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Massive Graphs
Massive graphs abound in variety of applications: web graph, social
networks, biological networks, etc.

This talk: Matching and Vertex Cover problems on massive graphs.
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Matchings and Vertex Covers
Matching: A collection of vertex-disjoint edges.

Vertex Cover: A collection of vertices containing at least one
end point of every edge.
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Matchings and Vertex Covers
Rich sources of inspiration for breakthrough ideas in computer
science, algorithm design, and complexity theory.

Complexity class P
Approximation,

parallel, online...
Hardness of

approximation

Extended

formulations

This talk:
Randomized composable coresets for matching and vertex cover.
Their applications to different models including streaming,
distributed, and massively parallel computation.
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Randomized Composable Coresets
Definition ([A, Khanna’17])

Let G(1), . . . , G(k) be a random partitioning of G: each edge
e ∈ G is sent to a subgraph G(i) uniformly at random.
Consider an algorithm alg that given G(i) outputs a subgraph
H(i) of G(i) with s edges.
alg outputs an α-approximation randomized composable
coreset of size s for a problem P iff:
P (alg(G(1)) ∪ . . . ∪ alg(G(k))) is an α-approximation to
P (G(1) ∪ . . . ∪G(k)) = P (G) with high probability.

Algorithmic question. Design alg with a good approximation ratio
and a small size.
Introduced first by [Mirrokni and Zadimoghaddam, 2015] for
distributed submodular maximization.
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Randomized Composable Coresets: Background
Why this problem?

I A natural problem that abstracts out one of the simplest
approaches to large-scale optimization.

I Direct applications to distributed communication, massively
parallel computation, and streaming.
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Randomized Composable Coresets: Applications

An MPC algorithm with small memory per machine with one or
two rounds of parallel computation.

subgraph G1

subgraph G2

...

subgraph Gk

...

H
1

H2

Hk
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Randomized Composable Coresets: Applications

A streaming algorithm with small memory on random streams.

. . .

Subgraph G1

Coreset H1

Subgraph G1

Coreset H2

Subgraph Gk

Coreset Hk
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Randomized Composable Coresets: Background
Why this problem?

I Abstract out one of the simplest approach to large-scale
optimization.

I Applications to distributed, massively parallel computation, and
streaming.

Why random partitioning?

I Adversarial partitions do not admit non-trivial solutions for
matching and vertex cover [A, Khanna, Li, Yaroslavtsev’16].

F no(1)-approximation requires n2−o(1) space.
I Randomized composable coresets were suggested in [A,

Khanna’17] to bypass these impossibility results.
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State-of-the-Art
[A, Khanna’17]: There are Õ(n) size randomized composable
coresets with:

O(1) approximation for matching, and
O(log n) approximation for vertex cover.

[A, Khanna’17] used this to obtain improved distributed and MPC
algorithms.
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Motivating Question
The randomized composable coresets in [A, Khanna’17]:

bypassed the impossibility results for previous techniques;
gave a unified approach across multiple models.

However, these randomized coresets
had large approximation factors;
could not compete with model-specific solutions in each model.

Questions.
Improved randomized composable coresets?
Compete with model-specific solutions using this general
technique?
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Our Results
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Our Results
We give significantly improved randomized composable coresets for
matching and vertex cover.

Main Result. Randomized coresets of size Õ(n) with:
(1.5 + ε)-approximation for matching, and
(2 + ε)-approximation for vertex cover.

Size of these coresets are essentially optimal [A, Khanna’17].

Improve upon state-of-the-art in streaming, distributed, and MPC
model in one or all parameters involved.
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Direct Applications of Our Main Result
Corollary (Streaming)
A single-pass streaming algorithm on random arrival streams for
(1.5 + ε)-approximation of matching in Õ(n

√
n) space.

Previously,
Getting better than 2-approximation with o(n2) space in
adversarial streams is a big open question.
Better than e

e−1 ≈ 1.58 approximation in adversarial streams
requires n1+Ω(1/ log log n) space [Kapralov, 2013].
[Konrad et al., 2012]: a 1.98-approximation to matching in
random arrival streams with Õ(n) space.
[Konrad, 2018]: improved approximation to 1.85
(following [Esfandiari et al., 2016, Kale and Tirodkar, 2017]).
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Our Randomized Composable Coresets for
Matching and Vertex Cover
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Our Main Result

Randomized composable coresets of size Õ(n) with:
(1.5 + ε)-approximation for matching, and
(2 + ε)-approximation for vertex cover.

We mostly focus on maximum matching in this talk.
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High Level Approach
The goal in randomized composable coresets:

Find a subgraph H(i) of each G(i) so that H(1) ∪ . . . ∪H(k)

contains a large matching of G(1) ∪ . . . ∪G(k).
Each H(i) should be a “good” representative of “large”
matchings in G(i).

[A, Khanna’17] used maximum matching as coresets.
Maximum matchings do not seem to be robust enough representation
of all large matchings.
In particular, using maximum matchings as coresets cannot yield a
better than 2 approximation.
We instead use edge degree constrained subgraphs to represent large
matchings.
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Edge Degree Constrained Subgraphs
Definition ([Bernstein and Stein, 2015])
For any ε ∈ (0, 1) and β ≥ 1,

A subgraph H of G is called a (β, ε)-EDCS of G:

1 ∀(u, v) ∈ H dH(u) + dH(v) ≤ β,

2 ∀(u, v) ∈ G \H dH(u) + dH(v) ≥ (1− ε) · β.

G H
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2 ∀(u, v) ∈ G \H dH(u) + dH(v) ≥ (1− ε) · β.

Previously used in the context of dynamic graph algorithms
in [Bernstein and Stein, 2015, Bernstein and Stein, 2016].

Basic properties:
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Edge Degree Constrained Subgraphs
What is special about an EDCS in general?

[Bernstein and Stein, 2016]: A (β, ε)-EDCS always contains a
(1.5 + ε)-approximate matching for β > 1/ε3.

[this work]: A (β, ε)-EDCS can always be used to recover a
(2 + ε)-approximate vertex cover for β > 1/ε.

What is special about an EDCS for randomized composable coresets?

[this work]: W.h.p. on random partitions:

EDCS(G(1)) ∪ . . . ∪ EDCS(G(k)) ≈ EDCS(G(1) ∪ . . . ∪G(k)).
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EDCS as a Randomized Coreset
Our main technical result:

Let G(1), . . . , G(k) be a random partitioning of G.
Let H(i) be an arbitrary (β, ε)-EDCS of G(i).
Then H(1) ∪ . . . ∪H(k) is a

(
kβ, Θ̃(ε)

)
-EDCS of G w.h.p.

Randomized Composable Coreset:

Let the randomized coreset be an arbitrary
(
Θ̃(1), Θ̃(ε)

)
-EDCS.

Size of each coreset is Õ(n).
Approximation follows from general properties of EDCS.
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Approximation follows from general properties of EDCS.

Sepehr Assadi (Penn) SODA 2019



Proof Sketch of the Main Technical Result

Sepehr Assadi (Penn) SODA 2019



Proof Sketch of the Main Technical Result

Fix a
(
kβ, Θ̃(ε)

)
-EDCS A

of the input graph G.

A ∩G(i) is w.h.p. a
(β, ε)-EDCS of G(i).
(Proof: random
partitioning preserves
degrees after scaling by k)
Each H(i) is also another
(β, ε)-EDCS of G(i) by
construction.

G A

Sepehr Assadi (Penn) SODA 2019



Proof Sketch of the Main Technical Result

Fix a
(
kβ, Θ̃(ε)

)
-EDCS A

of the input graph G.
A ∩G(i) is w.h.p. a
(β, ε)-EDCS of G(i).

(Proof: random
partitioning preserves
degrees after scaling by k)
Each H(i) is also another
(β, ε)-EDCS of G(i) by
construction.

G(1) A ∩G(1)

G(2) A ∩G(2)

Sepehr Assadi (Penn) SODA 2019



Proof Sketch of the Main Technical Result

Fix a
(
kβ, Θ̃(ε)

)
-EDCS A

of the input graph G.
A ∩G(i) is w.h.p. a
(β, ε)-EDCS of G(i).
(Proof: random
partitioning preserves
degrees after scaling by k)

Each H(i) is also another
(β, ε)-EDCS of G(i) by
construction.

G(1) A ∩G(1)

G(2) A ∩G(2)

Sepehr Assadi (Penn) SODA 2019



Proof Sketch of the Main Technical Result

Fix a
(
kβ, Θ̃(ε)

)
-EDCS A

of the input graph G.
A ∩G(i) is w.h.p. a
(β, ε)-EDCS of G(i).
(Proof: random
partitioning preserves
degrees after scaling by k)
Each H(i) is also another
(β, ε)-EDCS of G(i) by
construction.

H(1) A ∩G(1)

H(2) A ∩G(2)

Sepehr Assadi (Penn) SODA 2019



Proof Sketch of the Main Technical Result

Ideal Scenario? H(i) = A ∩G(i)

for all i ∈ [k].

(H(1) ∪ . . . ∪H(k) equals A, an(
kβ, Θ̃(ε)

)
-EDCS).

This requires (β, ε)-EDCS to be
unique.
(this is not the case in general).
Any fix?

H(1) A ∩G(1)

H(2) A ∩G(2)

Sepehr Assadi (Penn) SODA 2019



Proof Sketch of the Main Technical Result

Ideal Scenario? H(i) = A ∩G(i)

for all i ∈ [k].
(H(1) ∪ . . . ∪H(k) equals A, an(
kβ, Θ̃(ε)

)
-EDCS).

This requires (β, ε)-EDCS to be
unique.
(this is not the case in general).
Any fix?

H(1) A ∩G(1)

H(2) A ∩G(2)

Sepehr Assadi (Penn) SODA 2019



Proof Sketch of the Main Technical Result

Ideal Scenario? H(i) = A ∩G(i)

for all i ∈ [k].
(H(1) ∪ . . . ∪H(k) equals A, an(
kβ, Θ̃(ε)

)
-EDCS).

This requires (β, ε)-EDCS to be
unique.

(this is not the case in general).
Any fix?

H(1) A ∩G(1)

H(2) A ∩G(2)

Sepehr Assadi (Penn) SODA 2019



Proof Sketch of the Main Technical Result

Ideal Scenario? H(i) = A ∩G(i)

for all i ∈ [k].
(H(1) ∪ . . . ∪H(k) equals A, an(
kβ, Θ̃(ε)

)
-EDCS).

This requires (β, ε)-EDCS to be
unique.
(this is not the case in general).

Any fix?

H(1) A ∩G(1)

H(2) A ∩G(2)

Sepehr Assadi (Penn) SODA 2019



Proof Sketch of the Main Technical Result

Ideal Scenario? H(i) = A ∩G(i)

for all i ∈ [k].
(H(1) ∪ . . . ∪H(k) equals A, an(
kβ, Θ̃(ε)

)
-EDCS).

This requires (β, ε)-EDCS to be
unique.
(this is not the case in general).
Any fix?

H(1) A ∩G(1)

H(2) A ∩G(2)

Sepehr Assadi (Penn) SODA 2019



Proof Sketch of the Main Technical Result
We prove that degree-distribution of a (β, ε)-EDCS is almost unique.

Let A and B be two (β, ε)-EDCS of a graph G. For all v ∈ V (G):

dA(v) = dB(v)± Θ̃(εβ).

Enough to conclude that H(1) ∪ . . . ∪H(k) is a
(
kβ, Θ̃(ε)

)
-EDCS of

G by the previous argument.
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Wrap-Up
We proved,

Let G(1), . . . , G(k) be a random partitioning of G.
Let H(i) be an arbitrary (β, ε)-EDCS of G(i).
Then H(1) ∪ . . . ∪H(k) is a

(
kβ, Θ̃(ε)

)
-EDCS of G w.h.p.

Combined with general properties of EDCS, this implies:

Randomized composable coresets of size Õ(n) with:
(1.5 + ε)-approximation for matching, and
(2 + ε)-approximation for vertex cover.
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(1.5 + ε)-approximation for matching, and
(2 + ε)-approximation for vertex cover.

Sepehr Assadi (Penn) SODA 2019



Concluding Remarks
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Distributed Sparsification
Randomized composable coresets can be viewed as a distributed
sparsification method:

1 Distribute the graph randomly across multiple machines.
2 Compute the coreset on each machine separately.
3 The union of the coreset is a sparser graph.
4 Solve the problem locally on this sparser graph.

We take this view to the next step for MPC algorithms.
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Further Application to MPC
1 Distribute the graph randomly across multiple machines.
2 Compute the coreset on each machine separately.
3 The union of the coreset is a sparser graph.
4 Solve the problem locally on this sparser graph.
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2 Compute the coreset on each machine separately.
3 The union of the coreset is a sparser graph.
4 Solve the problem locally on this sparser graph.

Recurse on this sparser graph.
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Further Application to MPC
1 Distribute the graph randomly across multiple machines.
2 Compute the coreset on each machine separately.
3 The union of the coreset is a sparser graph.
4 Solve the problem locally on this sparser graph.

Recurse on this sparser graph.
To make this work:

Vertex-based partitioning approach of [Czumaj et al., 2018].
Additional care to not blow up approximation due to recursion.
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Further Application to MPC
Corollary (MPC with low-memory per-machine)
An O(log log n)-round MPC algorithm with O(1)-approximation to
both matching and vertex cover and only O(n) memory per-machine.

Can also give (1 + ε)-approximation to maximum matching.
Memory can be reduced to O(n/polylog(n)).
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An O(log log n)-round MPC algorithm with O(1)-approximation to
both matching and vertex cover and only O(n) memory per-machine.

Previously,

[Lattanzi et al., 2011]: O(log n) rounds; 2-approximation to
both problems; O(n) memory.
[Czumaj et al., 2018]: O((log log n)2) rounds;
O(1)-approximation only to matching; O(n) memory.

Subsequently,
[Ghaffari et al., 2018]: O(log log n) rounds;

(2 + ε)-approximation to both problems; O(n) memory.
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Concluding Remarks
Randomized composable coresets:

A unified approach for algorithm design in different models.
A distributed sparsification method particularly useful for MPC.

Randomized composable coresets of size Õ(n) with (1.5 + ε)- and
(2 + ε)-approximation to matching and vertex cover.

Some key applications:
A random arrival streaming (1.5 + ε)-approximation to matching.
An O(log log n)-round MPC (1 + ε)-approximation and
O(1)-approximation to matching and vertex cover with
O(n/poly log (n)) memory.
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Some key applications:
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An O(log log n)-round MPC (1 + ε)-approximation and
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Thank you!
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