mn).

Sepehr Assadi (Penn) PODS 2017

The Streaming Set Cover Problem
Model:

Sequential access to the sets:
I The input sets S1, . . . , Sm are presented one by one in a stream.

Small working memory:
I The streaming algorithm has a small space to maintain a

summary of the input sets.

Efficiency:
I The algorithm can make one or few passes over the stream and

should output the answer using only the stored summary.

Small space:
1 Semi-streaming space, i.e., Õ(n).
2 Sub-linear space, i.e., o(mn).

Sepehr Assadi (Penn) PODS 2017

The Streaming Set Cover Problem
Model:

Sequential access to the sets:
I The input sets S1, . . . , Sm are presented one by one in a stream.

Small working memory:
I The streaming algorithm has a small space to maintain a

summary of the input sets.
Efficiency:

I The algorithm can make one or few passes over the stream and
should output the answer using only the stored summary.

Small space:
1 Semi-streaming space, i.e., Õ(n).
2 Sub-linear space, i.e., o(mn).

Sepehr Assadi (Penn) PODS 2017

The Streaming Set Cover Problem
Model:

Sequential access to the sets:
I The input sets S1, . . . , Sm are presented one by one in a stream.

Small working memory:
I The streaming algorithm has a small space to maintain a

summary of the input sets.
Efficiency:

I The algorithm can make one or few passes over the stream and
should output the answer using only the stored summary.

Small space:
1 Semi-streaming space, i.e., Õ(n).
2 Sub-linear space, i.e., o(mn).

Sepehr Assadi (Penn) PODS 2017

The Streaming Set Cover Problem
Note. We do not restrict the computation time of the algorithms in
this model, e.g., allow exponential time computation.

For theoretical purposes: understanding the space complexity of
streaming algorithms in absence of time complexity restrictions.

For practical purposes: we rarely need the full power of such
exponential time computation anyway.

Sepehr Assadi (Penn) PODS 2017

The Streaming Set Cover Problem
Note. We do not restrict the computation time of the algorithms in
this model, e.g., allow exponential time computation.

For theoretical purposes: understanding the space complexity of
streaming algorithms in absence of time complexity restrictions.

For practical purposes: we rarely need the full power of such
exponential time computation anyway.

Sepehr Assadi (Penn) PODS 2017

The Streaming Set Cover Problem
Note. We do not restrict the computation time of the algorithms in
this model, e.g., allow exponential time computation.

For theoretical purposes: understanding the space complexity of
streaming algorithms in absence of time complexity restrictions.

For practical purposes: we rarely need the full power of such
exponential time computation anyway.

Sepehr Assadi (Penn) PODS 2017

State of the Art
Many interesting results: [Saha and Getoor, 2009,
Cormode et al., 2010, Emek and Rosén, 2014, Demaine et al., 2014,
Badanidiyuru et al., 2014, Indyk et al., 2015, Har-Peled et al., 2016,
Chakrabarti and Wirth, 2016, Assadi et al., 2016,
McGregor and Vu, 2016, Bateni et al., 2016].

In particular,
Complete resolution of the complexity of multi-pass
semi-streaming algorithms [Chakrabarti and Wirth, 2016].

Complete resolution of the complexity of single-pass sub-linear
space streaming algorithms [Assadi et al., 2016].

Short summary: to ensure efficiency, we need more than Õ(n) space
and more than one pass!

Sepehr Assadi (Penn) PODS 2017

State of the Art
Many interesting results: [Saha and Getoor, 2009,
Cormode et al., 2010, Emek and Rosén, 2014, Demaine et al., 2014,
Badanidiyuru et al., 2014, Indyk et al., 2015, Har-Peled et al., 2016,
Chakrabarti and Wirth, 2016, Assadi et al., 2016,
McGregor and Vu, 2016, Bateni et al., 2016].

In particular,
Complete resolution of the complexity of multi-pass
semi-streaming algorithms [Chakrabarti and Wirth, 2016].

Complete resolution of the complexity of single-pass sub-linear
space streaming algorithms [Assadi et al., 2016].

Short summary: to ensure efficiency, we need more than Õ(n) space
and more than one pass!

Sepehr Assadi (Penn) PODS 2017

State of the Art
Many interesting results: [Saha and Getoor, 2009,
Cormode et al., 2010, Emek and Rosén, 2014, Demaine et al., 2014,
Badanidiyuru et al., 2014, Indyk et al., 2015, Har-Peled et al., 2016,
Chakrabarti and Wirth, 2016, Assadi et al., 2016,
McGregor and Vu, 2016, Bateni et al., 2016].

In particular,
Complete resolution of the complexity of multi-pass
semi-streaming algorithms [Chakrabarti and Wirth, 2016].

Complete resolution of the complexity of single-pass sub-linear
space streaming algorithms [Assadi et al., 2016].

Short summary: to ensure efficiency, we need more than Õ(n) space
and more than one pass!

Sepehr Assadi (Penn) PODS 2017

State of the Art
Many interesting results: [Saha and Getoor, 2009,
Cormode et al., 2010, Emek and Rosén, 2014, Demaine et al., 2014,
Badanidiyuru et al., 2014, Indyk et al., 2015, Har-Peled et al., 2016,
Chakrabarti and Wirth, 2016, Assadi et al., 2016,
McGregor and Vu, 2016, Bateni et al., 2016].

In particular,
Complete resolution of the complexity of multi-pass
semi-streaming algorithms [Chakrabarti and Wirth, 2016].

Complete resolution of the complexity of single-pass sub-linear
space streaming algorithms [Assadi et al., 2016].

Short summary: to ensure efficiency, we need more than Õ(n) space
and more than one pass!

Sepehr Assadi (Penn) PODS 2017

State of the Art
The best known sub-linear space algorithm [Har-Peled et al., 2016]:

Constant approximation in sub-linear space and constant number of
passes!
Formally, O(p)-Approximation in Õ(m · nΘ(1/p)) space and p passes.

Sepehr Assadi (Penn) PODS 2017

State of the Art
The best known sub-linear space algorithm [Har-Peled et al., 2016]:
Constant approximation in sub-linear space and constant number of
passes!

Formally, O(p)-Approximation in Õ(m · nΘ(1/p)) space and p passes.

Sepehr Assadi (Penn) PODS 2017

State of the Art
The best known sub-linear space algorithm [Har-Peled et al., 2016]:
Constant approximation in sub-linear space and constant number of
passes!
Formally, O(p)-Approximation in Õ(m · nΘ(1/p)) space and p passes.

Sepehr Assadi (Penn) PODS 2017

State of the Art
The best known sub-linear space algorithm [Har-Peled et al., 2016]:
Constant approximation in sub-linear space and constant number of
passes!
Formally, O(p)-Approximation in Õ(m · nΘ(1/p)) space and p passes.

of Passes

Space

the space-pass tradeoff

Sepehr Assadi (Penn) PODS 2017

State of the Art
The best known sub-linear space algorithm [Har-Peled et al., 2016]:
Constant approximation in sub-linear space and constant number of
passes!
Formally, O(p)-Approximation in Õ(m · nΘ(1/p)) space and p passes.

of Passes

Space

the space-pass tradeoff

[Har-Peled et al., 2016]:
Conjecture. This tradeoff is tight for
small approximation factors.

Sepehr Assadi (Penn) PODS 2017

State of the Art
The best known sub-linear space algorithm [Har-Peled et al., 2016]:
Constant approximation in sub-linear space and constant number of
passes!
Formally, O(p)-Approximation in Õ(m · nΘ(1/p)) space and p passes.

of Passes

Apx

the pass-approximation
tradeoff

Not a typical pass-approximation
tradeoff!

Sepehr Assadi (Penn) PODS 2017

Motivating Questions
Can we obtain a fixed constant approximation to streaming set
cover while improving the space via a small number of passes?

What is the space-approximation tradeoff for multi-pass
streaming algorithms for set cover?

I We already know an upper bound result:

α-approximation in Õ(mnΘ(1/α)) space [Har-Peled et al., 2016].

Sepehr Assadi (Penn) PODS 2017

Motivating Questions
Can we obtain a fixed constant approximation to streaming set
cover while improving the space via a small number of passes?

What is the space-approximation tradeoff for multi-pass
streaming algorithms for set cover?

I We already know an upper bound result:

α-approximation in Õ(mnΘ(1/α)) space [Har-Peled et al., 2016].

Sepehr Assadi (Penn) PODS 2017

Motivating Questions
Can we obtain a fixed constant approximation to streaming set
cover while improving the space via a small number of passes?

What is the space-approximation tradeoff for multi-pass
streaming algorithms for set cover?

I We already know an upper bound result:

α-approximation in Õ(mnΘ(1/α)) space [Har-Peled et al., 2016].

Sepehr Assadi (Penn) PODS 2017

Motivating Questions
Can we obtain a fixed constant approximation to streaming set
cover while improving the space via a small number of passes?
Answer: No!

What is the space-approximation tradeoff for multi-pass
streaming algorithms for set cover?

I We already know an upper bound result:

α-approximation in Õ(mnΘ(1/α)) space [Har-Peled et al., 2016].

Sepehr Assadi (Penn) PODS 2017

Motivating Questions
Can we obtain a fixed constant approximation to streaming set
cover while improving the space via a small number of passes?
Answer: No!

What is the space-approximation tradeoff for multi-pass
streaming algorithms for set cover?

I We already know an upper bound result:

α-approximation in Õ(mnΘ(1/α)) space [Har-Peled et al., 2016].

Answer: The above space-approximation tradeoff is essentially
tight even allowing polylog(n) passes over the stream!

Sepehr Assadi (Penn) PODS 2017

Our Main Result
Theorem
For α = o(log n), any p-pass α-approximation algorithm
(deterministic or randomized) for the streaming set cover requires
Ω̃
(

1
p
·mn1/α

)
space, even if the sets are arriving in a random order.

Remark.
The lower bound has nothing to do with the NP-hardness of
approximating set cover!
It holds in the regime when OPT = O(1) in which case set cover
admits a trivial poly-time algorithm in the classical setting.

Sepehr Assadi (Penn) PODS 2017

Our Main Result
Theorem
For α = o(log n), any p-pass α-approximation algorithm
(deterministic or randomized) for the streaming set cover requires
Ω̃
(

1
p
·mn1/α

)
space, even if the sets are arriving in a random order.

Remark.
The lower bound has nothing to do with the NP-hardness of
approximating set cover!
It holds in the regime when OPT = O(1) in which case set cover
admits a trivial poly-time algorithm in the classical setting.

Sepehr Assadi (Penn) PODS 2017

Further Results
We show that with proper modifications, the algorithm
of [Har-Peled et al., 2016] can be implemented in Õ(mn1/α)
space, matching our lower bound up to logarithmic factors.

Using similar ideas, we can also prove a tight lower bound for
the space complexity of (1− ε)-approximating the streaming
maximum coverage problem.

Sepehr Assadi (Penn) PODS 2017

Further Results
We show that with proper modifications, the algorithm
of [Har-Peled et al., 2016] can be implemented in Õ(mn1/α)
space, matching our lower bound up to logarithmic factors.

Using similar ideas, we can also prove a tight lower bound for
the space complexity of (1− ε)-approximating the streaming
maximum coverage problem.

Sepehr Assadi (Penn) PODS 2017

Communication Complexity
We use communication complexity to prove our lower bound.

Two-player Communication Model:

Alice gets the sets S1, . . . , Sm and Bob gets T1, . . . , Tm.
Their goal is to compute an exact/approximate set cover of their
combined input.
Alice and Bob are allowed to communicate with each other to
compute the set cover.
Communication Complexity CC(SetCover): minimum amount
of communication needed to solve the problem w.p. ≥ 2/3.

S1, . . . , Sm T1, . . . , Tm

Sepehr Assadi (Penn) PODS 2017

Communication Complexity
We use communication complexity to prove our lower bound.
Two-player Communication Model:

Alice gets the sets S1, . . . , Sm and Bob gets T1, . . . , Tm.

Their goal is to compute an exact/approximate set cover of their
combined input.
Alice and Bob are allowed to communicate with each other to
compute the set cover.
Communication Complexity CC(SetCover): minimum amount
of communication needed to solve the problem w.p. ≥ 2/3.

S1, . . . , Sm T1, . . . , Tm
Sepehr Assadi (Penn) PODS 2017

Communication Complexity
We use communication complexity to prove our lower bound.
Two-player Communication Model:

Alice gets the sets S1, . . . , Sm and Bob gets T1, . . . , Tm.
Their goal is to compute an exact/approximate set cover of their
combined input.

Alice and Bob are allowed to communicate with each other to
compute the set cover.
Communication Complexity CC(SetCover): minimum amount
of communication needed to solve the problem w.p. ≥ 2/3.

S1, . . . , Sm T1, . . . , Tm
Sepehr Assadi (Penn) PODS 2017

Communication Complexity
We use communication complexity to prove our lower bound.
Two-player Communication Model:

Alice gets the sets S1, . . . , Sm and Bob gets T1, . . . , Tm.
Their goal is to compute an exact/approximate set cover of their
combined input.
Alice and Bob are allowed to communicate with each other to
compute the set cover.

Communication Complexity CC(SetCover): minimum amount
of communication needed to solve the problem w.p. ≥ 2/3.

S1, . . . , Sm T1, . . . , Tm
Sepehr Assadi (Penn) PODS 2017

Communication Complexity
We use communication complexity to prove our lower bound.
Two-player Communication Model:

Alice gets the sets S1, . . . , Sm and Bob gets T1, . . . , Tm.
Their goal is to compute an exact/approximate set cover of their
combined input.
Alice and Bob are allowed to communicate with each other to
compute the set cover.
Communication Complexity CC(SetCover): minimum amount
of communication needed to solve the problem w.p. ≥ 2/3.

S1, . . . , Sm T1, . . . , Tm
Sepehr Assadi (Penn) PODS 2017

Communication Complexity and Streaming
Fact. Any p-pass s-space streaming algorithm A for set cover
implies an O(p · s)-communication protocol.

S1, . . . , Sm

stream s
T1, . . . , Tm

stream t

Sepehr Assadi (Penn) PODS 2017

Communication Complexity and Streaming
Fact. Any p-pass s-space streaming algorithm A for set cover
implies an O(p · s)-communication protocol.

S1, . . . , Sm

stream s
T1, . . . , Tm

stream t

Sepehr Assadi (Penn) PODS 2017

Communication Complexity and Streaming
Fact. Any p-pass s-space streaming algorithm A for set cover
implies an O(p · s)-communication protocol.

S1, . . . , Sm

stream s
T1, . . . , Tm

stream t

A(s)

Sepehr Assadi (Penn) PODS 2017

Communication Complexity and Streaming
Fact. Any p-pass s-space streaming algorithm A for set cover
implies an O(p · s)-communication protocol.

S1, . . . , Sm

stream s
T1, . . . , Tm

stream t

A(s)
A(s ◦ t)

Sepehr Assadi (Penn) PODS 2017

Communication Complexity and Streaming
Fact. Any p-pass s-space streaming algorithm A for set cover
implies an O(p · s)-communication protocol.

S1, . . . , Sm

stream s
T1, . . . , Tm

stream t

A(s)
A(s ◦ t)

...

Sepehr Assadi (Penn) PODS 2017

Communication Complexity and Streaming
Fact. Any p-pass s-space streaming algorithm A for set cover
implies an O(p · s)-communication protocol.

S1, . . . , Sm

stream s
T1, . . . , Tm

stream t

A(s)
A(s ◦ t)

...

Hence, space complexity of p-pass streaming algorithms for the set
cover problem ≥ 1

p
· CC(SetCover).

Sepehr Assadi (Penn) PODS 2017

Communication Complexity of Set Cover
Fix an α� log n. Define:
SetCover: the two-player communication problem of finding an
α-approximation to the set cover problem.

Theorem
CC(SetCover) = Ω̃(m · n1/α)

We create a distribution D := 1
2 · D

Y + 1
2 · D

N whereby:
1 Every instance sampled from DY (Yes instance), has OPT = 2.
2 Each instance sampled from DN (No instance), has OPT > 2α

w.p. 1− o(1).
3 Distinguishing between Yes and No instances requires Ω̃(mn1/α)

communication.

Sepehr Assadi (Penn) PODS 2017

Communication Complexity of Set Cover
Fix an α� log n. Define:
SetCover: the two-player communication problem of finding an
α-approximation to the set cover problem.

Theorem
CC(SetCover) = Ω̃(m · n1/α)

We create a distribution D := 1
2 · D

Y + 1
2 · D

N whereby:

1 Every instance sampled from DY (Yes instance), has OPT = 2.
2 Each instance sampled from DN (No instance), has OPT > 2α

w.p. 1− o(1).
3 Distinguishing between Yes and No instances requires Ω̃(mn1/α)

communication.

Sepehr Assadi (Penn) PODS 2017

Communication Complexity of Set Cover
Fix an α� log n. Define:
SetCover: the two-player communication problem of finding an
α-approximation to the set cover problem.

Theorem
CC(SetCover) = Ω̃(m · n1/α)

We create a distribution D := 1
2 · D

Y + 1
2 · D

N whereby:
1 Every instance sampled from DY (Yes instance), has OPT = 2.

2 Each instance sampled from DN (No instance), has OPT > 2α
w.p. 1− o(1).

3 Distinguishing between Yes and No instances requires Ω̃(mn1/α)
communication.

Sepehr Assadi (Penn) PODS 2017

Communication Complexity of Set Cover
Fix an α� log n. Define:
SetCover: the two-player communication problem of finding an
α-approximation to the set cover problem.

Theorem
CC(SetCover) = Ω̃(m · n1/α)

We create a distribution D := 1
2 · D

Y + 1
2 · D

N whereby:
1 Every instance sampled from DY (Yes instance), has OPT = 2.
2 Each instance sampled from DN (No instance), has OPT > 2α

w.p. 1− o(1).

3 Distinguishing between Yes and No instances requires Ω̃(mn1/α)
communication.

Sepehr Assadi (Penn) PODS 2017

Communication Complexity of Set Cover
Fix an α� log n. Define:
SetCover: the two-player communication problem of finding an
α-approximation to the set cover problem.

Theorem
CC(SetCover) = Ω̃(m · n1/α)

We create a distribution D := 1
2 · D

Y + 1
2 · D

N whereby:
1 Every instance sampled from DY (Yes instance), has OPT = 2.
2 Each instance sampled from DN (No instance), has OPT > 2α

w.p. 1− o(1).
3 Distinguishing between Yes and No instances requires Ω̃(mn1/α)

communication.

Sepehr Assadi (Penn) PODS 2017

A Hard Input Distribution for SetCover
We construct Alice and Bob’s input sets as follows:

1 Create m sets Z1, . . . , Zm:

I Each Zi is a random set of size ≈ n− n(1−1/α) chosen from [n].
I Think of creating Zi by (essentially) removing each element

from [n] w.p. ≈ 1/n1/α.

2 We create Si and Ti such that Si ∪ Ti = Zi:

I Each element e ∈ Zi goes to


Si w.p. 1/3
Ti w.p. 1/3
both Si and Ti o.w.

.

Sepehr Assadi (Penn) PODS 2017

A Hard Input Distribution for SetCover
We construct Alice and Bob’s input sets as follows:

1 Create m sets Z1, . . . , Zm:
I Each Zi is a random set of size ≈ n− n(1−1/α) chosen from [n].
I Think of creating Zi by (essentially) removing each element

from [n] w.p. ≈ 1/n1/α.

2 We create Si and Ti such that Si ∪ Ti = Zi:

I Each element e ∈ Zi goes to


Si w.p. 1/3
Ti w.p. 1/3
both Si and Ti o.w.

.

Sepehr Assadi (Penn) PODS 2017

A Hard Input Distribution for SetCover
We construct Alice and Bob’s input sets as follows:

1 Create m sets Z1, . . . , Zm:
I Each Zi is a random set of size ≈ n− n(1−1/α) chosen from [n].
I Think of creating Zi by (essentially) removing each element

from [n] w.p. ≈ 1/n1/α.

2 We create Si and Ti such that Si ∪ Ti = Zi:

I Each element e ∈ Zi goes to


Si w.p. 1/3
Ti w.p. 1/3
both Si and Ti o.w.

.

Sepehr Assadi (Penn) PODS 2017

A Hard Input Distribution for SetCover
We construct Alice and Bob’s input sets as follows:

1 Create m sets Z1, . . . , Zm:
I Each Zi is a random set of size ≈ n− n(1−1/α) chosen from [n].
I Think of creating Zi by (essentially) removing each element

from [n] w.p. ≈ 1/n1/α.

2 We create Si and Ti such that Si ∪ Ti = Zi:

I Each element e ∈ Zi goes to


Si w.p. 1/3
Ti w.p. 1/3
both Si and Ti o.w.

.

Sepehr Assadi (Penn) PODS 2017

A Hard Input Distribution for SetCover
We construct Alice and Bob’s input sets as follows:

1 Create m sets Z1, . . . , Zm:
I Each Zi is a random set of size ≈ n− n(1−1/α) chosen from [n].
I Think of creating Zi by (essentially) removing each element

from [n] w.p. ≈ 1/n1/α.

2 We create Si and Ti such that Si ∪ Ti = Zi:

I Each element e ∈ Zi goes to


Si w.p. 1/3
Ti w.p. 1/3
both Si and Ti o.w.

.

This creates a No instance.

Sepehr Assadi (Penn) PODS 2017

A Hard Input Distribution for SetCover
We construct Alice and Bob’s input sets as follows:

1 Create m sets Z1, . . . , Zm:
I Each Zi is a random set of size ≈ n− n(1−1/α) chosen from [n].
I Think of creating Zi by (essentially) removing each element

from [n] w.p. ≈ 1/n1/α.

2 We create Si and Ti such that Si ∪ Ti = Zi:

I Each element e ∈ Zi goes to


Si w.p. 1/3
Ti w.p. 1/3
both Si and Ti o.w.

.

To create a Yes instance, we choose i? ∈ [m] uniformly at random
and let Zi = [n].

Sepehr Assadi (Penn) PODS 2017

A Hard Input Distribution for SetCover
OPT in Yes instances?

2; pick Si? and Ti? as Si? ∪ Ti? = Zi? = [n].

OPT in No instances? > 2α w.p. 1− o(1).

Sepehr Assadi (Penn) PODS 2017

A Hard Input Distribution for SetCover
OPT in Yes instances? 2; pick Si? and Ti? as Si? ∪ Ti? = Zi? = [n].

OPT in No instances? > 2α w.p. 1− o(1).

Sepehr Assadi (Penn) PODS 2017

A Hard Input Distribution for SetCover
OPT in Yes instances? 2; pick Si? and Ti? as Si? ∪ Ti? = Zi? = [n].

OPT in No instances?

> 2α w.p. 1− o(1).

Sepehr Assadi (Penn) PODS 2017

A Hard Input Distribution for SetCover
OPT in Yes instances? 2; pick Si? and Ti? as Si? ∪ Ti? = Zi? = [n].

OPT in No instances? > 2α w.p. 1− o(1).

Sepehr Assadi (Penn) PODS 2017

A Hard Input Distribution for SetCover
OPT in Yes instances? 2; pick Si? and Ti? as Si? ∪ Ti? = Zi? = [n].

OPT in No instances? > 2α w.p. 1− o(1).

Claim. (Informal) Optimal solution either picks both Si and Ti or
neither of them.

Si ∪ Ti = Zi, hence covering everything except for n1−1/α

elements.
Si ∪ Tj covers ≈ 8n/9 elements as Si and Tj are two
independent random sets of size ≈ 2n/3.

Sepehr Assadi (Penn) PODS 2017

A Hard Input Distribution for SetCover
OPT in Yes instances? 2; pick Si? and Ti? as Si? ∪ Ti? = Zi? = [n].

OPT in No instances? > 2α w.p. 1− o(1).

Claim. (Informal) Optimal solution either picks both Si and Ti or
neither of them.

Si ∪ Ti = Zi, hence covering everything except for n1−1/α

elements.

Si ∪ Tj covers ≈ 8n/9 elements as Si and Tj are two
independent random sets of size ≈ 2n/3.

Sepehr Assadi (Penn) PODS 2017

A Hard Input Distribution for SetCover
OPT in Yes instances? 2; pick Si? and Ti? as Si? ∪ Ti? = Zi? = [n].

OPT in No instances? > 2α w.p. 1− o(1).

Claim. (Informal) Optimal solution either picks both Si and Ti or
neither of them.

Si ∪ Ti = Zi, hence covering everything except for n1−1/α

elements.
Si ∪ Tj covers ≈ 8n/9 elements as Si and Tj are two
independent random sets of size ≈ 2n/3.

Sepehr Assadi (Penn) PODS 2017

A Hard Input Distribution for SetCover
OPT in Yes instances? 2; pick Si? and Ti? as Si? ∪ Ti? = Zi? = [n].

OPT in No instances? > 2α w.p. 1− o(1).

Claim. W.p. 1− o(1), no α-subsets of Z1, . . . , Zm can cover [n].

The probability that a fixed element e ∈ [n] is not covered by a
fixed α-subset is: ≈

(
1/n1/α

)α
≈ 1

n

The expected number of uncovered elements by any fixed
α-subset is then ≈ 1.
Use some concentration result + union bound to finalize the
claim.

Sepehr Assadi (Penn) PODS 2017

A Hard Input Distribution for SetCover
OPT in Yes instances? 2; pick Si? and Ti? as Si? ∪ Ti? = Zi? = [n].

OPT in No instances? > 2α w.p. 1− o(1).

Claim. W.p. 1− o(1), no α-subsets of Z1, . . . , Zm can cover [n].
The probability that a fixed element e ∈ [n] is not covered by a
fixed α-subset is: ≈

(
1/n1/α

)α
≈ 1

n

The expected number of uncovered elements by any fixed
α-subset is then ≈ 1.
Use some concentration result + union bound to finalize the
claim.

Sepehr Assadi (Penn) PODS 2017

A Hard Input Distribution for SetCover
OPT in Yes instances? 2; pick Si? and Ti? as Si? ∪ Ti? = Zi? = [n].

OPT in No instances? > 2α w.p. 1− o(1).

Claim. W.p. 1− o(1), no α-subsets of Z1, . . . , Zm can cover [n].
The probability that a fixed element e ∈ [n] is not covered by a
fixed α-subset is: ≈

(
1/n1/α

)α
≈ 1

n

The expected number of uncovered elements by any fixed
α-subset is then ≈ 1.

Use some concentration result + union bound to finalize the
claim.

Sepehr Assadi (Penn) PODS 2017

A Hard Input Distribution for SetCover
OPT in Yes instances? 2; pick Si? and Ti? as Si? ∪ Ti? = Zi? = [n].

OPT in No instances? > 2α w.p. 1− o(1).

Claim. W.p. 1− o(1), no α-subsets of Z1, . . . , Zm can cover [n].
The probability that a fixed element e ∈ [n] is not covered by a
fixed α-subset is: ≈

(
1/n1/α

)α
≈ 1

n

The expected number of uncovered elements by any fixed
α-subset is then ≈ 1.
Use some concentration result + union bound to finalize the
claim.

Sepehr Assadi (Penn) PODS 2017

The Lower Bound for Set Cover on D
Why distinguishing between Yes and No instances is hard?

Claim. For a fixed i ∈ [m], detecting whether Zi = [n] or
Zi = [n] \ (n1−1/α random elements), requires Ω(n1/α)
communication.

Intuitively, to “catch” any of the missing elements, Alice and
Bob need to communicate Ω(n1/α) elements.

Can be formalized using a reduction from the set disjointness
problem.

Sepehr Assadi (Penn) PODS 2017

The Lower Bound for Set Cover on D
Why distinguishing between Yes and No instances is hard?
Claim. For a fixed i ∈ [m], detecting whether Zi = [n] or
Zi = [n] \ (n1−1/α random elements), requires Ω(n1/α)
communication.

Intuitively, to “catch” any of the missing elements, Alice and
Bob need to communicate Ω(n1/α) elements.

Can be formalized using a reduction from the set disjointness
problem.

Sepehr Assadi (Penn) PODS 2017

The Lower Bound for Set Cover on D
Why distinguishing between Yes and No instances is hard?
Claim. For a fixed i ∈ [m], detecting whether Zi = [n] or
Zi = [n] \ (n1−1/α random elements), requires Ω(n1/α)
communication.

Intuitively, to “catch” any of the missing elements, Alice and
Bob need to communicate Ω(n1/α) elements.

Can be formalized using a reduction from the set disjointness
problem.

Sepehr Assadi (Penn) PODS 2017

The Lower Bound for Set Cover on D
Why distinguishing between Yes and No instances is hard?
Claim. For a fixed i ∈ [m], detecting whether Zi = [n] or
Zi = [n] \ (n1−1/α random elements), requires Ω(n1/α)
communication.

Intuitively, to “catch” any of the missing elements, Alice and
Bob need to communicate Ω(n1/α) elements.

Can be formalized using a reduction from the set disjointness
problem.

Sepehr Assadi (Penn) PODS 2017

The Lower Bound for Set Cover on D
Why distinguishing between Yes and No instances is hard?

Claim. CC(SetCover) ≥ m × communication complexity of
distinguishing Zi = [n] and |Zi| = n− n1−1/α.

The input consists of m pairs (Si, Ti) and the index i? is
unknown to Alice and Bob.

They need to check each pair Si and Ti separately.

Can be formalized using information complexity and a direct
sum-style argument.

There are some subtle technical challenges in applying this idea!

Sepehr Assadi (Penn) PODS 2017

The Lower Bound for Set Cover on D
Why distinguishing between Yes and No instances is hard?
Claim. CC(SetCover) ≥ m × communication complexity of
distinguishing Zi = [n] and |Zi| = n− n1−1/α.

The input consists of m pairs (Si, Ti) and the index i? is
unknown to Alice and Bob.

They need to check each pair Si and Ti separately.

Can be formalized using information complexity and a direct
sum-style argument.

There are some subtle technical challenges in applying this idea!

Sepehr Assadi (Penn) PODS 2017

The Lower Bound for Set Cover on D
Why distinguishing between Yes and No instances is hard?
Claim. CC(SetCover) ≥ m × communication complexity of
distinguishing Zi = [n] and |Zi| = n− n1−1/α.

The input consists of m pairs (Si, Ti) and the index i? is
unknown to Alice and Bob.

They need to check each pair Si and Ti separately.

Can be formalized using information complexity and a direct
sum-style argument.

There are some subtle technical challenges in applying this idea!

Sepehr Assadi (Penn) PODS 2017

The Lower Bound for Set Cover on D
Why distinguishing between Yes and No instances is hard?
Claim. CC(SetCover) ≥ m × communication complexity of
distinguishing Zi = [n] and |Zi| = n− n1−1/α.

The input consists of m pairs (Si, Ti) and the index i? is
unknown to Alice and Bob.

They need to check each pair Si and Ti separately.

Can be formalized using information complexity and a direct
sum-style argument.

There are some subtle technical challenges in applying this idea!

Sepehr Assadi (Penn) PODS 2017

The Lower Bound for Set Cover on D
Why distinguishing between Yes and No instances is hard?
Claim. CC(SetCover) ≥ m × communication complexity of
distinguishing Zi = [n] and |Zi| = n− n1−1/α.

The input consists of m pairs (Si, Ti) and the index i? is
unknown to Alice and Bob.

They need to check each pair Si and Ti separately.

Can be formalized using information complexity and a direct
sum-style argument.

There are some subtle technical challenges in applying this idea!

Sepehr Assadi (Penn) PODS 2017

The Lower Bound for Set Cover on D
Why distinguishing between Yes and No instances is hard?
Claim. CC(SetCover) ≥ m × communication complexity of
distinguishing Zi = [n] and |Zi| = n− n1−1/α.

The input consists of m pairs (Si, Ti) and the index i? is
unknown to Alice and Bob.

They need to check each pair Si and Ti separately.

Can be formalized using information complexity and a direct
sum-style argument.

There are some subtle technical challenges in applying this idea!

Sepehr Assadi (Penn) PODS 2017

The Lower Bound for SetCover: Wrapup
Distinguishing between Yes and No instances of D requires

m · Ω̃(n1/α) = Ω̃(mn1/α)

bits of communication.

This implies a lower bound of Ω̃
(

1
p
·mn1/α

)
on the space complexity

of p-pass α-approximation streaming algorithm for set cover over
adversarialy ordered streams.

Some additional steps are required to extend this lower bound to
random order streams.

Sepehr Assadi (Penn) PODS 2017

The Lower Bound for SetCover: Wrapup
Distinguishing between Yes and No instances of D requires

m · Ω̃(n1/α) = Ω̃(mn1/α)

bits of communication.

This implies a lower bound of Ω̃
(

1
p
·mn1/α

)
on the space complexity

of p-pass α-approximation streaming algorithm for set cover over
adversarialy ordered streams.

Some additional steps are required to extend this lower bound to
random order streams.

Sepehr Assadi (Penn) PODS 2017

The Lower Bound for SetCover: Wrapup
Distinguishing between Yes and No instances of D requires

m · Ω̃(n1/α) = Ω̃(mn1/α)

bits of communication.

This implies a lower bound of Ω̃
(

1
p
·mn1/α

)
on the space complexity

of p-pass α-approximation streaming algorithm for set cover over
adversarialy ordered streams.

Some additional steps are required to extend this lower bound to
random order streams.

Sepehr Assadi (Penn) PODS 2017

Summary
For the multi-pass streaming set cover problem:

Θ(mn1/α) space is both sufficient and necessary for obtaining an
α-approximation.

This fully resolves the space-approximation tradeoff for
multi-pass streaming algorithms.

Open question: How many passes do we need to obtain the optimal
space complexity for α-approximation?

Best known upper bound is O(α) passes [Har-Peled et al., 2016].
We know it cannot be one pass [Assadi et al., 2016].
Conjectured by [Har-Peled et al., 2016] that Θ(α) is tight.

Sepehr Assadi (Penn) PODS 2017

Summary
For the multi-pass streaming set cover problem:

Θ(mn1/α) space is both sufficient and necessary for obtaining an
α-approximation.

This fully resolves the space-approximation tradeoff for
multi-pass streaming algorithms.

Open question: How many passes do we need to obtain the optimal
space complexity for α-approximation?

Best known upper bound is O(α) passes [Har-Peled et al., 2016].
We know it cannot be one pass [Assadi et al., 2016].
Conjectured by [Har-Peled et al., 2016] that Θ(α) is tight.

Sepehr Assadi (Penn) PODS 2017

Summary
For the multi-pass streaming set cover problem:

Θ(mn1/α) space is both sufficient and necessary for obtaining an
α-approximation.

This fully resolves the space-approximation tradeoff for
multi-pass streaming algorithms.

Open question: How many passes do we need to obtain the optimal
space complexity for α-approximation?

Best known upper bound is O(α) passes [Har-Peled et al., 2016].
We know it cannot be one pass [Assadi et al., 2016].
Conjectured by [Har-Peled et al., 2016] that Θ(α) is tight.

Sepehr Assadi (Penn) PODS 2017

Summary
For the multi-pass streaming set cover problem:

Θ(mn1/α) space is both sufficient and necessary for obtaining an
α-approximation.

This fully resolves the space-approximation tradeoff for
multi-pass streaming algorithms.

Open question: How many passes do we need to obtain the optimal
space complexity for α-approximation?

Best known upper bound is O(α) passes [Har-Peled et al., 2016].

We know it cannot be one pass [Assadi et al., 2016].
Conjectured by [Har-Peled et al., 2016] that Θ(α) is tight.

Sepehr Assadi (Penn) PODS 2017

Summary
For the multi-pass streaming set cover problem:

Θ(mn1/α) space is both sufficient and necessary for obtaining an
α-approximation.

This fully resolves the space-approximation tradeoff for
multi-pass streaming algorithms.

Open question: How many passes do we need to obtain the optimal
space complexity for α-approximation?

Best known upper bound is O(α) passes [Har-Peled et al., 2016].
We know it cannot be one pass [Assadi et al., 2016].

Conjectured by [Har-Peled et al., 2016] that Θ(α) is tight.

Sepehr Assadi (Penn) PODS 2017

Summary
For the multi-pass streaming set cover problem:

Θ(mn1/α) space is both sufficient and necessary for obtaining an
α-approximation.

This fully resolves the space-approximation tradeoff for
multi-pass streaming algorithms.

Open question: How many passes do we need to obtain the optimal
space complexity for α-approximation?

Best known upper bound is O(α) passes [Har-Peled et al., 2016].
We know it cannot be one pass [Assadi et al., 2016].
Conjectured by [Har-Peled et al., 2016] that Θ(α) is tight.

Sepehr Assadi (Penn) PODS 2017

Assadi, S., Khanna, S., and Li, Y. (2016).
Tight bounds for single-pass streaming complexity of the set
cover problem.
In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, pages 698–711.

Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., and Krause, A.
(2014).
Streaming submodular maximization: massive data
summarization on the fly.
In The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New York, NY,
USA - August 24 - 27, 2014, pages 671–680.

Bateni, M., Esfandiari, H., and Mirrokni, V. S. (2016).
Almost optimal streaming algorithms for coverage problems.
CoRR, abs/1610.08096.

Sepehr Assadi (Penn) PODS 2017

Chakrabarti, A. and Wirth, A. (2016).
Incidence geometries and the pass complexity of semi-streaming
set cover.
In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, pages 1365–1373.

Cormode, G., Karloff, H. J., and Wirth, A. (2010).
Set cover algorithms for very large datasets.
In Proceedings of the 19th ACM Conference on Information and
Knowledge Management, CIKM 2010, Toronto, Ontario, Canada,
October 26-30, 2010, pages 479–488.

Demaine, E. D., Indyk, P., Mahabadi, S., and Vakilian, A.
(2014).
On streaming and communication complexity of the set cover
problem.

Sepehr Assadi (Penn) PODS 2017

In Distributed Computing - 28th International Symposium, DISC
2014, Austin, TX, USA, October 12-15, 2014. Proceedings,
pages 484–498.

Dinur, I. and Steurer, D. (2014).
Analytical approach to parallel repetition.
In Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 - June 03, 2014, pages 624–633.

Emek, Y. and Rosén, A. (2014).
Semi-streaming set cover - (extended abstract).
In Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11,
2014, Proceedings, Part I, pages 453–464.

Feige, U. (1998).
A threshold of ln n for approximating set cover.
J. ACM, 45(4):634–652.

Sepehr Assadi (Penn) PODS 2017

Gomes, F. C., de Meneses, C. N., Pardalos, P. M., and Viana, G.
V. R. (2006).
Experimental analysis of approximation algorithms for the vertex
cover and set covering problems.
Computers & OR, 33(12):3520–3534.

Grossman, T. and Wool, A. (1997).
Computational experience with approximation algorithms for the
set covering problem.
European Journal of Operational Research, 101(1):81–92.

Har-Peled, S., Indyk, P., Mahabadi, S., and Vakilian, A. (2016).
Towards tight bounds for the streaming set cover problem.
In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, pages 371–383.

Indyk, P., Mahabadi, S., and Vakilian, A. (2015).
Towards tight bounds for the streaming set cover problem.
Sepehr Assadi (Penn) PODS 2017

CoRR, abs/1509.00118.

Johnson, D. S. (1974).
Approximation algorithms for combinatorial problems.
J. Comput. Syst. Sci., 9(3):256–278.

Karp, R. M. (1972).
Reducibility among combinatorial problems.
In Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J.
Watson Research Center, Yorktown Heights, New York., pages
85–103.
Lund, C. and Yannakakis, M. (1994).
On the hardness of approximating minimization problems.
J. ACM, 41(5):960–981.

McGregor, A. and Vu, H. T. (2016).
Better streaming algorithms for the maximum coverage problem.
CoRR, abs/1610.06199. To appear in ICDT (2017).
Sepehr Assadi (Penn) PODS 2017

Moshkovitz, D. (2015).
The projection games conjecture and the np-hardness of ln
n-approximating set-cover.
Theory of Computing, 11:221–235.

Saha, B. and Getoor, L. (2009).
On maximum coverage in the streaming model & application to
multi-topic blog-watch.
In Proceedings of the SIAM International Conference on Data
Mining, SDM 2009, April 30 - May 2, 2009, Sparks, Nevada,
USA, pages 697–708.

Slav́ık, P. (1997).
A tight analysis of the greedy algorithm for set cover.
J. Algorithms, 25(2):237–254.

Sepehr Assadi (Penn) PODS 2017

