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Sparsifiers
A powerful tool when dealing with large graphs is sparsification.

A sparsifier of a graph G is a subgraph H that preserves certain
properties of G while having a smaller number of edges.
Canonical examples:

Cut sparsifiers: preserve cut-value between bi-partitions
[Karger, 1994, Benczúr and Karger, 1996, Fung et al., 2011];

Spectral sparsifiers: preserve Laplacian spectrum of the graph
[Spielman and Teng, 2011, Batson et al., 2009];

Spanners: preserve pairwise distances
[Awerbuch, 1985, Peleg and Schäffer, 1989];
. . .

This talk: Are there efficient matching sparsifiers?
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Matching
Matching: A collection of vertex-disjoint edges.

Maximum Matching problem: Find a matching with a largest number
of edges.

µ(G): size of a maximum matching in G.
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Matching Sparsifier
What is a good definition for a matching sparsifier?

Preserves the largest matching?
Preserves large matchings for all subsets of vertices?
Preserves large matchings over a given set of edges?
. . .

Let us instead consider examples of what we expect from a “good”
matching sparsifier in the context of known matching problems.
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One-Way Communication Complexity of Matching
Consider the following problem:

Alice and Bob are given graphs GA(V,EA) and GB(V,EB).
Alice wants to send a single message to Bob so Bob can
compute a maximum matching of GA ∪GB.
What is the tradeoff between length of the message and
approximation ratio?

Alice has GA Bob has GB

Small Message
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One-Way Communication Complexity of Matching
Consider the following problem:

Alice and Bob are given graphs GA(V,EA) and GB(V,EB).
Alice wants to send a single message to Bob so Bob can
compute a maximum matching of GA ∪GB.
What is the tradeoff between length of the message and
approximation ratio?

Studied by [Goel et al., 2012, Lee and Singla, 2017] owing to its close
connection to streaming and online batch-arrival algorithms for maxi-
mum matching.
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One-Way Communication Complexity of Matching
How does a good sparsifier help here?

What would have happened if we were instead interested in
communication complexity of minimum or maximum cut problem?

Alice sends a cut sparsifier with Õ(n) communication.
Bob outputs a (1 + ε)-approximation.

For original maximum matching problem, we would like Alice to be
able to send a matching sparsifier!
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Other Examples
Stochastic matching problem
Compute a sparse subgraph H of G such that random subgraphs of
H have a large matching compared to random subgraphs of G.

Studied primarily owing to its connection to kidney exchange problem
[Blum et al., 2015, Assadi et al., 2016, Assadi et al., 2017,
Behnezhad and Reyhani, 2018, Yamaguchi and Maehara, 2018,
Behnezhad et al., 2019]

Fault tolerant matching problem
Fault-tolerant subgraphs studied extensively for spanners and distance
preservers. [Chechik et al., 2009, Peleg, 2009, Baswana et al., 2016,
Bodwin et al., 2017, Bodwin et al., 2018] · · ·
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Our Proposed Matching Sparsifier
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Our Proposed Matching Sparsifier
We propose edge degree constrained subgraphs as a candidate for a
matching sparsifier.

Introduced originally by [Bernstein and Stein, 2015]
[Bernstein and Stein, 2016] in context of dynamic graph algorithms.

Very recently also used to design randomized composable coresets for
matching [Assadi et al., 2019].
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Edge Degree Constrained Subgraphs
Definition ([Bernstein and Stein, 2015])
For any ε ∈ (0, 1) and β ≥ 1,

A subgraph H of G is called a (β, ε)-EDCS of G:

1 ∀(u, v) ∈ H dH(u) + dH(v) ≤ β,

2 ∀(u, v) ∈ G \H dH(u) + dH(v) ≥ (1− ε) · β.

G H
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EDCS as a Matching Sparsifier
Basic properties:

A (β, ε)-EDCS has O(nβ) edges.
Every graph admits a (β, ε)-EDCS for all ε ∈ (0, 1) and β > 1/ε.

EDCS contains a large matching:
A (β, ε)-EDCS contains a (1.5 + ε)-approximate matching for β > 1

ε3

[Bernstein and Stein, 2016].

[This work]:
An EDCS can act as a robust matching sparsifier under
different notions of sparsification.
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Our Results

One-way communication complexity of matching:
(1.5 + ε)-approximation with Oε(n) communication.

1.5-approximation for bipartite graphs [Goel et al., 2012].
1.66-approximation for general graphs [Lee and Singla, 2017].

Stochastic matching problem:
(1.5 + ε)-approximation with max-degree Oε

(
log (1/p)

p

)
.

(2 + ε)-approximation [Blum et al., 2015, Assadi et al., 2016].
1.999-approximation [Assadi et al., 2017].
1.52-approximation [Behnezhad et al., 2019] (parallel work).

f -fault-tolerant matching problem:
(1.5 + ε)-approximation with Oε(n+ f) edges.
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Our Results
Problem? the proof of matching preserving property of EDCS (for
general graphs) in [Bernstein and Stein, 2016] is not simple.

We give a significantly simpler proof of this property with even
slightly improved parameters.

(β, ε)-EDCS contains a (1.5+ε)-approximate matching for β & 1
ε2 .

Sepehr Assadi (Penn) SOSA 2019



Our Results
Problem? the proof of matching preserving property of EDCS (for
general graphs) in [Bernstein and Stein, 2016] is not simple.

We give a significantly simpler proof of this property with even
slightly improved parameters.

(β, ε)-EDCS contains a (1.5+ε)-approximate matching for β & 1
ε2 .

Sepehr Assadi (Penn) SOSA 2019



Our Results
Problem? the proof of matching preserving property of EDCS (for
general graphs) in [Bernstein and Stein, 2016] is not simple.

We give a significantly simpler proof of this property with even
slightly improved parameters.

(β, ε)-EDCS contains a (1.5+ε)-approximate matching for β & 1
ε2 .

Sepehr Assadi (Penn) SOSA 2019



EDCS as a Matching Sparsifier
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One-Way Communication Complexity of Matching

Alice and Bob are given graphs GA(V,EA) and GB(V,EB).
Alice wants to send a single message to Bob so Bob can
compute a maximum matching of GA ∪GB.

Alice has GA Bob has GB

Small Message

Our solution: Alice sends a (1/ε2, ε)-EDCS H of GA to Bob.
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Proof of Correctness

Fix a maximum matching
MA ∪MB of GA ∪GB.
H ∪MB contains a
(β + 2, 2ε)-EDCS of
GA ∪MB:
Proof. Add any edge
(u, v) in MB to H iff
dH(u) + dH(v) ≤ β.
So µ(H ∪MB) ≥
(2/3− ε) · µ(GA ∪GB).
H ∪MB ⊆ H ∪GB

known to Bob.

GA

GB

H
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EDCS Contains a Large Matching
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Matching Preserving Property of EDCS

(β, ε)-EDCS contains a (1.5+ε)-approximate matching for β & 1
ε2 .

Part one: Prove the result for bipartite graphs.
A simple argument based on Hall’s theorem.
Similar to [Bernstein and Stein, 2015].

Part two: Reduce the general case to bipartite graphs.
Uses robustness properties of EDCS that we prove in this paper
with a simple application of Lovasz Local Lemma.
Entirely different from and significantly simpler
than [Bernstein and Stein, 2016].
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Bipartite Graphs

H is a (β, ε)-EDCS of G
with maximum matching
size µ(H).

Hall’s theorem:
No A to B edge;∣∣∣A ∪B∣∣∣ = µ(H).
G has a matching of size
µ(G) ≥ µ(H):
|S| = 2(µ(G)− µ(H)).
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Bipartite Graphs

H is an EDCS:
average degree of S is
&ε β/2.

H is an EDCS:
average degree of A ∪B
is .ε β/2.
|S| .ε

∣∣∣A ∪B∣∣∣:
2(µ(G)−µ(H)) .ε µ(H).
µ(H) &ε 2/3 · µ(G).
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General Graphs

Fix a (β, ε)-EDCS H of G.

Consider a maximum matching in G.
Randomly partition vertices of G and H
along this matching.
dH′(v) ≈ε dH(v)/2 with constant
probability.
LLL =⇒ ∃ a random partitioning s.t.
dH′(v) ≈ε dH(v)/2 for all vertices.
H ′ becomes a (β/2, ε)-EDCS of G′!
(1.5 + ε)-approximation by the result on
bipartite graphs.
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Concluding Remarks
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Concluding Remarks
EDCS can act as a matching sparsifier under different notions of
sparsification.

This gives extremely simple and non-technical proofs for various
matching problems in a unified way.

One-way communication complexity of matching:
(1.5 + ε)-approximation with Oε(n) communication.

Stochastic matching problem:
(1.5 + ε)-approximation with max-degree Oε

(
log (1/p)

p

)
.

f -fault-tolerant matching problem:
(1.5 + ε)-approximation with Oε(n+ f) edges.
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Concluding Remarks
EDCS can act as a matching sparsifier under different notions of
sparsification.
This gives extremely simple and non-technical proofs for various
matching problems in a unified way.

One-way communication complexity of matching:
(1.5 + ε)-approximation with Oε(n) communication.

Stochastic matching problem:
(1.5 + ε)-approximation with max-degree Oε

(
log (1/p)

p

)
.

f -fault-tolerant matching problem:
(1.5 + ε)-approximation with Oε(n+ f) edges.

Thank you!
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