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The Maximal Independent Set Problem
In a graph G(V, E):

Maximal Independent Set (MIS): A maximal collection of vertices M
such that no pair of vertices are adjacent.
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The Maximal Independent Set Problem
Finding an MIS is a fundamental problem with numerous applications.

Closely related to a plethora of other basic problems, such as vertex
cover, matching, vertex coloring, and edge coloring.

Has been studied extensively in various settings, in particular parallel
and distributed algorithms.

Initiated by seminal works of [ABI86, Lub86, Lin87].
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Maintaining an MIS in Dynamic Graphs
Maintaining an MIS in dynamically changing graphs on the other
hand has not received much attention.

Censor-Hillel, Haramaty, and Karnin [CHK16]: randomized algorithm
in distributed dynamic networks.

Maintaining an MIS in (sequential) dynamic graphs setting was left
open by [CHK16].
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Dynamic Graphs Setting
We have a graph G(V, E) that undergoes edge insertions and
deletions.

Maintain a solution to a combinatorial problem, say an MIS,
after every update.

Can we do better than simply recomputing the solution from
scratch after every update?

Dynamic graphs appear in lots of applications.
Numerous problems have been studied in dynamic graphs:
Connectivity, spanning tree,, approximate matching and vertex cover,
shortest path,, . . .
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Dynamic MIS Problem
Not much is known for maintaining an MIS in dynamic graphs.

O(m) update time by recomputing an MIS after every update.

Is there something better we could do?
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Warm-Up: A Simple Algorithm
∆: an upper bound on the maximum degree of the graph at all times.
Can we at least achieve O(∆) update time?

For many problems of similar nature, say maximal matching or
(∆ + 1)-vertex coloring, this is a trivial task.
Let us examine a natural strategy for maintaining an MIS M in
O(∆) update time.
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Warm-Up: An O(∆) Update Time Algorithm?
Invariant: Every vertex knows its neigh-
bors in M.
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Warm-Up: An O(∆) Update Time Algorithm?
Invariant: Every vertex knows its neigh-
bors in M.
So any vertex in O(1) time can decide to
join or leave M.
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Warm-Up: An O(∆) Update Time Algorithm?
How to maintain the invariant after an
edge (u, v) is updated?
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Warm-Up: An O(∆) Update Time Algorithm?
How to maintain the invariant after an
edge (u, v) is updated?

If u ∈M and v /∈M (or vice versa):
Edge insertion: update list of
M-neighbors of v.
Edge deletion: v checks if it can now
join M or not. Inform all its
neighbors in O(∆) time if it joins.
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Warm-Up: An O(∆) Update Time Algorithm?
How to maintain the invariant after an
edge (u, v) is updated?

If u, v ∈M:
Edge insertion: One of them, say v,
needs to leave M. All neighbors of
v can now potentially join M.
This is problematic: Ω(∆) vertices
potentially need to inform their
Ω(∆) neighbors if they joined M!

Sepehr Assadi (Penn) STOC 2018



Warm-Up: An O(∆) Update Time Algorithm?
Ω(∆2) update time in the worst case.

Are we doomed then? Not really!
The algorithm has a very simple yet useful property:
After a single update:

Many vertices can potentially join M.
Only one vertex can ever leave M.

How to use this?

Charge a vertex removed from M with O(∆) budget/time.
Use it for both removing it now as well as (potentially) inserting
it later.

Amortized update time is only O(∆)!
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Motivating Question
We saw a very simple O(∆) amortized update time algorithm for
dynamic MIS.

Still does not improve upon naive re-computation algorithm for
sparse graphs with ∆ = Θ(m).
Motivating Question. Can we maintain an MIS in a dynamic graph
in sublinear update time, i.e., o(m) time? Yes!
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Our Main Result
We prove that

A maximal independent set can be maintained deterministically in
O(m3/4) amortized update time, where m denotes the dynamic
number of edges.

First improvement over the O(m) update time for all values of m.

Can also be implemented in distributed dynamic networks,
strengthening the result of [CHK16].
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Deterministic vs Randomized Dynamic Algorithms
A significant distinction between deterministic and randomized
algorithms in the dynamic setting.

Main reason: assumption of a non-adaptive oblivious adversary
by randomized algorithms.

I Adversary has to fix the sequence of updates beforehand and
cannot adapt to decisions of the dynamic algorithm.

I This can render randomized algorithms entirely unusable in
certain scenarios.

A huge gap between the update time of best deterministic vs
randomized algorithms for dynamic problems:

I Maximal Matching: O(
√

m) for deterministic [NS13] vs O(1)
for randomized [Sol16].

I (∆ + 1)-Vertex Coloring: No non-trivial deterministic algorithm
vs O(log ∆) for randomized [BCHN18].
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An O(m3/4) Amortized Update Time
Dynamic Algorithm for MIS
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High Level Idea
Part I: Maintaining a local knowledge of the graph for each vertex.

Each vertex knows some information about its neighbors that
are in M.
This information maybe inconsistent across vertices as we
cannot afford to update ∆ neighbors of each vertex per update.
To compensate, we also maintain some information about 2-hop
neighbors of vertices.
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Our Algorithm: High Level Plan
Part II: Maintaining the MIS using the local and inconsistent
information of vertices.

Main challenge:
Based on their partial information, some vertices may join M.
They may however have some neighbors already in M.
As such we may need to delete some vertices in the current M
and process them recursively again.
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Maintaining the Partial Information
Vertices are partitioned into four sets based on their degrees:

VHigh: deg ≥ m3/4

VMed-High: m3/4 > deg ≥ m1/2

VMed-Low: m1/2 > deg ≥ m1/4

VLow: remaining vertices
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Maintaining the Partial Information
M-neighbor information:

All vertices except for VLow
know all their M-neighbors.

Vertices in VLow know all their
neighbors in M except for
the ones in VHigh.

Any vertex u for any one of
its neighbors v in VLow knows
all neighbors of v that are in
VLow ∪VMed-Low and are inM.

v ∈ V \ VLow

VHigh

VMed-High VMed-Low

VLow
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Maintaining the Partial Information
M-neighbor information:

All vertices except for VLow
know all their M-neighbors.
Vertices in VLow know all their
neighbors in M except for
the ones in VHigh.

M-2-hop-neighbor information:
Any vertex u for any one of
its neighbors v in VLow knows
all neighbors of v that are in
VLow ∪VMed-Low and are inM.

u ∈ V

VLow

VHigh

VMed-High VMed-Low

VLow

Lemma. One can maintain this information in O(m3/4) time per
each update to the graph or M.
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The Update Algorithm
Unlike the O(∆)-time algorithm, multiple vertices may be deleted
from M.

Invariant (Main Invariant)
After every update:

If only a single vertex leaves M, then there is no restriction on
the number of vertices joining M (which could be zero).
However, if k > 1 vertices leave M, then at least 2k vertices
would join M.

The time spent per each update to M is O(m3/4).

This is enough to obtain the O(m3/4) amortized update time.
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Processing Updates
The main challenging update: adversary inserts an edge (u, v)
between u, v ∈M.

We delete u from M.

Neighbors of u not in VLow:
I Each one knows if it can joinM.
I Any one that joins M needs

O(m3/4) time to update partial
information of its neighborhood.

Neighbors of u inside VLow:
I Their local information is not

enough to determine whether
they should join M or not.

u
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Handling Low-Degree Neighbors of u

u knows all its neighbors that
do not have a neighbor in
M∩ (VLow ∪ VMed-Low).

Let A be the set of such
neighbors.
We process the update based
on whether A is large or not.

u
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Handling Low-Degree Neighbors of u

Let us assume A is very large i.e., has ω(m3/4) vertices:

1 Greedily insert these vertices
to M, only check for
consistency between the
inserted vertices.

I How many inserted?
ω(m1/2).

2 M may become infeasible as
there would be some
neighboring vertices inside it.

3 Simply remove these vertices
from M. Recursively process
these vertices.

I How many deleted?
O(m1/2).

u
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Wrap-Up
We spend O(m3/4) time per update for maintaining the local
information.

We spend O(m3/4) time for any vertex inserted to or deleted
from M.

By main invariant, we can charge each vertex deleted from M
with O(m3/4) time, to be used when this vertex is inserted back
later (if ever).

MIS can be maintained deterministically with min
{
O(m3/4), O(∆)

}
amortized update time in dynamic graphs.
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Conclusion
We gave a deterministic O(m3/4) amortized update time
algorithm for maintaining an MIS in dynamic graphs.

Our algorithm can also be implemented in dynamic distributed
networks.

Open questions:
Faster dynamic algorithms for MIS?

I Best deterministic algorithm: O(m2/3) time [GK18].
I Best randomized algorithm: min

{
Õ(
√

n), Õ(m1/3)
}

time [AOSS18b].
Better deterministic dynamic algorithms for other
“maximal-type” problems?

I Example: o(
√

m) time algorithm for maximal matching?
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n), Õ(m1/3)
}

time [AOSS18b].

Better deterministic dynamic algorithms for other
“maximal-type” problems?

I Example: o(
√

m) time algorithm for maximal matching?

Sepehr Assadi (Penn) STOC 2018



Conclusion
We gave a deterministic O(m3/4) amortized update time
algorithm for maintaining an MIS in dynamic graphs.

Our algorithm can also be implemented in dynamic distributed
networks.

Open questions:
Faster dynamic algorithms for MIS?

I Best deterministic algorithm: O(m2/3) time [GK18].
I Best randomized algorithm: min

{
Õ(
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n), Õ(m1/3)
}

time [AOSS18b].
Better deterministic dynamic algorithms for other
“maximal-type” problems?

I Example: o(
√

m) time algorithm for maximal matching?

Than
k you

!

Sepehr Assadi (Penn) STOC 2018
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