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The Streaming Model
Introduced in the seminal work of Alon, Matias, and
Szegedy [Alon et al., 1996].

Input is presented as a data stream, for instance, as a sequence
of edges in case of a graph input.
Algorithm sees the entire input once and only has a small space
to store information about the input as it passes by.
At the end of the sequence, the algorithm outputs a solution
using only the stored information.
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The Streaming Model: Example
A graph stream:

Stream:
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The Streaming Model
Two relevant models for our purpose:

Insertion-Only Streams. Only contains positive updates.

Dynamic Streams. Contains both positive and negative updates.
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Matchings in Graphs
Matching: A collection of vertex-disjoint edges.

Perfect Matching: Every vertex is in the matching.

Maximum Matching problem: Find a matching with a largest number
of edges.

Sepehr Assadi (Penn) JHU Algorithms and Complexity Seminar



Matchings in Graphs
Matching: A collection of vertex-disjoint edges.

Perfect Matching: Every vertex is in the matching.

Maximum Matching problem: Find a matching with a largest number
of edges.

Sepehr Assadi (Penn) JHU Algorithms and Complexity Seminar



Matchings in Graphs
Matching: A collection of vertex-disjoint edges.

Perfect Matching: Every vertex is in the matching.

Maximum Matching problem: Find a matching with a largest number
of edges.

Sepehr Assadi (Penn) JHU Algorithms and Complexity Seminar



Matchings in Graphs
Maximum matching is a fundamental problem with many
applications.

Many celebrated algorithms in the classical setting:
Ford-Fulkerson, Edmond’s, Hopcroft-Karp, Mucha-Sankowski,
Madry’s, . . .

Studied in various computational models: distributed, parallel,
online, sub-linear time, streaming, . . .

This talk: sublinear space algorithms for the matching problem in the
streaming model.
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Finding a Matching vs Estimating Size
Two natural variants of the problem to consider:

Goal 1. Output the edges in an optimal/approximate matching.

Goal 2. Output an estimate of the size of a maximum matching.

Are there any qualitative di�erence in the space needed to achieve
these goals?
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Finding Large Matchings
Arguably the most studied problem in the graph streaming literature.

[McGregor, 2005] [Feigenbaum et al., 2005] [Eggert et al., 2009]
[Epstein et al., 2011] [Goel et al., 2012] [Konrad et al., 2012]
[Zelke, 2012] [Ahn et al., 2012] [Ahn and Guha, 2013]
[Guruswami and Onak, 2013] [Kapralov, 2013] [Kapralov et al., 2014]
[Crouch and Stubbs, 2014] [McGregor, 2014] [Chitnis et al., 2015]
[Ahn and Guha, 2015] [Esfandiari et al., 2015] [Konrad, 2015]
[Bury and Schwiegelshohn, 2015] [Assadi et al., 2016]
[Chitnis et al., 2016] [McGregor and Vorotnikova, 2016b]
[Esfandiari et al., 2016] [Paz and Schwartzman, 2017]
[Gha�ari, 2017] [Kale et al., 2017] . . .
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Finding Large Matchings
Insertion-only streams:

Exact computation requires �(n2

)

space [Feigenbaum et al., 2005].

2-approximation in O(n) space is easy but no better than
2-approximation is known in o(n2

) space.
Beating e/(e ≠ 1)-approximation requires n1+�(1/ log log n)

space [Goel et al., 2012, Kapralov, 2013].

Dynamic streams:
�(n2/–3

) space is necessary for
–-approximation [Assadi et al., 2016].
ÂO(n2/–3

) space is su�cient for
–-approximation [Assadi et al., 2016, Chitnis et al., 2016].
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Estimating Maximum Matching Size
In general, no better algorithms are known for the seemingly
easier problem of estimating the size of a maximum matching.

However, under certain conditions on the input, sublinear (in n)
space algorithms exist:

I
Random arrival insertion-only streams [Kapralov et al., 2014].

I
Bounded arboricity graphs [Esfandiari et al., 2015] . . .

Lower bounds (Insertion-only streams):
I (1 + Á)-approximation requires �(n1≠O(Á))

space [Esfandiari et al., 2015, Bury and Schwiegelshohn, 2015].

I
Deterministic –-approximation requires �(n/–)
space [Chakrabarti and Kale, 2016].
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Estimating Maximum Matching Size
Question. Is matching size estimation strictly easier than finding an
approximate matching?

Yes!

Theorem
There is a randomized algorithm that outputs an –-approximate
estimate of maximum matching size in:

ÂO(n/–2

) space in insertion-only streams.
ÂO(n2/–4

) space in dynamic streams.

In constrast, to find an –-approximate matching, the space necessary
is:

�(n/–) in insertion-only streams.
�(n2/–3

) in dynamic streams.
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Algorithms for –-Estimation of Matching Size
The main ingredient of our algorithms is the following sampling
lemma:

Lemma (Vertex Sampling Lemma)
Let H be a subgraph of G obtained by sampling each vertex
independently w.p. 1/–. Define:

µG: the maximum matching size in G,
µH : the maximum matching size in H.

Then, w.h.p.,

µG

–2

Æ µH Æ 2µG

–
.

Therefore, maximum matching size in H is an –-estimation for the
maximum matching size in G.
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Proof by Picture
Any graph G with a maximum matching size of µG looks as follows:

A matching of size µG

between the blue vertices.
No edges between the
green vertices.

L R
G

µG
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Proof by Picture
The vertex sampled graph H then look as follows:

A matching of size µG/–2

between the blue vertices
=∆ µH Ø µG/–2.
All edges are incident on
µG/– blue vertices
=∆ µH Æ 2µG/–.

L R
H

µG/–
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An –-Estimation Algorithm
To distinguish between graphs with maximum matching of size Ø k
and o(k/–):

1 Sample each vertex in G w.p. 1/– to obtain H.

2 Test whether H has a matching of size at least �(k/–2

) or not.

Can be implemented in:

ÂO(k/–2

) =

ÂO(n/–2

) in insertion-only streams.
ÂO(k2/–4

) =

ÂO(n2/–4

) in dynamic streams.
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Estimating Maximum Matching Size
Matching size estimation is indeed easier than finding an approximate
matching!

Question. Is it possible to achieve an arbitrary good estimation of
matching size in sub-quadratic space?

Question. In general, what is the space-approximation tradeo� for
matching size estimation?

We make progress on each of these questions.
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Our Main Results
Near-optimal approximation of maximum matching size may require
almost quadratic space even in insertion-only streams.

Theorem
Any randomized (1 + Á)-approximate estimation of maximum
matching size requires:

RS(n) · n1≠O(Á) space in insertion-only streams.
n2≠O(Á) space in dynamic streams.

RS(n) denotes the maximum number of edge-disjoint induced
matchings of size �(n) in an n-vertex graph:

[Fischer et al., 2002]n�(1/ log log n) Æ RS(n) Æ n/ log n[Fox et al., 2015]
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Our Main Results
We further establish the first non-trivial lower bound for
super-constant approximation of matching size.

Theorem
Any randomized –-approximate estimate of maximum matching size
requires �(n/–2

) in dynamic streams.
Furthermore, even if we restrict to sparse graphs with arboricity
O(–), �(

Ô
n/–2.5

) space is necessary.

There is an active line of research on estimating matching size of
bounded arboricity graphs in graph streams [Chitnis et al., 2016]
[Bury and Schwiegelshohn, 2015] [Esfandiari et al., 2015]
[McGregor and Vorotnikova, 2016b] [Cormode et al., 2016]
[McGregor and Vorotnikova, 2016a] . . .
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Schatten p-Norms
Given an n ◊ n matrix A, for any p œ [0, Œ):
Schatten p-norm of A is the p-th frequency moment of vector of
singular values (‡

1

, . . . , ‡n) of A.

ÎAÎp :=

A
nÿ

i=1

‡p
i

B
1/p

ÎAÎ
0

= Rank of A.
ÎAÎ

1

= Trace norm of A.
ÎAÎ

2

= Frobenius norm of A.
ÎAÎŒ = Operator norm of A.
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Schatten p-Norms in Data Streams
Question. What is the space complexity of (1 + Á)-approximating the
Schatten p-norm of a matrix which its entries are revealed in a data
stream?

Previous work:
For p = 0, �(n1≠g(Á)

) space is
necessary [Bury and Schwiegelshohn, 2015].
For p œ (0, Œ) \ 2Z, �(n1≠g(Á)

) space is
necessary [Li and Woodru�, 2016].
For p œ 2Z \ {0}, �(n1≠2/p

) space is
necessary [Li and Woodru�, 2016] (and is su�cient for sparse
matrices).

We answer this question for the case of rank computation.
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Matrix Rank Computation in Data Streams
It is well-known that computing maximum matching size of a graph is
equivalent to computing the rank of the (symbolic) Tutte matrix.

As a corollary, all our lower bounds for matching size estimation also
extend to the matrix rank computation problem. In particular,

An �(n2≠O(Á)

) space lower bound for (1 + Á)-estimation of rank
in dense matrices.
An Â

�(

Ô
n) space lower bound for any polylog(n)-estimation of

rank in sparse matrices.
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An �(n2≠O(Á)) Lower Bound for Dynamic Streams

Theorem
Any randomized (1 + Á)-approximate estimation of maximum
matching size requires �(n2≠O(Á)

) space in dynamic streams.
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Previous Approaches: An n1≠O(Á) Lower Bound
Consider the following two-player one-way communication problem.
MaxMatching:

1 Alice is given a matching M on vertices V .
2 Bob is given a collection of edges EB on vertices V .
3 Alice sends a single message to Bob and Bob outputs an

estimation of maximum matching size in G(V, M fi EB).

CC(MaxMatching): minimum length message to solve this
problem with probability, say, 2/3.

Fact. CC(MaxMatching) Æ space complexity of any streaming
algorithm for estimating maximum matching size.
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Previous Approaches: An n1≠O(Á) Lower Bound
[Bury and Schwiegelshohn, 2015]:
CC(MaxMatching) = �(n1≠O(Á)

).

Proof Sketch. (for Á = 1/2)
Alice is given a random
subset of size n/2 from a
fixed perfect matching
between L and R.
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).
Proof Sketch. (for Á = 1/2)

Alice is given a random
subset of size n/2 from a
fixed perfect matching
between L and R.
Bob is given a matching
of size n/2 incident on R.
Yes case: Each edge of
Bob’s matching is incident
on even number of Alice’s
matching =∆
MaxMatching = 3n/4.
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Previous Approaches: An n1≠O(Á) Lower Bound
[Bury and Schwiegelshohn, 2015]:
CC(MaxMatching) = �(n1≠O(Á)

).
Proof Sketch. (for Á = 1/2)

A better than
3/2-approximation
distinguishes between the
two cases.
Distinguishing between
the two cases requires
�(

Ô
n) communication by

a reduction from the
boolean hidden matching
problem
of [Gavinsky et al., 2007].
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Our Approach
A natural idea to boost the previous lower bound:

1 Instead of one matching M , provide Alice with t independently
chosen matchings M

1

, . . . , Mt.

2 Provide Bob with a single set EB of edges as before.

3 “Ask” Alice and Bob to solve the MaxMatching problem for
a uniformly at random chosen matching Mjı and EB (the index
jı is unknown to Alice).

The hope is that communication complexity of this problem is now
Ø t · CC(MaxMatching).
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Our Approach
There are three main obstacles in implementing this idea:

1 The matchings M
1

, . . . , Mt should be supported on �(n)

vertices as opposed to trivial �(t · n) vertices.

2 The matchings should be chosen independently even though
they are supported on the same set of �(n) vertices.

3 The reduction should ensure that Alice and Bob indeed need to
solve the jı-th embedded instance.

(1) + (2) =∆ Ruzsa-Szemerédi graphs (RS graphs).
RS graphs + (3) =∆ characterization of dynamic streaming
algorithms via simultaneous communication complexity.
Formalizing the lower bound =∆ a direct-sum style argument using
information complexity.
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RS graphs + (3) =∆ characterization of dynamic streaming
algorithms via simultaneous communication complexity.
Formalizing the lower bound =∆ a direct-sum style argument using
information complexity.

Sepehr Assadi (Penn) JHU Algorithms and Complexity Seminar



Our Approach
There are three main obstacles in implementing this idea:

1 The matchings M
1

, . . . , Mt should be supported on �(n)

vertices as opposed to trivial �(t · n) vertices.

2 The matchings should be chosen independently even though
they are supported on the same set of �(n) vertices.

3 The reduction should ensure that Alice and Bob indeed need to
solve the jı-th embedded instance.

(1) + (2) =∆ Ruzsa-Szemerédi graphs (RS graphs).
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Ruzsa-Szemerédi Graphs
Definition ((r, t)-RS graphs)
A graph G(V, E) whose edges can be partitioned into t induced
matchings of size r each.

1 Example. A (2, 4)-RS graph
on 8 vertices:
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Ruzsa-Szemerédi Graphs
We are typically interested in RS graphs with large values of r and t
as a function of n.

How dense a graph with many large induced matching can be?

Theorem ([Fischer et al., 2002])
There exists an (r, t)-RS graph on n vertices with t = n�(1/ log log n)

induced matchings of size r = (1 ≠ Á) · n/4.

Theorem ([Alon et al., 2012])
There exists an (r, t)-RS graph on n vertices with t = n1+o(1) induced
matchings of size r = n1≠o(1).

Sepehr Assadi (Penn) JHU Algorithms and Complexity Seminar



Ruzsa-Szemerédi Graphs
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We are typically interested in RS graphs with large values of r and t
as a function of n.
How dense a graph with many large induced matching can be?

Theorem ([Fischer et al., 2002])
There exists an (r, t)-RS graph on n vertices with t = n�(1/ log log n)

induced matchings of size r = (1 ≠ Á) · n/4.

Theorem ([Alon et al., 2012])
There exists an (r, t)-RS graph on n vertices with t = n1+o(1) induced
matchings of size r = n1≠o(1).

Sepehr Assadi (Penn) JHU Algorithms and Complexity Seminar



A Simple Lower Bound for Insertion-Only Streams

Let G
1

be an (r, t)-RS
bipartite graph on n vertices
on each side.
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A Simple Lower Bound for Insertion-Only Streams

Let G
1

be an (r, t)-RS
bipartite graph on n vertices
on each side.
To Alice, we give random
subset of size r/2 from each
induced matchings
M

1

, . . . , Mt of G
1

.
Choose Mjı uniformly at
random. To Bob we give the
following input:

I
A matching between

vertices not in Mjı
and a

new set of vertices.

I
A graph EB over the set

of vertices in Mjı
.
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A Simple Lower Bound for Insertion-Only Streams
Size of the maximum
matching in this graph:

2(n ≠ r) + MaxMatching(Mjı , EB)
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A Simple Lower Bound for Insertion-Only Streams
Size of the maximum
matching in this graph:

2(n ≠ r) + MaxMatching(Mjı , EB)

For r = �(n), Alice and Bob
need to solve
MaxMatching(Mjı , EB)

for (1 + Á)-approximation.
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A Simple Lower Bound for Insertion-Only Streams
Size of the maximum
matching in this graph:

2(n ≠ r) + MaxMatching(Mjı , EB)

For r = �(n), Alice and Bob
need to solve
MaxMatching(Mjı , EB)

for (1 + Á)-approximation.

To solve this for an unknown
matching Mjı , the message
length must be
Ø t · CC(MaxMatching).
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A Simple Lower Bound for Insertion-Only Streams
Main limitation of this approach:

Requires r = �(n) =∆ t = RS(n).

RS(n) maybe as large as n/ log n.

However, best known bound for RS(n) is only n�(1/ log log n).

We bypass the r = �(n) limitation in dynamic streams using the
characterization result of [Li et al., 2014, Ai et al., 2016] in terms of
the simultaneous communication complexity.

Sepehr Assadi (Penn) JHU Algorithms and Complexity Seminar



A Simple Lower Bound for Insertion-Only Streams
Main limitation of this approach:

Requires r = �(n) =∆ t = RS(n).

RS(n) maybe as large as n/ log n.

However, best known bound for RS(n) is only n�(1/ log log n).

We bypass the r = �(n) limitation in dynamic streams using the
characterization result of [Li et al., 2014, Ai et al., 2016] in terms of
the simultaneous communication complexity.

Sepehr Assadi (Penn) JHU Algorithms and Complexity Seminar



The Simultaneous Communication Model
The input is partitioned between k players P (1), . . . , P (k).

There exists an additional party called the referee.

Players P (1), . . . , P (k) simultaneously send a message to the
referee who outputs the answer.

The players have access to public random coins.

Communication complexity measure: maximum number of bits
sent by any player.

[Ai et al., 2016]: Communication lower bounds in this model imply
identical space lower bound for dynamic streaming algorithms.
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A Hard Input Distribution

Each player is given an (r, t)-RS graph on
N vertices.

Local view
of P i
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A Hard Input Distribution

Each player is given an (r, t)-RS graph on
N vertices.
One of the induced matching M (i)

jı of each
player P (i)’s graph is special, unknown to
the player.

Special matching
of P i

Sepehr Assadi (Penn) JHU Algorithms and Complexity Seminar



A Hard Input Distribution

Each player is given an (r, t)-RS graph on
N vertices.
One of the induced matching M (i)

jı of each
player P (i)’s graph is special, unknown to
the player.
Across the players, vertices in the special
matchings are unique, while other vertices
are shared.

Global view
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A Hard Input Distribution

P 1

:

P 2

:

N ≠ r

N ≠ r

r

r

N ≠ r

r

r
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A Hard Input Distribution

Each player is given an (r, t)-RS graph on
N vertices.
One of the induced matching M (i)

jı of each
player P (i)’s graph is special, unknown to
the player.
Across the players, vertices in the special
matchings are unique, while other vertices
are shared.
To the referee, we provide k subgraphs
E(1)

B , . . . , E(k)

B such that each pair
(M (i)

jı , E(i)
B ) forms the same instance of

MaxMatching. Global view
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Proof Sketch

Define MaxMatching(M, EB) :=

MaxMatching(M (1)

jı , E(1)

B ) = . . . =

MaxMatching(M (k)

jı , E(k)

B ).
The maximum matching size in G is:

¥ 2(N ≠ r) + k · MaxMatching(M, EB)

For r = N1≠o(1) and k ¥ 1

Á · N o(1),
MaxMatching(M, EB) is the
dominating term for (1 + Á)-approximation.

Global view
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Proof Sketch
The players need to solve MaxMatching(M, EB).

Key Lemma. Each player can reveal at most ¥ s/t bits of
information about M , by sending a message of size s.

I
The players are oblivious to the identity of their special

matching.

To solve MaxMatching(M, EB), the referee needs to receive
�(|M |1≠O(Á)

) = �(N1≠O(Á)

) bits of information.

To conclude,

N1≠O(Á) Æ k · s/t =∆ s Ø 1

k
· t · N1≠O(Á) ¥ N2≠O(Á)

as t = N1+o(1) by [Alon et al., 2012] and k = �Á(N o(1)

).
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To solve MaxMatching(M, EB), the referee needs to receive
�(|M |1≠O(Á)

) = �(N1≠O(Á)

) bits of information.

To conclude,

N1≠O(Á) Æ k · s/t =∆ s Ø 1

k
· t · N1≠O(Á) ¥ N2≠O(Á)

as t = N1+o(1) by [Alon et al., 2012] and k = �Á(N o(1)

).
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Wrap Up
We proved that simultaneous communication complexity of
(1 + Á)-estimation of maximum matching size is �(n2≠O(Á)

).

By result of [Ai et al., 2016], this implies an identical lower
bound for space complexity of dynamic streaming algorithms.

Theorem
Any randomized (1 + Á)-approximate estimation of maximum
matching size requires �(n2≠O(Á)

) space in dynamic streams.
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Concluding Remarks
Matching size estimation is provably easier than finding an
approximate matching.

However, the space complexity of both problems converges
together to quadratic space as the desired accuracy approaches
one.

Open problems.
Non-trivial space lower bounds for, say, poly-log approximation
in insertion-only streams?
The exact space-approximation tradeo� for matching size
estimation in dynamic streams?

I �(n/–2) space is necessary vs.

ÂO(n2/–4) space is su�cient.

Similar-in-spirit lower bounds for Schatten p-norms for p > 0?
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