
Covering Approximate Shortest Paths with DAGs
Sepehr Assadi

∗

University of Waterloo

Canada

sepehr@assadi.info

Gary Hoppenworth
†

University of Michigan

United States

garytho@umich.edu

Nicole Wein
‡

University of Michigan

United States

nswein@umich.edu

Abstract
We define and study analogs of probabilistic tree embedding and tree
cover for directed graphs. We define the notion of a DAG cover of
a general directed graph 𝐺 : a small collection 𝐷1, . . . , 𝐷𝑔 of DAGs

so that for all pairs of vertices 𝑠, 𝑡 , some DAG 𝐷𝑖 provides low

distortion for dist(𝑠, 𝑡); i.e. dist𝐷𝑖
(𝑠, 𝑡) ≤ 𝛼 · dist𝐺 (𝑠, 𝑡), where 𝛼 is

the distortion.

As a trivial upper bound, there is a DAG cover with 𝑛 DAGs and

𝛼 = 1 by taking the shortest-paths tree from each vertex.When each

DAG is restricted to be a subgraph of𝐺 , there is a simple matching

lower bound (via a directed cycle) that 𝑛 DAGs are necessary, even

to preserve reachability. Thus, we allow the DAGs to include a

limited number of additional edges not from the original graph.

When 𝑛2
additional edges are allowed, there is a simple upper

bound of twoDAGs and𝛼 = 1. Our first result is an almost-matching

lower bound that even for 𝑛2−𝑜 (1)
additional edges, at least 𝑛1−𝑜 (1)

DAGs are needed, even to preserve reachability. However, the story

is different when the number of additional edges is �̃� (𝑚), a natural
setting where the sparsity of the DAG collection asymptotically

matches that of the original graph. Our main upper bound is that

there is a near-linear time algorithm to construct a DAG cover

with �̃� (𝑚) additional edges, polylogarithmic distortion, and only

𝑂 (log𝑛) DAGs. This is similar to known results for undirected

graphs: the well-known FRT probabilistic tree embedding implies

a tree cover where both the number of trees and the distortion are

logarithmic. Our algorithm also extends to a certain probabilistic

embedding guarantee. Lastly, we complement our upper bound

with a lower bound showing that achieving a DAG cover with no

distortion and �̃� (𝑚) additional edges requires a polynomial number

of DAGs.

CCS Concepts
• Theory of computation→ Sparsification and spanners; Random
projections and metric embeddings.

∗
This work was initiated while the author was at Rutgers University. Sepehr Assadi

is supported in part by a Sloan Research Fellowship, an NSERC Discovery Grant

(RGPIN-2024-04290) and a Faculty of Math Research Chair grant.

†
This work was supported by NSF:AF 2153680.

‡
This work was initiated while the author was at Rutgers University supported by

a grant to DIMACS from the Simons Foundation (820931), and continued while the

author was at the Simons Institute.

This work is licensed under a Creative Commons Attribution 4.0 International License.

STOC ’25, Prague, Czechia
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1510-5/25/06

https://doi.org/10.1145/3717823.3718298

Keywords
directed graphs, graph simplification, metric embeddings

ACM Reference Format:
Sepehr Assadi, Gary Hoppenworth, and Nicole Wein. 2025. Covering Ap-

proximate Shortest Paths with DAGs. In Proceedings of the 57th Annual
ACM Symposium on Theory of Computing (STOC ’25), June 23–27, 2025,
Prague, Czechia. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3717823.3718298

1 Introduction
Probabilistic tree embedding, first explicitly introduced by Bartal [12],
and the related notion of tree cover, are powerful graph primitives

with wide-ranging applications. The goal of a probabilistic tree

embedding is to embed an (𝑛-vertex, 𝑚-edge) undirected graph

into a distribution over trees with low expected distance distortion.

(Formally, for each vertex pair 𝑠, 𝑡 in the original graph𝐺 , (1) every

tree 𝑇 in the distribution D satisfies dist𝐺 (𝑠, 𝑡) ≤ dist𝑇 (𝑠, 𝑡), and
(2) E𝑇∼D [dist𝑇 (𝑠, 𝑡)] ≤ 𝛼 · dist𝐺 (𝑠, 𝑡) where 𝛼 is the distortion.)
Tree covers provide a somewhat more relaxed guarantee wherein

the goal is to obtain a small collection of trees so that for each pair

𝑢, 𝑣 of vertices, some tree in the collection provides low distortion

for dist(𝑠, 𝑡).
Famously, building upon prior work [3, 12, 13, 53], Fakcharoen-

phol, Rao, and Talwar [39] obtained the asymptotically optimal

bound of 𝑂 (log𝑛) distortion for probabilistic tree embeddings.

Fast computation of this construction has been extensively stud-

ied [22, 62], as well as extensions to various settings such as dy-

namic [42], online [12, 15], distributed [45, 56], parallel [23, 43], hop-

constrained [47], and derandomized [33]. These constructions have

enjoyed a strikingly varied set of applications such as k-median,

buy-at-bulk network design [23], generalized Steiner forest, mini-

mum routing cost spanning tree, multi-source shortest paths [56],

distance oracles [22], linear systems [36], minimum bisection [54]

oblivious routing [48, 63, 64], metric labeling [57], and group Steiner

tree [44].

A probabilistic tree embedding implies a tree cover with the same

distortion and 𝑂 (log𝑛) trees, by sampling trees from the distribu-

tion. For tree cover there are also additional trade-offs between

distortion and number of trees [8, 9, 14, 16, 65]: for any integer

𝑘 ≥ 1, one can achieve distortion 2𝑘 − 1 with 𝑂 (𝑛1/𝑘
log

1−1/𝑘 𝑛)
trees. This result has applications, for instance, to routing [7–9]

and distributed directories [10]. Tree covers have also been fruitful

for metrics with geometric structure such as Euclidean space, dou-

bling metrics, ultrametrics, and planar graphs [5, 16, 17, 31, 32, 61].

Applications in these settings include, for instance, routing [46, 52],

spanners [5, 40, 52], and distance labeling [46].

While both probabilistic tree embeddings and tree covers have

experienced wide adoption, the success of these techniques has

been limited to undirected graphs. The contribution of the current

2269

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3717823.3718298
https://doi.org/10.1145/3717823.3718298
https://doi.org/10.1145/3717823.3718298
https://creativecommons.org/licenses/by/4.0/

STOC ’25, June 23–27, 2025, Prague, Czechia Sepehr Assadi, Gary Hoppenworth, and Nicole Wein

work is to define and prove bounds for directed analogs of these
primitives.

Before elaborating on the details, we discuss the wider context

of this work.

Graph Simplification for Distance Preservation. This work falls

under the umbrella of graph simplification for distance preserva-

tion, where the goal is to obtain a simplified representation of a

graph 𝐺 while (approximately) preserving its distances. In addi-

tion to probabilistic tree embeddings and tree covers, a number of

other such structures exist, including spanners, emulators, distance

preservers, hopsets, and distance oracles (see e.g. the survey [1]).

However, distances in directed graphs suffer from a relatively sparse

toolkit of structural primitives. Each of the above structures can

be defined for both undirected and directed graphs, however they

are either provably nonexistent for directed graphs (e.g. spanners,

distance oracles), or generally less-understood (e.g. distance pre-

servers, hopsets). For hopsets on directed graphs, there has been

recent significant progress [20, 26, 58, 66], though there still remain

polynomial gaps between upper and lower bounds (in contrast to

undirected graphs [38, 50]).

Furthermore, this lack of structural primitives for directed graphs

is perhaps a contributing factor to our gaps in understanding of

basic algorithmic problems regarding distances and reachability

in directed graphs. As a few examples, there are large gaps in our

understanding of even the single-source reachability problem in

various common settings such as streaming, distributed, and paral-

lel; in addition, the following basic problems are less-understood

for directed graphs than undirected: diameter approximation [30],

disjoint shortest paths [60], not-shortest path [59]. See Section 1.3

of [2] for more detail. The current work can be viewed as a step

towards remedying the lack of structural primitives for distances

in directed graphs.

DAGs. Our goal is to define a directed analog of probabilistic

tree embedding and tree cover. We will use directed acyclic graphs

(DAGs) as our directed analog of trees. This is a natural choice, not

only because DAGs are among the most natural directed analogs of

trees
1
, but also because many problems are much easier on DAGs

than general directed graphs. This is important because a central

purpose of graph simplification for distance preservation is to get

better algorithms for distance-related problems, by first simplifying

the graph, and then applying an algorithm to the simplified graph.

This approach only works when the simplified graph indeed allows

for more efficient algorithms.

There are many example of distance-related problems that are

much easier on DAGs than general directed graphs, but we will

specify a few. Single-source shortest paths with negative weights in

DAGs in linear time is an undergraduate exercise, while for general

directed graphs it is a notorious problem that has witnessed several

recent breakthroughs [19, 27, 41, 51], and remains open. For distance

preservers, the best known results on DAGs are better than those

for general directed graphs [24]. For hopsets in DAGs, upper bounds

1
Another natural directed analog of a tree is an arborescence, which is not meaningful

in this context because a trivial lower bound shows that for a directed complete bipartite

graph𝐴 → 𝐵, one would need 𝑛 arborescences to preserve even the reachability for

all pairs of vertices.

for the simpler problem of shortcut sets tend to extend quite easily,

whereas this is not the case for general directed graphs [20, 58].

Defining the problem. For simplicity, we will focus our initial dis-

cussion on directed analogs of tree cover (rather than probabilistic

tree embedding). Our goal is to obtain a small collection of DAGs

such that for each ordered pair 𝑠, 𝑡 of vertices, some DAG in the

collection provides low distortion for dist(𝑠, 𝑡).
Our first observation is that there is a trivial upper bound of

𝑛 DAGs with no distortion, because one can always return the

collection of shortest paths DAGs, one from each of the 𝑛 vertices.

Ultimately, we would like to do much better, and achieve a bound

similar to what [39] yields: polylogarithmic bounds on both the

distortion and the number of DAGs.

Suppose we require each DAG in the collection to be a subgraph

of the original graph. Then, a simple construction shows that no

non-trivial upper bound is possible: Consider a directed cycle. Sup-

pose 𝑠 and 𝑡 are adjacent vertices where 𝑠 appears right after 𝑡 on

the cycle. Then, the only way to preserve the reachability from 𝑠 to

𝑡 is to include the unique path from 𝑠 to 𝑡 as a DAG in the collection;

note that this path includes every edge in the cycle except (𝑡, 𝑠).
Thus, to have finite distortion, the DAG collection must include

such a path for all 𝑛 pairs 𝑠, 𝑡 of adjacent vertices on the cycle.

Thus, we need to relax the problem to allow the DAGs to contain

extra edges not in the original graph. If we allow the DAGs to

have arbitrarily many edges, this trivializes the problem: There is a

simple upper bound achieving only two DAGs and no distortion:

Consider an arbitrary ordering of the vertices. Construct one DAG

by including all

(𝑛
2

)
forward edges with respect to the ordering,

where the weight of each edge (𝑢, 𝑣) is the distance dist(𝑢, 𝑣) in
the original graph. Construct the other DAG in the same way, but

for the opposite ordering of vertices. This way, for each pair of

vertices 𝑠, 𝑡 , at least one of the two DAGs witnesses no distortion

of the distance dist(𝑠, 𝑡). Beyond trivializing the problem, allowing

arbitrarily many extra edges complicates the graph, which is the

opposite of our goal of graph simplification.

Thus, we allow the DAGs to include a limited number of edges

not from the original graph. The number of additional edges can

be expressed in terms of 𝑛 and/or𝑚. Now, we have arrived at the

main definition of the problem:

Definition 1.1 (DAG cover) Let 𝐺 be an 𝑛-node,𝑚-edge weighted,

directed graph. We define a DAG cover of 𝐺 with 𝑓 = 𝑓 (𝑚,𝑛)
additional edges and 𝑔 = 𝑔(𝑚,𝑛) DAGs as a collection 𝐷1, . . . , 𝐷𝑔

of DAGs such that

• each DAG 𝐷𝑖 is defined over the vertex set 𝑉 (𝐺) of 𝐺 , and
• the collection of DAGs contains at most additional 𝑓 edges

not in 𝐸 (𝐺), i.e., | (∪𝑖𝐸 (𝐷𝑖)) \ 𝐸 (𝐺) | ≤ 𝑓 .

We say that a DAG cover𝐷1, . . . , 𝐷𝑔 of𝐺 is reachability-preserving
if for all nodes 𝑠, 𝑡 ∈ 𝑉 (𝐺), 𝑠 can reach 𝑡 in 𝐺 if and only if there

exists a DAG 𝐷𝑖 such that 𝑠 can reach 𝑡 in 𝐷𝑖 .

We say a DAG cover 𝐷1, . . . , 𝐷𝑔 of 𝐺 is 𝛼-distance-preserving if

for all nodes 𝑠, 𝑡 ∈ 𝑉 (𝐺),

dist𝐺 (𝑠, 𝑡) ≤ min

𝑖∈[𝑔]
dist𝐷𝑖

(𝑠, 𝑡) ≤ 𝛼 · dist𝐺 (𝑠, 𝑡).

2270

Covering Approximate Shortest Paths with DAGs STOC ’25, June 23–27, 2025, Prague, Czechia

Our Results. Our first result is essentially the strongest possible

impossibility result for the regime where the number of additional

edges is in terms of 𝑛: Even reachability-preserving DAG covers

with almost 𝑛2
additional edges require almost 𝑛 DAGs (where 𝑛

DAGs is a trivial upper bound, as previously mentioned):

Theorem 1.2 There exists a family of 𝑛-node directed graphs𝐺 such
that any reachability-preserving DAG cover of𝐺 with at most𝑛2−𝑜 (1)

additional edges requires at least 𝑛1−𝑜 (1) DAGs.

An implication of Theorem 1.2 is to rule out a certain approach

for obtaining hopsets from shortcut sets. [58] obtained a break-

through shortcut set construction and extended it to a hopset con-

struction for DAGs with the same bounds; they also extended it to

general directed graphs, but with worse bounds. Subsequently, [20]

obtained an involved algorithm yielding a hopset for general di-

rected graphs with bounds matching the original bound of [58]. If

there existed a (1 + 𝜀)-distance-preserving DAG cover with �̃� (𝑛)
additional edges and a polylogarithmic number of DAGs, then one

could skip the involved algorithm of [20], and obtain this result as

an immediate corollary of [58]. However, Theorem 1.2 implies that

such an approach is too good to be true.

Theorem 1.2 effectively rules out almost any non-trivial construc-

tion when the number of additional edges is in terms of 𝑛. However,

as an aside, we show that the term “almost" here is crucial; there

is indeed a non-trivial construction when the number of edges is

slightly less than 𝑛2
additional edges:

Theorem1.3 Every𝑛-node directed graph𝐺 admits an exact distance-

preserving DAG cover of 𝐺 with 𝑂

(
𝑛2 (log log𝑛)4

log
2 𝑛

)
additional edges

and 𝑛𝑜 (1) DAGs.

Ultimately, the achievable bounds are unsatisfactory when the

number of added edges is expressed in terms of 𝑛, so we turn our

attention to expressing this quantity in terms of𝑚. In particular, in

line with our goal of graph simplification, we pay special attention

to the natural regime of �̃� (𝑚) additional edges, where the sparsity
of the DAG collection is asymptotically the same as that of the

original graph. Perhaps surprisingly, this distinction between 𝑛

and𝑚 is crucial for obtaining better bounds. We see a separation

between the 𝑛 and 𝑚 regimes by observing that every graph 𝐺

admits a reachability-preserving DAG cover with 𝑂 (𝑚) additional
edges and only two DAGs.

Observation 1.4 Every graph 𝐺 admits a reachability-preserving
DAG cover with 𝑂 (𝑚) additional edges and only two DAGs.

Figure 1: On the left is a directed graph 𝐺 , with strongly
connected components shown in blue. On the right is one
of the two DAGs constructed in our reachability-preserving
DAG cover of 𝐺 in Observation 1.4. The other DAG in our
cover can be obtained by reversing all the green edges in the
diagram.

Proof sketch of Observation 1.4. Let [1, 𝑘] denote the set of
strongly connected components (SCCs) in graph 𝐺 . For each SCC

𝑖 of 𝐺 , pick an arbitrary ordering of its vertices, and let 𝑓𝑖 and ℓ𝑖
be the first and last vertices in this ordering. Define one of the

two DAGs as a directed path through each SCC according to its

ordering, unioned with the following edges: for each SCC 𝑖 , (1) an

edge from ℓ𝑖 to 𝑓𝑗 for all 𝑗 such that 𝐺 has an edge from SCC 𝑖 to

SCC 𝑗 , and (2) an edge to 𝑓𝑖 from ℓ𝑗 for all 𝑗 such that 𝐺 has an

edge from SCC 𝑗 to SCC 𝑖 . Define the other DAG as a directed path

through each SCC according to the reverse of its ordering. This is a

reachability-preserving DAG cover because the first DAG preserves

reachability for vertices in different SCCs, while for vertices in the

same SCC, one of the two DAGs preserves reachability depending

on which vertex comes first in the SCC’s ordering. □

Thus, the interesting regime for �̃� (𝑚) additional edges is (ap-
proximate) distance-preserving DAG covers.

Question: How many DAGs are required for 𝛼-distance-preserving
DAG covers with �̃� (𝑚) additional edges? For which values of 𝛼 is it

polynomial versus polylogarithmic?

We make progress on this question from both the upper and

lower bound fronts: the answer is logarithmic for certain polyloga-

rithmic values of 𝛼 , and the answer is polynomial for exact distances
(𝛼 = 1). Our bounds are stated in Theorems 1.5 and 1.6.

Our upper bound in Theorem 1.5 achieves similar bounds to

what [39] yields for undirected graphs: polylogarithmic bounds

on both the distortion and the number of DAGs. Furthermore, the

fact that only �̃� (𝑚) edges are added means that the sparsity of the

DAG collection is asymptotically the same as that of the original

graph, which satisfies our original goal of graph simplification.

Additionally, such a DAG cover can be computed in near-linear

time.

Theorem 1.5 Let 𝐺 be an 𝑛-node weighted, directed graph with
positive integer edge weights and polynomial aspect ratio. Then there
exists an 𝑂 (log

4 𝑛)-approximate DAG cover with 𝑂 ((𝑚 + 𝑛) log
3 𝑛)

additional edges and 𝑂 (log𝑛) DAGs. Moreover, this DAG cover can
be computed w.h.p. in 𝑂 (𝑚 log

4 𝑛 + 𝑛 log
5 𝑛) time.

To complement our upper bound, and to show a separation be-

tween reachability versus exact shortest paths for �̃� (𝑚) additional

2271

STOC ’25, June 23–27, 2025, Prague, Czechia Sepehr Assadi, Gary Hoppenworth, and Nicole Wein

edges, we obtain the following polynomial lower bound on the

number of DAGs.

Theorem 1.6 There exists a family of 𝑛-node,𝑚-edge directed graphs
𝐺 with positive integer edge weights and polynomial aspect ratio such
that any exact distance-preserving DAG cover of 𝐺 with𝑚1+𝜀 addi-
tional edges requires Ω(𝑛1/6) DAGs, for a sufficiently small constant
𝜀 > 0.

So far we have focused on DAG covers as an analog to tree cov-

ers, but there is also a corollary of Theorem 1.5 that analogizes

probabilistic tree embedding. Recall that the guarantee of a proba-

bilistic tree embedding is that for each pair of vertices, the expected

distortion of their distance over the distribution of trees, is bounded.

It is impossible to achieve a precisely analogous guarantee for a

distribution over DAGs because in any DAG, for every pair of ver-

tices 𝑠, 𝑡 , either dist(𝑠, 𝑡) or dist(𝑡, 𝑠) is infinite. Instead, we define a
distribution D over DAGs so that for all pairs of nodes (𝑠, 𝑡) in the

transitive closure of𝐺 , if a DAG is chosen from D, the reachability

from 𝑠 to 𝑡 is preserved with probability 1/2, and conditioned on

that, the expected distortion is polylogarithmic:

Theorem 1.7 Let 𝐺 be an 𝑛-node weighted, directed graph with
positive integer edge weights and polynomial aspect ratio. Then there
exists a distribution D of DAGs over vertex set 𝑉 (𝐺) satisfying the
following properties:

(1) The support of distributionD contains atmost𝑂 ((𝑚+𝑛) log
3 𝑛)

additional edges, and
(2) Let𝐷 ∼ D be a DAG sampled from distributionD. For all pairs

of nodes (𝑠, 𝑡) ∈ 𝑇𝐶 (𝐺), 𝑠 can reach 𝑡 in 𝐷 with probability
1/2. Moreover,

E[dist𝐷 (𝑠, 𝑡) | 𝑠 {𝐷 𝑡] = 𝑂 (log
4 𝑛 · dist𝐺 (𝑠, 𝑡)),

where 𝑠 {𝐷 𝑡 denotes the event that 𝑠 can reach 𝑡 in 𝐷 .

Finally, we return to the case of DAG covers with no additional
edges, for graphs with bounded diameter. We note that the above

trivial lower bound of 𝑛 DAGs does not apply for graphs of low

diameter, since the construction is simply a cycle of diameter 𝑛 − 1.

In fact, there is a simple upper bound for low diameter graphs: an

exactly distance-preserving DAG cover whose number of DAGs is

logarithmic in 𝑛 but factorial in the diameter 𝐷 . To see this, ran-

domly order the vertices in 𝐺 and construct a DAG that includes

every edge in 𝐺 that goes “forward” with respect to the ordering.

A given shortest path is included in this DAG if its (at most 𝐷 + 1)

vertices are ordered consistently with the random ordering, which

occurs with probability ≥ 1/(𝐷 + 1)!. Then, the number of random

trials (and thus number of DAGs) needed to include all Θ(𝑛2) short-
est paths in some DAG with high probability is 𝑂 ((𝐷 + 1)! · log𝑛).

Is exponential dependence on 𝐷 necessary? For our final result,

we show that it is:

Theorem 1.8 There exists a family of 𝑛-node directed graphs𝐺 with
diameter 𝑂 (log𝑛) such that any reachability-preserving DAG cover
of 𝐺 with no additional edges requires 𝑛 DAGs.

Additional Related Work. A recently developing area of research

focuses on understanding the structure of shortest paths in both

directed and undirected graphs [2, 4, 11, 18, 25, 34, 35, 37]. See

Section 1.4 of [18] for more details. Our work can be viewed as a

contribution to this undertaking.

Additionally, the following papers are related to the wider con-

text of our work: embedding directed planar graphs into directed

ℓ1 [55], an extension of treewidth to DAG-width [21], and shortest-

path preservers with minimum aspect ratio [18].

2 Technical Overview
2.1 Lower Bounds
First we will outline some of the ideas behind Theorem 1.2 (our

lower bound that any reachability-preserving DAG cover with al-

most 𝑛2
additional edges requires almost 𝑛 DAGs), and then we will

turn to Theorem 1.6 (our lower bound that any distance-preserving

DAG cover with 𝑚1+𝜀
additional edges requires Ω(𝑛1/6) DAGs),

which builds upon these ideas.

Number of additional edges in terms of 𝑛. Our starting point is a

family of graphs whose variants are commonly used for obtaining

lower bounds for related structures including hopsets/shortcut sets,

spanners/emulators, and reachability/distance preservers, first used

by [49]. Each graph in this family is a DAG that contains a large
collection of long paths that are pairwise edge-disjoint, and each

path is the unique path between its endpoints.

Of course, such a graph does not yield a lower bound for DAG

covers because the graph itself is already a DAG. Instead, the in-

tuition is that we can modify the above “base” graph so that a

constant fraction of pairs of intersecting paths are “incompatible”,

i.e., cannot appear together in the same DAG. To do so, we replace

every vertex 𝑣 in the base graph with two vertices 𝑣1, 𝑣2 that have

a bidirectional edge between them. Then, we randomize which

of these two vertices constitute the entry and exit points of each

path passing through 𝑣 . That is, for every edge in the base graph

that enters (respectively, exits) 𝑣 , we assign it to enter (respectively,

exit) either 𝑣1 or 𝑣2 with probability 1/2 each. Then, for any pair

of paths that intersect at 𝑣 , the probability that they traverse the

edge (𝑣1, 𝑣2) in opposite directions is 1/4. If this happens, the union

of these two paths contains a cycle, making them incompatible.

A probabilistic analysis of all intersections between paths yields

a lower bound on the number of DAGs needed to accommodate

every path.

We are not done, however, because there are added edges. In

particular, these added edges could bypass the (𝑣1, 𝑣2) bidirectional
edge, allowing two paths that intersect at 𝑣 to become compatible.

A key property of the base graph is that each pair of paths intersects

on at most one vertex. This means that any added edge can only

“help” one path. Furthermore, the parameters of the base graph are

set so that the number of paths is a constant factor larger than

the number of added edges. This means that a constant fraction of

the paths are not helped by any added edge. Then, we can again

perform a probabilistic analysis to calculate a bound on the number

of DAGs needed to accommodate all of the non-helped paths. To

obtain this bound, it is important that the paths are long enough (a

property of the base graph) because for a DAG to accommodate a

path, the path needs to randomly chose entry/exit points so that it

is consistent with the DAG at every step.

2272

Covering Approximate Shortest Paths with DAGs STOC ’25, June 23–27, 2025, Prague, Czechia

This analysis allows us to obtain essentially the strongest possi-

ble impossibility result for the regime where the number of addi-

tional edges is in terms of 𝑛: reachability-preserving DAG covers

with almost 𝑛2
additional edges, require almost 𝑛 DAGs.

Number of additional edges in terms of 𝑚. One issue towards

obtaining a lower bound for𝑚1+𝜀
added edges is the previously

mentioned upper bound of a reachability-preserving DAG cover

with two DAGs. That is, in contrast to the case of 𝑛2−𝑜 (1)
added

edges, any lower bound for𝑚1+𝜀
added edges must hold only for

exact or approximate shortest paths, and not for reachability.

A related issue is that if the SCCs are of polylogarithmic size,

there is an upper bound for exact-distance-preserving DAG covers:

For each SCC 𝑆 and each vertex 𝑣 ∈ 𝑆 , add (appropriately weighted)

edges from 𝑣 to the union of the out-neighbors of 𝑆 , and add edges to

𝑣 from the union of in-neighbors of 𝑆 . This DAGhandles vertex pairs

in two different SCCs, and a polylogarithmic number of additional

DAGs handle vertex pairs in the same SCC.

Therefore, to achieve a lower bound, the SCCs must be super-

polylogarithmic in size. Specifically, each of our SCCs will be a

clique of size 𝑐 = 𝑛𝛿 with bidirectional edges. Similar to our con-

struction for𝑛2−𝑜 (1)
added edges, every vertex in the original graph

is replaced with a clique, and every incoming and outgoing edge

to/from the clique picks a random clique vertex to enter or exit,

respectively. Now, a pair of paths is only incompatible if each tra-

verses the same clique edge in opposite directions. This occurs

much more rarely than in our previous construction with cliques of

size 2, but we show that this construction can still be used towards

getting a polynomial lower bound on the number of DAGs.

However, there is a major issue with the construction so far: in

the previous construction it was important for the number of paths

to be larger than the number of added edges (since each added edge

could only “help” one path). However, since the paths in the base

graph are edge-disjoint, the number of paths is necessarily less than

the number𝑚1+𝜀
of added edges. For this reason, we need to relax

the edge-disjointness condition. This has been done in prior work

(first by [49]) for other problems (e.g. for shortcut sets with𝑚 added

edges), by taking a certain type of product of two copies of the base
graph. We use such a product graph, which allows pairs of paths

to overlap on a single edge (rather than just a vertex). Using this

product graph as our new base graph, we perform the previously

described clique-replacement step. However, the use of a product

graph significantly complicates the proof for two reasons:

(1) Since pairs of paths can overlap on an edge in the product

graph, there are two types of added edges: “long” ones that only

help one path as before, and “short” ones between adjacent cliques,

which could help many paths that all share an edge between those

two cliques.

(2) In our previous construction (for 𝑛2−𝑜 (1)
added edges), we

used the fact that each path picks its entry/exit points (𝑣1 or 𝑣2)

independently. This is no longer the case. These choices are made

independently for each edge, but since pairs of paths can share

an edge, there are correlations between whether or not paths are

consistent with a fixed DAG.

To circumvent this correlation issue, we restrict our attention

to edge-disjoint sets of paths going through the same clique. For

such paths, their entry-exit points to/from the clique are chosen

independently and we use this to calculate their probability of

compatibility. Such a set of paths going through a given clique can

be viewed as a matching in an appropriate auxiliary graph. We are

interested in lower bounding the size of such matchings over all of

the cliques (see the full version of this paper for details).

We can think of this scenario as a game played with an adversary:

First we randomly choose the trajectories of all of the paths through

the cliques. Then the adversary, after seeing the random choices, is

allowed to help paths using “long” edges, and help parts of paths
using “short” edges. The goal of the adversary is to minimize the

matching sizes in the non-helped portions of the graph.

Due to the intricacy of this scenario, to argue about the structure

of the non-helped parts of the graph, we need to open the black

box of the construction of the base graph and product graph, which

are based on constructions from discrete geometry. In particular,

we need to prove a special “expansion” property of these graphs.

2.2 Upper Bound
In this section we will describe some of the ideas behind Theo-

rem 1.5, our 𝑂 (log
4 𝑛)-approximate DAG cover with �̃� (𝑚) addi-

tional edges and𝑂 (log𝑛) DAGs. Our starting point is the technique
of [39] for probabilistic tree embedding in undirected graphs, which

is the elegant and well-known technique of a recursively applying

a low-diameter decomposition (LDD). In a low-diameter decomposi-

tion, we delete edges from the input graph according to a random

process, so that afterwards each resulting connected component

has bounded diameter, and the probability that any given path sur-

vives has a particular inverse relation to its length. Then to build

a tree, we can add edges to connect these connected components

into a star, where each edge weight is the diameter of the original

graph (so that no distances are shortened), and we can recurse on

each connected component.

LDDs for directed graphs are also known [19, 28, 29]; in particu-

lar, we use Lemma 1.2 of [19]. Instead of each connected compo-

nent having bounded diameter, each strongly connected component

(SCC) has bounded diameter. The other guarantee is similar to the

undirected case: the probability that any given path survives has a

particular inverse relation to its length. We recursively apply this

LDD to each SCC. While this process works smoothly, the issue is

that it is not clear how to use this recursive LDD to obtain a DAG

cover. We highlight a few considerations:

(1) In the undirected case, the above random process results in

a single tree. In contrast, in any DAG at least half of all ordered

vertex pairs have infinite distance, so we need to construct multiple

DAGs. To do so, we need to establish a partition of the ordered

vertex pairs to determine which distances will be preserved in each

DAG we construct, and which distances will be neglected.

(2) Consider a vertex pair (𝑠, 𝑡) and a DAG that approximately

preserves dist(𝑠, 𝑡). The topological order of the DAG may not

respect the order of vertices a given 𝑠𝑡-path, which could include

many segments that are “backwards” with respect to the topological

order of the DAG. To resolve this issue, we need to add a limited

number of edges to bypass these backwards segments for all such

𝑠, 𝑡 .

(3) If we were to recurse on multiple SCCs to build our DAG

collection, each SCC would return multiple DAGs (otherwise some

2273

STOC ’25, June 23–27, 2025, Prague, Czechia Sepehr Assadi, Gary Hoppenworth, and Nicole Wein

distances would be infinite). Then, we would need to combine

these DAGs in such a way that globally all distances are preserved

(approximately). If we consider all possible ways to combine these

DAGs, we risk a combinatorial explosion of combinations, leading

to a large number of DAGs. To address this issue, instead of using

recursion as a black box, we take a more global approach and define

the process so that we construct a total of only twoDAGs. (And then,

similar to the undirected version, we repeat the random process

𝑂 (log𝑛) times to obtain the final collection of DAGs).

The rough idea of our algorithm is as follows. Consider a pair of

vertices (𝑠, 𝑡), and consider the moment during the construction of

the recursive LDD at which an edge is deleted, causing dist(𝑠, 𝑡) to
become infinite. There are two cases: (1) right before this moment,

𝑠 and 𝑡 were in the same SCC, or (2) they were in different SCCs. In

case 1, if 𝑠 and 𝑡 were in the same SCC 𝑆 , then the LDD gives us a

bound on dist(𝑠, 𝑡). Similar to the undirected version, we would like

to add edges of weight diameter(𝑆) to create a star-like structure to
approximately preserve dist(𝑠, 𝑡). To make a star-like DAG for each

SCC, we use a folklore shortcut set construction, which creates a

DAG of diameter 2 with 𝑂 (|𝑆 |) added edges.

In case 2, if 𝑠 and 𝑡 were in different SCCs, this means that 𝑠

appears before 𝑡 in the topological order of the evolving graph re-

sulting from the recursive LDD. However, some edge on an 𝑠𝑡-path

was deleted, disconnecting 𝑡 from 𝑠 . We would like to bypass this

edge, by adding a limited number of new edges that are consistent

with the topological order emerging from the recursive LDD. We

do this roughly via another star-like DAG for each SCC, as well

as adding additional edges to link the SCCs together. This linking

of the SCCs is done in a roughly similar way to the previously de-

scribed reachability-preserving DAG cover with �̃� (𝑚) added edges.
This is the part of the construction that requires �̃� (𝑚) added edges,
as opposed to 𝑓 (𝑛) edges.

To approximately preserve all distances, we execute both of the

above cases for every SCC and every level of the LDD. Importantly,

we cannot construct a separate DAG for every level of the LDD

because we need a low-distortion path from 𝑠 to 𝑡 to be contained in

a single DAG. That is, if an 𝑠𝑡-path requires multiple “bypass” edges

from multiple levels of the LDD then all of these bypass edges need

to appear in the same DAG. A key challenge is to ensure that the

union of all of the added edges over all levels genuinely forms only

two DAGs, and no cycles are formed from interference between

edges from different levels.

3 Paper Structure
In the remainder of the paper, we present our construction of𝑂 (1)-
approximate DAG covers with 𝑂 (𝑚) additional edges in Theo-

rem 1.5. Additionally, we give an abbreviated proof that this DAG

cover satisfies the properties claimed in Theorem 1.5. We defer the

full proof of this theorem and the remaining theorems referenced

in Section 1 to the arXiv version of our paper [6].

4 An Upper Bound for DAG Covers with 𝑂 (𝑚)
additional Edges

The goal of this section is to prove the following theorem.

Theorem 1.5 Let 𝐺 be an 𝑛-node weighted, directed graph with
positive integer edge weights and polynomial aspect ratio. Then there
exists an 𝑂 (log

4 𝑛)-approximate DAG cover with 𝑂 ((𝑚 + 𝑛) log
3 𝑛)

additional edges and 𝑂 (log𝑛) DAGs. Moreover, this DAG cover can
be computed w.h.p. in 𝑂 (𝑚 log

4 𝑛 + 𝑛 log
5 𝑛) time.

An essential tool we will need to prove Theorem 1.5 is the di-

rected low-diameter decomposition due to [19]. The key properties

of this low-diameter decomposition are summarized in Lemma 1.2

of [19], which we restate below.

Lemma 4.1 (Lemma 1.2 of [19]) Let 𝐺 = (𝑉 , 𝐸,𝑤) be an 𝑛-node
weighted, directed graph with positive integer edge weights. Let 𝑑 be
a positive integer such that 𝑑 = 𝑂 (poly(𝑛)). Then there exists a set
of edges 𝐸′ ⊆ 𝐸 with the following properties:

(1) each SCC of 𝐺 \ 𝐸 has weak diameter at most 𝑑 in 𝐺 , and
(2) for every edge 𝑒 ∈ 𝐸,

Pr[𝑒 ∈ 𝐸′] = 𝑂

(
𝑤 (𝑒) · log

2 𝑛

𝑑

)
.

The set 𝐸′ and the SCCs of 𝐺 \ 𝐸′ can be computed in 𝑂 (𝑚 log
2 𝑛 +

𝑛 log
3 𝑛) time.

4.1 Construction of DAG Cover D
Let 𝐺 be an 𝑛-node, weighted, directed graph with positive inte-

ger edge weights and maximum weight𝑊 . The key step of our

construction will be a hierarchical decomposition of 𝐺 obtained

by repeatedly applying Lemma 4.1. Let 𝐺0 = 𝐺 , and let F0 denote

the collection of all strongly connected components in 𝐺0. We will

construct set family F𝑖+1 and graph𝐺𝑖+1 from graph𝐺𝑖 , as follows.

(1) Apply Lemma 4.1 to graph 𝐺𝑖 with integer parameter 𝑑𝑖 =

𝑛2𝑊 · 2
−𝑖−1

. Let 𝐸𝑖 ⊆ 𝐸 (𝐺𝑖) be the set of edges specified by

Lemma 4.1.

(2) Let𝐺𝑖+1 = 𝐺𝑖 −𝐸𝑖 , and let 𝑆
1

𝑖+1
, . . . , 𝑆

𝑘𝑖+1

𝑖+1
⊆ 𝑉 (𝐺) denote the

SCCs of 𝐺𝑖+1. We define F𝑖+1 ⊆ 2
𝑉 (𝐺)

to be the set family

F𝑖+1 =
⋃

𝑗∈[1,𝑘𝑖+1]
{𝑆 𝑗

𝑖+1
}.

(3) Let 𝑧 = ⌈lg(𝑛2𝑊)⌉. We will terminate our recursion after

computing graph 𝐺𝑧 and collection F𝑧 .
Note that since 𝑑𝑧 < 1, the graph𝐺𝑧 will be a DAG. We will use 𝐷∗

to denote graph𝐺𝑧 . The following claim summarizes the properties

of the sets F𝑖 inherited from Lemma 4.1.

Claim 4.2 The following properties of the F𝑖 ’s and 𝐸𝑖 ’s are inherited
from Lemma 4.1:

(1) Set family F𝑖 is the collection of SCCs of graph 𝐺𝑖 .
(2) Each set 𝑆 ∈ F𝑖 has weak diameter at most 𝑑𝑖 in 𝐺𝑖−1 (and

consequently, in 𝐺 as well).
(3) For every edge 𝑒 ∈ 𝐸 (𝐺𝑖),

Pr[𝑒 ∈ 𝐸𝑖] = 𝑂

(
𝑤 (𝑒) · log

2 𝑛

𝑑𝑖

)
.

We will need several preliminary notations and claims before

we can construct the DAGs associated with set family of F𝑖 ’s. Fix
an 𝑖 ∈ [0, 𝑧]. We define a total order <𝑖 on the SCCs F𝑖 in 𝐺𝑖 .

Informally, this will correspond to a specific topological order of

2274

Covering Approximate Shortest Paths with DAGs STOC ’25, June 23–27, 2025, Prague, Czechia

the condensation graph of𝐺𝑖 . Fix two SCCs 𝑆,𝑇 ∈ F𝑖 , where 𝑆 ≠ 𝑇 .

If there exists a node 𝑠 ∈ 𝑆 and a node 𝑡 ∈ 𝑇 such that 𝑠 can reach 𝑡

in graph 𝐺𝑖 , then we let 𝑆 <𝑖 𝑇 . If there exists distinct sets 𝑆
′,𝑇 ′ ∈

F𝑖−1 satisfying 𝑆 ⊆ 𝑆 ′ and 𝑇 ⊆ 𝑇 ′
such that 𝑆 ′ <𝑖−1 𝑇

′
, then we

let 𝑆 <𝑖 𝑇 , as well. We observe that if there exists distinct 𝑆,𝑇 ∈ F𝑖
such that 𝑆 <𝑖 𝑇 and 𝑇 <𝑖 𝑆 , then that implies a contradiction of

Property 1 of Claim 4.2. We conclude that <𝑖 is a partial order on

the elements of F𝑖 . Finally, we convert partial order <𝑖 to a total

order by completing the ordering arbitrarily.

Claim 4.3 Relation <𝑖 is a total ordering of set family F𝑖 .

We will now define a total order <𝐷 on the vertex set 𝑉 (𝐺)
that respects every total order <𝑖 for all 𝑖 ∈ [0, 𝑧]. For each node

𝑣 ∈ 𝑉 (𝐺) and each 𝑖 ∈ [0, 𝑧], we let 𝑆𝑖 (𝑣) ∈ F𝑖 denote the unique
set in F𝑖 containing node 𝑣 . Given 𝑠, 𝑡 ∈ 𝑉 (𝐺), we will let 𝑠 <𝐷 𝑡 if

𝑠 ≠ 𝑡 and 𝑆𝑖 (𝑠) <𝑖 𝑆𝑖 (𝑡),

for some 𝑖 ∈ [0, 𝑧]. We will let <𝐷 be an arbitrary total order that

satisfies this property for all 𝑠 ≠ 𝑡 ∈ 𝑉 (𝐺). We will use 𝑠 ≤𝐷 𝑡 to

denote that either 𝑠 <𝐷 𝑡 or 𝑠 = 𝑡 .

Claim 4.4 Relation <𝐷 is a total ordering of vertex set 𝑉 (𝐺).

Proof. Suppose towards contradiction that there exist nodes

𝑠, 𝑡 ∈ 𝑉 (𝐺), with 𝑠 ≠ 𝑡 , such that 𝑠 <𝐷 𝑡 and 𝑡 <𝐷 𝑠 . Then

without loss of generality, 𝑆𝑖 (𝑠) <𝑖 𝑆𝑖 (𝑡) and 𝑆 𝑗 (𝑡) < 𝑗 𝑆 𝑗 (𝑠) for
some 𝑖 ≤ 𝑗 . Since 𝑆 𝑗 (𝑠) ⊆ 𝑆𝑖 (𝑠) and 𝑆 𝑗 (𝑡) ⊆ 𝑆𝑖 (𝑡) and 𝑆𝑖 (𝑠) <𝑖
𝑆𝑖 (𝑡), we conclude that 𝑆 𝑗 (𝑠) < 𝑗 𝑆 𝑗 (𝑡) by the definition of < 𝑗 . This

contradicts Claim 4.3, so we conclude that <𝐷 is a total ordering of

𝑉 (𝐺). □

For each set 𝑆 ∈ F𝑖 , we associate two representative nodes

𝑟1 (𝑆), 𝑟2 (𝑆) ∈ 𝑆 . We choose 𝑟1 (𝑆) to be the first node in 𝑆 under

total order <𝐷 , and we choose 𝑟2 (𝑆) to be the last node in 𝑆 under

total order <𝐷 . For each node 𝑣 ∈ 𝑉 (𝐺) and each 𝑖 ∈ [0, 𝑧], we
define the level 𝑖 representative nodes of 𝑣 , denoted as 𝑟1

𝑖
(𝑣) and

𝑟2

𝑖
(𝑣), to be

𝑟1

𝑖 (𝑣) = 𝑟1 (𝑆𝑖 (𝑣)) and 𝑟2

𝑖 (𝑣) = 𝑟2 (𝑆𝑖 (𝑣)) .

In particular, when 𝑖 = 𝑧, we have that 𝑟1

𝑧 (𝑣) = 𝑟2

𝑧 (𝑣) = 𝑣 , since 𝐷∗

is a DAG. For each edge (𝑢, 𝑣) ∈ 𝐸 (𝐺), we define the level of edge
(𝑢, 𝑣), denoted as ℓ (𝑢, 𝑣), to be the smallest integer 𝑖 ∈ [0, 𝑧] such
that 𝑆𝑖 (𝑢) ≠ 𝑆𝑖 (𝑣).

In addition to the above notation, we will need the following

claim, which roughly states that we can approximately preserve

distances between nodes 𝑠, 𝑡 in an SCC 𝑆 ∈ F𝑖 when 𝑠 <𝐷 𝑡 , using

a small collection of edges 𝐻 that respect total order <𝐷 .

Claim 4.5 Let 𝑆 ∈ F𝑖 be a set in family F𝑖 . Then there exists a set of
directed, weighted edges 𝐻 ⊆ 𝑆 × 𝑆 of size |𝐻 | = 𝑂 (|𝑆 | log |𝑆 |) with
the following properties:

(1) Every edge (𝑢, 𝑣) in 𝐻 respects total order <𝐷 .
(2) Every edge (𝑢, 𝑣) in 𝐻 has weight𝑤 (𝑢, 𝑣) = 𝑑𝑖 .
(3) For all 𝑠, 𝑡 ∈ 𝑆 with 𝑠 <𝐷 𝑡 ,

dist𝐺 (𝑠, 𝑡) ≤ dist𝐻 (𝑠, 𝑡) ≤ 2𝑑𝑖 .

(4) Set 𝐻 can be computed in 𝑂 (|𝐻 |) time.

Proof. Let 𝑆 = {𝑠1, . . . , 𝑠𝑘 } be the nodes in 𝑆 , ordered with

respect to <𝐷 . We define a path 𝜋 that respects <𝐷 as follows:

𝜋 = (𝑠1, . . . , 𝑠𝑘) .

We assign each edge in 𝜋 weight 𝑑𝑖 . Initially, we let 𝐻 = 𝐸 (𝜋). By
[58], for a directed path 𝜋 on 𝑘 nodes, there exists a collection of

directed edges 𝐻 ′
such that

• |𝐻 ′ | = 𝑂 (𝑘 log𝑘) and 𝐻 ′
can be computed in 𝑂 (|𝐻 ′ |) time,

• 𝐻 ′
is contained in the transitive closure of path 𝜋 , and

• For every pair of nodes 𝑠, 𝑡 in path 𝜋 such that node 𝑠 occurs

on 𝜋 before node 𝑡 , there exists an 𝑠 { 𝑡 path 𝜋 ′ in 𝜋 ∪𝐻 ′

with |𝜋 ′ | ≤ 2 edges.

Then we let 𝐻 = 𝐸 (𝜋) ∪𝐻 ′
, with every edge in 𝐻 assigned weight

𝑑𝑖 . Properties 1, 2, and 4 of our claim are clearly satisfied. We now

verify Property 3 for all 𝑠, 𝑡 ∈ 𝑆 with 𝑠 <𝐷 𝑡 :

• By Property 2, dist𝐻 (𝑠, 𝑡) ≥ 𝑑𝑖 . Moreover, 𝑑𝑖 ≥ dist𝐺 (𝑠, 𝑡)
by Claim 4.2, so dist𝐺 (𝑠, 𝑡) ≤ dist𝐻 (𝑠, 𝑡).

• For each pair of nodes 𝑠, 𝑡 in path 𝜋 such that 𝑠 <𝐷 𝑡 , there

exists an 𝑠 { 𝑡 path 𝜋 ′ in 𝐻 with |𝜋 ′ | ≤ 2 edges. Then

dist𝐻 (𝑠, 𝑡) ≤ 𝑤 (𝜋 ′) ≤ 2𝑑𝑖 , by Property 2. □

We construct two DAGs𝐷1 and𝐷2 associated with our collection

of F𝑖 ’s. DAG 𝐷1 will respect total order <𝐷 , while DAG 𝐷2 will

respect the reverse of <𝐷 . We construct DAG 𝐷1 as follows.

Construction of DAG 𝐷1.

(1) The vertex set of 𝐷1 will be the same as 𝐺 , i.e., 𝑉 (𝐷1) =

𝑉 (𝐺).
(2) For each edge (𝑢, 𝑣) ∈ 𝐸 (𝐷∗), each 𝑖, 𝑗 ∈ [0, 𝑧] such that

min(𝑖, 𝑗) ≥ ℓ (𝑢, 𝑣), and each 𝑘, 𝑘′ ∈ {1, 2}, add the edge

(𝑟𝑘
𝑖
(𝑢), 𝑟𝑘 ′

𝑗
(𝑣)) to 𝐷1. Assign edge (𝑟𝑘

𝑖
(𝑢), 𝑟𝑘 ′

𝑗
(𝑣)) weight

𝑤𝐺 (𝑢, 𝑣) + 𝑑𝑖 + 𝑑 𝑗 . Since 𝑟1

𝑧 (𝑣) = 𝑟2

𝑧 (𝑣) = 𝑣 for all 𝑣 ∈ 𝑉 (𝐺),
this procedure also adds edges of the form (𝑢, 𝑟 𝑗

𝑖
(𝑣)) and

(𝑟 𝑗
𝑖
(𝑢), 𝑣), for all 𝑖 ≥ ℓ (𝑢, 𝑣) and 𝑗 ∈ {1, 2}. Additionally, we

add the edges in 𝐸 (𝐷∗) with their original weights in 𝐺 to

DAG 𝐷1.

(3) Fix an index 𝑖 ∈ [0, 𝑧], and fix a set 𝑆 𝑗
𝑖
∈ F𝑖 , where 𝑗 ∈ [1, 𝑘𝑖].

Let 𝐻
𝑗
𝑖

⊆ 𝑆
𝑗
𝑖
× 𝑆

𝑗
𝑖
be the set of directed, weighted edges

specified in Claim 4.5 with respect to set 𝑆
𝑗
𝑖
. We will add the

set of edges

𝐻 =
⋃

𝑖∈[0,𝑧], 𝑗∈[1,𝑘𝑖]
𝐻

𝑗
𝑖

to 𝐷1.

This completes the construction of 𝐷1. If there are parallel edges

in 𝐷1 from node 𝑢 to node 𝑣 , then we keep only the lowest weight

edge from 𝑢 to 𝑣 . We will quickly verify that 𝐷1 is a DAG.

Claim 4.6 Graph 𝐷1 is a DAG.

Proof. Note that every edge in 𝐻 respects total order <𝐷 by

Claim 4.5. We will now show that every edge we add to 𝐷1 in Step

2 respects <𝐷 . Fix an edge (𝑟𝑥
𝑖
(𝑢), 𝑟𝑦

𝑗
(𝑣)) added to 𝐷1 in Step 2,

for some 𝑖 ≤ 𝑗 ∈ [0, 𝑧], 𝑥,𝑦 ∈ {1, 2}, and (𝑢, 𝑣) ∈ 𝐸 (𝐷∗). Since
𝑖 ≥ ℓ (𝑢, 𝑣), it follows that 𝑆𝑖 (𝑢) ≠ 𝑆𝑖 (𝑣). Additionally, since edge

2275

STOC ’25, June 23–27, 2025, Prague, Czechia Sepehr Assadi, Gary Hoppenworth, and Nicole Wein

(𝑢, 𝑣) ∈ 𝐸 (𝐷∗) ⊆ 𝐸 (𝐺𝑖), it follows that 𝑆𝑖 (𝑢) <𝑖 𝑆𝑖 (𝑣). Then since

𝑟𝑥
𝑖
(𝑢) ∈ 𝑆𝑖 (𝑢) and 𝑟𝑦𝑗 (𝑣) ∈ 𝑆 𝑗 (𝑣) ⊆ 𝑆𝑖 (𝑣), we conclude that

𝑟𝑥𝑖 (𝑢) <𝐷 𝑟
𝑦

𝑗
(𝑣),

as desired. □

Construction of DAG 𝐷2.

(1) The vertex set of 𝐷2 will be the same as𝐺 , so𝑉 (𝐷2) = 𝑉 (𝐺).
(2) Fix an index 𝑖 ∈ [0, 𝑧], and fix a set 𝑆

𝑗
𝑖
∈ F𝑖 , where 𝑗 ∈

[1, 𝑘𝑖]. Let 𝐻 𝑗
𝑖
⊆ 𝑆

𝑗
𝑖
× 𝑆

𝑗
𝑖
be the set of directed, weighted

edges specified in Claim 4.5 with respect to set 𝑆
𝑗
𝑖
. Let 𝐻 ⊆

𝑉 (𝐺) ×𝑉 (𝐺) be the directed, weighted set of edges

𝐻 =
⋃

𝑖∈[0,𝑧], 𝑗∈[1,𝑘𝑖]
𝐻

𝑗
𝑖
.

Let 𝐻𝑅
denote the set of weighted edges obtained by revers-

ing the orientation of every edge in 𝐻 . We add the edges in

𝐻𝑅
to 𝐷2.

This completes the construction of graph 𝐷2. Note that for every

edge (𝑢, 𝑣) in graph𝐷2, we have that (𝑣,𝑢) ∈ 𝐸 (𝐷1). Then by Claim
4.6, graph 𝐷2 is also a DAG.

Construction of DAG Cover D. We will construct our DAG cover

D by repeating the following (random) procedure 10 log𝑛 times:

(1) Construct a collection of sets {F𝑖 }𝑖∈[0,𝑧] . (Note that each

set F𝑖 is constructed randomly and inherits the probabilistic

guarantees of Lemma 4.1.)

(2) Construct DAGs 𝐷1 and 𝐷2 using the collection of sets

{F𝑖 }𝑖∈[0,𝑧] , and add 𝐷1 and 𝐷2 to D.

4.2 Size and Time Analysis of DAG Cover D
In this section, we prove that our DAG coverD has the size claimed

in Theorem 1.5, and we prove that our DAG cover can be con-

structed in the time claimed in Theorem 1.5.

Size Analysis. In Step 2 of the construction of DAG 𝐷1, we add

at most 𝑂 (𝑧2) edges to 𝐷1 for every edge (𝑢, 𝑣) ∈ 𝐸 (𝐷∗) ⊆ 𝐸 (𝐺).
Then Step 2 of the construction of DAG 𝐷1 contributes 𝑂 (𝑚𝑧2) =
𝑂 (𝑚 log

2 (𝑛𝑊)) edges to 𝐷1. By Claim 4.5, the third step of the

construction of DAG 𝐷1 contributes at most

|𝐻 | ≤
∑︁

𝑖∈[0,𝑧], 𝑗∈[1,𝑘𝑖]

���𝐻 𝑗
𝑖

���
≤ 𝑂 (log𝑛) ·

∑︁
𝑖∈[0,𝑧]

∑︁
𝑗∈[1,𝑘𝑖]

|𝑆 𝑗
𝑖
|

= 𝑂 (log𝑛) ·
∑︁

𝑖∈[0,𝑧]
𝑛 = 𝑂 (𝑛 log(𝑛𝑊) log𝑛)

edges. Then we add at most

|𝐸 (𝐷1) | + |𝐸 (𝐷2) | = 𝑂 (𝑚 log
2 𝑛 + 𝑛 log

2 𝑛)

edges to 𝐷1 and 𝐷2, when𝑊 = 𝑂 (poly(𝑛)). Since we repeatedly
construct random DAGs 𝐷1 and 𝐷2 exactly 10 log𝑛 times, the num-

ber of additional edges and DAGs claimed in Theorem 1.5 is estab-

lished.

Running Time Analysis. To construct our hierarchical decompo-

sition {F }𝑖 , we make 𝑧 calls to Lemma 4.1. This takes𝑂 (log(𝑛𝑊) ·
(𝑚 log

2 𝑛 + 𝑛 log
3 𝑛)) time. The second step of the construction of

DAG 𝐷1 takes 𝑂 (𝑚𝑧2) = 𝑂 (𝑚 log
2 (𝑛𝑊)) time. To construct all

sets of edges 𝐻
𝑗
𝑖
, where 𝑖 ∈ [0, 𝑧] and 𝑗 ∈ [1, 𝑘𝑖], it takes time

𝑂 (∑𝑖∈[0,𝑧], 𝑗∈[1,𝑘𝑖] |𝐻
𝑗
𝑖
|) = 𝑂 (𝑛 log(𝑛𝑊) log𝑛) by Claim 4.5 and

our earlier bound on ∪𝑖, 𝑗 |𝐻 𝑗
𝑖
| in our size analysis. We conclude that

the constructions of DAGs 𝐷1 and 𝐷2 take

𝑂 (log(𝑛𝑊) · (𝑚 log
2 𝑛 + 𝑛 log

3 𝑛) +𝑚 log
2 (𝑛𝑊))

= 𝑂 (𝑚 log
3 𝑛 + 𝑛 log

4 𝑛)
time, when𝑊 = 𝑂 (poly(𝑛)). Since we repeatedly construct random
DAGs 𝐷1 and 𝐷2 exactly 10 log𝑛 times, the running time claimed

in Theorem 1.5 is established.

4.3 Initial Distortion Analysis
In this section, we make some initial progress towards proving that

our DAG cover D approximately preserves distances in 𝐺 . First,

we verify that for every DAG 𝐷 ∈ D, distances in 𝐷 are at least

distances in 𝐺 .

Claim 4.7 For each DAG 𝐷 ∈ D and nodes 𝑠, 𝑡 ∈ 𝑉 (𝐺),
dist𝐺 (𝑠, 𝑡) ≤ dist𝐷 (𝑠, 𝑡) .

Proof. We will prove that for every edge (𝑢, 𝑣) ∈ 𝐸 (𝐷),
dist𝐺 (𝑢, 𝑣) ≤ 𝑤𝐷 (𝑢, 𝑣),

where𝑤𝐷 is the weight function associated with DAG 𝐷 . This will

immediately imply the stated claim. We split our proof into cases

based on which step of the construction we added edge (𝑢, 𝑣) to
DAG 𝐷 .

• Edge (𝑢, 𝑣) was added in Step 2 of the construction of DAG

𝐷1. In this case, edge (𝑢, 𝑣) is of the form
(𝑢, 𝑣) = (𝑟𝑥𝑖 (𝑢

∗), 𝑟𝑦
𝑗
(𝑣∗)),

for some 𝑖, 𝑗 ∈ [0, 𝑧] such that min(𝑖, 𝑗) ≥ ℓ (𝑢∗, 𝑣∗), 𝑥,𝑦 ∈
{1, 2} and edge (𝑢∗, 𝑣∗) ∈ 𝐸 (𝐷∗). Recall that 𝑤𝐷 (𝑢, 𝑣) =

𝑤𝐺 (𝑢∗, 𝑣∗) + 𝑑𝑖 + 𝑑 𝑗 . Then

dist𝐺 (𝑢, 𝑣) = dist𝐺 (𝑟𝑥𝑖 (𝑢
∗), 𝑟𝑦

𝑗
(𝑣∗))

≤ dist𝐺 (𝑟𝑥𝑖 (𝑢
∗), 𝑢∗) + dist𝐺 (𝑢∗, 𝑣∗) + dist𝐺 (𝑣∗, 𝑟𝑦

𝑗
(𝑣∗))

≤ dist𝐺 (𝑟𝑥𝑖 (𝑢
∗), 𝑢∗) +𝑤𝐺 (𝑢∗, 𝑣∗) + dist𝐺 (𝑣∗, 𝑟𝑦

𝑗
(𝑣∗))

≤ 𝑑𝑖 +𝑤𝐺 (𝑢∗, 𝑣∗) + 𝑑 𝑗
= 𝑤𝐷 (𝑢, 𝑣),

as desired.

• Edge (𝑢, 𝑣) was added in Step 3 of the construction of DAG

𝐷1 or in Step 2 of the construction of DAG 𝐷2. We will need

the following observations:

– Since edge (𝑢, 𝑣) ∈ 𝐻 ∪ 𝐻𝑅
, there exists a set 𝑆

𝑗
𝑖
∈ F𝑖 ,

where 𝑖 ∈ [0, 𝑧] and 𝑗 ∈ [1, 𝑘𝑖], such that 𝑢, 𝑣 ∈ 𝑆
𝑗
𝑖
.

– By Property 2 of Claim 4.5,𝑤 (𝑢, 𝑣) = 𝑑𝑖 .

– By Claim 4.2, set 𝑆
𝑗
𝑖
has weak diameter at most 𝑑𝑖 in 𝐺 .

Then

dist𝐺 (𝑢, 𝑣) ≤ 𝑑𝑖 = 𝑤𝐷 (𝑢, 𝑣) . □

2276

Covering Approximate Shortest Paths with DAGs STOC ’25, June 23–27, 2025, Prague, Czechia

We have shown that distances in our DAG cover are at least dis-

tances in𝐺 . We now establish the distortion upper bound guarantee

of our DAG cover. Let 𝐷1 and 𝐷2 be the random DAGs constructed

in subsection 4.1, with associated set family {F𝑖 }𝑖 and graph family

{𝐺𝑖 }𝑖 . The key step in establishing our distortion upper bound will

be to prove the following lemma.

Lemma 4.8 For all 𝑠, 𝑡 ∈ 𝑉 (𝐺),
E[min(dist𝐷1

(𝑠, 𝑡), dist𝐷2
(𝑠, 𝑡))] = 𝑂 (log

4 𝑛) · dist𝐺 (𝑠, 𝑡) .

Once we prove this lemma, our claimed distortion upper bound

in Theorem 1.5 will follow from a simple application of Markov’s

inequality. The remainder of this section will be devoted to devel-

oping the necessary claims and lemmas to prove Lemma 4.8; we

will finally prove Lemma 4.8 in section 4.4.

First, wewill show that paths in graph𝐺𝑖 have a natural structure

with respect to the SCCs F𝑖 of 𝐺𝑖 .

Claim 4.9 Let 𝜋 be an 𝑠 { 𝑡 path in 𝐺𝑖 for some 𝑠, 𝑡 ∈ 𝑉 (𝐺) and
𝑖 ∈ [0, 𝑧]. There exists a sequence of sets 𝑆1, . . . , 𝑆𝑘 ⊆ F𝑖 in set family
F𝑖 with the following properties:

(1) Path 𝜋 contains exactly one edge 𝑒 𝑗 = (𝑢 𝑗 , 𝑣 𝑗) of the form
𝑒 𝑗 ∈ 𝑆 𝑗 × 𝑆 𝑗+1 for all 𝑗 ∈ [1, 𝑘 − 1]. Moreover,
• 𝜋 [𝑠,𝑢1] ⊆ 𝑆1,
• 𝜋 [𝑣 𝑗 , 𝑢 𝑗+1] ⊆ 𝑆 𝑗+1 for all 𝑗 ∈ [1, 𝑘 − 2], and
• 𝜋 [𝑣𝑘−1

, 𝑡] ⊆ 𝑆𝑘 .
(2) 𝑆 𝑗1 ≠ 𝑆 𝑗2 for all 𝑗1, 𝑗2 ∈ [1, 𝑘] such that 𝑗1 ≠ 𝑗2.

Proof. Recall that F𝑖 is the set of all strongly connected com-

ponents in 𝐺𝑖 . Let 𝑢, 𝑣 ∈ 𝜋 be nodes such that 𝑢 comes before 𝑣 in

path 𝜋 . Suppose that 𝑢, 𝑣 ∈ 𝜋 ∩ 𝑆 for some 𝑆 ∈ F𝑖 . This implies that

𝜋 [𝑢, 𝑣] ⊆ 𝑆 because 𝑆 is an SCC in 𝐺𝑖 . Then for every SCC 𝑆 ∈ F𝑖 ,
set 𝑆 intersects path 𝜋 in a (possibly empty) contiguous subpath

of 𝜋 . Let sequence 𝑆1, . . . , 𝑆𝑘 ⊆ F𝑖 be the SCCs in F𝑖 that have
nonempty intersection with 𝜋 , written so that if 𝑗1 < 𝑗2 ∈ [1, 𝑘]
then subpath 𝜋 ∩ 𝑆 𝑗1 comes before subpath 𝜋 ∩ 𝑆 𝑗2 in path 𝜋 . □

We will now show that if nodes 𝑠 and 𝑡 are contained in the same

set 𝑆 in set family F𝑖 , then we can use the edges in 𝐻 and 𝐻𝑅
to

upper bound the distances between 𝑠 and 𝑡 in 𝐷1 and 𝐷2.

Claim 4.10 Fix an index 𝑖 ∈ [0, 𝑧] and nodes 𝑠, 𝑡 ∈ 𝑆 for some set
𝑆 ∈ F𝑖 in set family F𝑖 .

• If 𝑠 <𝐷 𝑡 , then

dist𝐷1
(𝑠, 𝑡) ≤ 2𝑑𝑖 .

• if 𝑠 >𝐷 𝑡 , then

dist𝐷2
(𝑠, 𝑡) ≤ 2𝑑𝑖 .

Proof. This claim will follow directly from Claim 4.5 and our

construction of DAGs 𝐷1 and 𝐷2. Let 𝐻𝑆 ⊆ 𝑆 × 𝑆 be the directed,

weighted edges specified in Claim 4.5 with respect to set 𝑆 ∈ F𝑖 . By
construction, 𝐻𝑆 ⊆ 𝐸 (𝐷1).

• If 𝑠 <𝐷 𝑡 , then

dist𝐷1
(𝑠, 𝑡) ≤ dist𝐻𝑆

(𝑠, 𝑡) ≤ 2𝑑𝑖 ,

by Property 3 of Claim 4.5.

• Otherwise, 𝑠 >𝐷 𝑡 . Let 𝐻𝑅
𝑆
be the set of weighted, directed

edges obtained by reversing the orientations of the edges in

𝐻𝑆 . By construction, 𝐻𝑅
𝑆
⊆ 𝐻𝑅 ⊆ 𝐸 (𝐷2). Then since 𝑠 >𝐷 𝑡 ,

we can again argue by Property 3 of Claim 4.5 that

dist𝐷2
(𝑠, 𝑡) ≤ dist𝐻𝑅

𝑆
(𝑠, 𝑡) = dist𝐻𝑆

(𝑡, 𝑠) ≤ 2𝑑𝑖 . □

For an event 𝐴, let 1[𝐴] denote the random variable that takes

value 1 when event 𝐴 holds, and value 0 otherwise. The follow-

ing lemma makes some progress towards proving Lemma 4.8, by

achieving an upper bound on the expected distortion between 𝑠 and

𝑡 in DAG 𝐷2, multiplied by the binary random variable 1[𝑠 >𝐷 𝑡].
Notice that if 𝑠 <𝐷 𝑡 , then dist𝐷2

(𝑠, 𝑡) = ∞, so we cannot expect to

get a reasonable upper bound on E[dist𝐷2
(𝑠, 𝑡)] in general; this is

why we upper bound E[dist𝐷2
(𝑠, 𝑡) · 1[𝑠 >𝐷 𝑡]] instead.

Lemma 4.11 For all 𝑠, 𝑡 ∈ 𝑉 (𝐺),

E[dist𝐷2
(𝑠, 𝑡) · 1[𝑠 >𝐷 𝑡]] = 𝑂 (log

3 𝑛) · dist𝐺 (𝑠, 𝑡) .

Proof. Fix a shortest 𝑠 { 𝑡 path 𝜋 in 𝐺 . Let 𝑋 be the random

variable 𝑋 = dist𝐷2
(𝑠, 𝑡). Let 𝐴 be the event that 𝑠 >𝐷 𝑡 . Let 𝐵𝑖 be

the event that path 𝜋 is contained in graph 𝐺𝑖 , for all 𝑖 ∈ [0, 𝑧].
Consider the scenario where event𝐴∩𝐵𝑖 occurs, i.e., 𝑠 >𝐷 𝑡 , and

path 𝜋 is contained in 𝐺𝑖 . Then there must exist an SCC 𝑆 ∈ F𝑖 of
𝐺𝑖 such that 𝜋 ⊆ 𝐺𝑖 [𝑆]. If this is not the case, then path 𝜋 intersects

with two or more SCCs in𝐺𝑖 , implying that 𝑠 <𝐷 𝑡 , a contradiction.

Then we can apply Claim 4.10 to argue that if event 𝐴 ∩ 𝐵𝑖 occurs,

then dist𝐷2
(𝑠, 𝑡) ≤ 2𝑑𝑖 . In particular, this implies that

E[𝑋 | 𝐴 ∩ 𝐵𝑖 ∩ 𝐵𝑖+1] ≤ 2𝑑𝑖 .

Observe that Pr[𝐵0] = 1 since 𝜋 ⊆ 𝐺 = 𝐺0. Then we can obtain

the following inequality

E[𝑋 | 𝐴] ≤
𝑧∑︁
𝑖=0

E[𝑋 | 𝐴 ∩ 𝐵𝑖 ∩ 𝐵𝑖+1] Pr[𝐵𝑖 ∩ 𝐵𝑖+1 | 𝐴] .

Additionally, we observe that by Claim 4.2 and the union bound,

for all 𝑖 ∈ [0, 𝑧],

Pr[𝐵𝑖+1 | 𝐵𝑖] ≤
∑︁

𝑒∈𝐸 (𝜋)
𝑂

(
𝑤 (𝑒) · log

2 𝑛

𝑑𝑖

)
= 𝑂

(
log

2 𝑛

𝑑𝑖

)
·dist𝐺 (𝑠, 𝑡),

2277

STOC ’25, June 23–27, 2025, Prague, Czechia Sepehr Assadi, Gary Hoppenworth, and Nicole Wein

since 𝜋 is an 𝑠 { 𝑡 shortest path in 𝐺 . Putting our observations

together,

E[𝑋 · 1[𝑠 >𝐷 𝑡]]
= E[𝑋 | 𝐴] Pr[𝐴]

≤
(

𝑧∑︁
𝑖=0

E[𝑋 | 𝐴 ∩ 𝐵𝑖 ∩ 𝐵𝑖+1] Pr[𝐵𝑖 ∩ 𝐵𝑖+1 | 𝐴]
)
· Pr[𝐴]

=

𝑧∑︁
𝑖=0

E[𝑋 | 𝐴 ∩ 𝐵𝑖 ∩ 𝐵𝑖+1] Pr[𝐵𝑖 ∩ 𝐵𝑖+1 ∩𝐴]

≤
𝑧∑︁
𝑖=0

E[𝑋 | 𝐴 ∩ 𝐵𝑖 ∩ 𝐵𝑖+1] Pr[𝐵𝑖+1 | 𝐵𝑖]

≤
𝑧∑︁
𝑖=0

2𝑑𝑖 · Pr[𝐵𝑖+1 | 𝐵𝑖]

≤
𝑧∑︁
𝑖=0

2𝑑𝑖 ·𝑂
(

log
2 𝑛

𝑑𝑖

)
· dist𝐺 (𝑠, 𝑡)

= 𝑂 (𝑧 log
2 𝑛) · dist𝐺 (𝑠, 𝑡)

= 𝑂 (log
3 𝑛) · dist𝐺 (𝑠, 𝑡) . □

We will need the following technical lemma, which we prove

using a similar argument as in Lemma 4.11. Recall that for any

index 𝑋 ∈ [0, 𝑧], 𝑑𝑋 = 𝑛2𝑊 2
−𝑋−1

is the diameter of the directed

low-diameter decomposition that we apply to graph 𝐺𝑋 .

Lemma 4.12 Let 𝑠, 𝑡 ∈ 𝑉 (𝐺) be nodes such that 𝑠 can reach 𝑡 in 𝐺 .
Let 𝜋 be an 𝑠 { 𝑡 shortest path in 𝐺 . Let 𝐻 ⊆ 𝐺 be a subgraph of 𝐺
such that 𝜋 ⊆ 𝐻 . For each 𝑖 ∈ [0, 𝑧] and subgraph 𝐽 ⊆ 𝐺 , let 𝐶 𝐽

𝑖
be

the event that 𝐺𝑖 = 𝐽 . Let 𝑋 ∈ [0, 𝑧] be the (random-valued) index
such that 𝜋 ⊆ 𝐺𝑋 and 𝜋 ⊈ 𝐺𝑋+1. For each 𝑖 ∈ [0, 𝑧],

E
[
𝑑𝑋 |𝐶𝐻

𝑖

]
≤ 𝑐 · (𝑧 − 𝑖 + 1) · log

2 𝑛 · dist𝐺 (𝑠, 𝑡),

for a sufficiently large constant 𝑐 > 0.

Proof. Fix a pair of nodes 𝑠, 𝑡 ∈ 𝑉 (𝐺) such that 𝑠 can reach 𝑡

in 𝐺 . Let 𝜋 be an 𝑠 { 𝑡 shortest path in 𝐺 , and let 𝐻 ⊆ 𝐺 be a

subgraph of 𝐺 such that 𝜋 ⊆ 𝐻 . We will prove Lemma 4.12 for a

fixed index 𝑖 ∈ [0, 𝑧].
For each 𝑗 ∈ [0, 𝑧], let 𝐵 𝑗 be the event that 𝜋 ⊆ 𝐺 𝑗 . We can

obtain the following equality:

E[𝑑𝑋 | 𝐶𝐻
𝑖] =

𝑧∑︁
𝑗=𝑖

𝑑 𝑗 · Pr[𝐵 𝑗 ∩ 𝐵 𝑗+1 | 𝐶𝐻
𝑖] .

Additionally, we observe that by Claim 4.2 and the union bound,

for all 𝑗 ∈ [𝑖, 𝑧],

Pr[𝐵 𝑗+1 | 𝐵 𝑗∩𝐶𝐻
𝑖] ≤

∑︁
𝑒∈𝐸 (𝜋)

𝑂

(
𝑤 (𝑒) · log

2 𝑛

𝑑 𝑗

)
= 𝑂

(
log

2 𝑛

𝑑 𝑗

)
·dist𝐺 (𝑠, 𝑡),

since 𝜋 is an 𝑠 { 𝑡 shortest path in 𝐺 . Putting our observations

together,

E[𝑑𝑋 | 𝐶𝐻
𝑖] =

𝑧∑︁
𝑗=𝑖

𝑑 𝑗 · Pr[𝐵 𝑗 ∩ 𝐵 𝑗+1 | 𝐶𝐻
𝑖]

=

𝑧∑︁
𝑗=𝑖

𝑑 𝑗 · Pr[𝐵 𝑗+1 | 𝐵 𝑗 ∩𝐶𝐻
𝑖] Pr[𝐵 𝑗 | 𝐶𝐻

𝑖]

≤
𝑧∑︁
𝑗=𝑖

𝑑 𝑗 · Pr[𝐵 𝑗+1 | 𝐵 𝑗 ∩𝐶𝐻
𝑖]

≤
𝑧∑︁
𝑗=𝑖

𝑑 𝑗 ·𝑂
(

log
2 𝑛

𝑑 𝑗

)
· dist𝐺 (𝑠, 𝑡)

≤ 𝑐 · (𝑧 − 𝑖 + 1) · log
2 𝑛 · dist𝐺 (𝑠, 𝑡),

for a sufficiently large constant 𝑐 > 0. □

In Lemma 4.11, we gave an upper bound on the expectation

of random variable dist𝐷2
(𝑠, 𝑡) · 1[𝑠 >𝐷 𝑡], for a pair of nodes

𝑠, 𝑡 ∈ 𝑉 (𝐺). This proof made heavy use of the fact that this random

variable took value 0 when 𝑠 <𝐷 𝑡 . Our next goal will be to give an

upper bound on the expectation of the random variable dist𝐷1
(𝑠, 𝑡) ·

1[𝑠 <𝐷 𝑡]. We will need to introduce some additional notation first.

Additional Notation. For all nodes 𝑠, 𝑡 ∈ 𝑉 (𝐺) such that 𝑠 can

reach 𝑡 in𝐺 (i.e., (𝑠, 𝑡) ∈ 𝑇𝐶 (𝐺)), we fix an 𝑠 { 𝑡 shortest path 𝜋𝑠,𝑡
in𝐺 . We may assume without loss of generality that our collection

of paths {𝜋𝑠,𝑡 } (𝑠,𝑡) ∈𝑇𝐶 (𝐺) is consistent. Formally, this means that

for any two paths 𝜋𝑠,𝑡 and 𝜋𝑠′,𝑡 ′ in our collection, and for any two

vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺), if 𝑢, 𝑣 ∈ 𝜋𝑠,𝑡 ∩ 𝜋𝑠′,𝑡 ′ and node 𝑢 precedes node

𝑣 in both 𝜋𝑠,𝑡 and 𝜋𝑠′,𝑡 ′ , then we have that 𝜋𝑠,𝑡 [𝑢, 𝑣] = 𝜋𝑠′,𝑡 ′ [𝑢, 𝑣].
For all nodes 𝑠, 𝑡 ∈ 𝑉 (𝐺) such that 𝑠 can reach 𝑡 in 𝐺 , and for

each 𝑖 ∈ [0, 𝑧], let 𝐵𝑠,𝑡
𝑖

be the event that path 𝜋𝑠,𝑡 is contained in𝐺𝑖 .

For every subgraph 𝐻 ⊆ 𝐺 , let 𝐶𝐻
𝑖

be the event that 𝐺𝑖 = 𝐻 .

The following lemma formally states what we will prove about

the expected size of the random variable dist𝐷1
(𝑠, 𝑡) · 1[𝑠 <𝐷 𝑡].

Lemma 4.13 Let 𝑠, 𝑡 ∈ 𝑉 (𝐺), and let 𝑖 ∈ [0, 𝑧]. Let 𝐻 ⊆ 𝐺 be a
subgraph of 𝐺 such that 𝜋𝑠,𝑡 ⊆ 𝐻 . Then

E
[
dist𝐷1

(𝑠, 𝑡) · 1[𝑠 <𝐷 𝑡] | 𝐶𝐻
𝑖

]
≤ 𝑐 · (𝑧−𝑖+1)2 · log

2 𝑛 ·dist𝐺 (𝑠, 𝑡),

for a sufficiently large constant 𝑐 > 1.

We prove Lemma 4.13 by an induction argument in the arXiv

version of our paper [6]. We finish the proof of Theorem 1.5 in

Section 4.4.

4.4 Finishing the Proof of Theorem 1.5
With Lemma 4.13 in hand, we can now easily finish our proof of

Theorem 1.5.

Claim 4.14 For all 𝑠, 𝑡 ∈ 𝑉 (𝐺),

E[dist𝐷1
(𝑠, 𝑡) · 1[𝑠 <𝐷 𝑡]] = 𝑂 (log

4 𝑛) · dist𝐺 (𝑠, 𝑡) .

2278

Covering Approximate Shortest Paths with DAGs STOC ’25, June 23–27, 2025, Prague, Czechia

Proof. Recall that 𝐶𝐺
0
is the event that 𝐺0 = 𝐺 . Notice that by

our construction, 𝐺0 = 𝐺 and shortest path 𝜋𝑠,𝑡 satisfies 𝜋𝑠,𝑡 ⊆ 𝐺0,

unconditionally. Then by Lemma 4.13,

E[dist𝐷1
(𝑠, 𝑡) · 1[𝑠 <𝐷 𝑡]]

= E[dist𝐷1
(𝑠, 𝑡) · 1[𝑠 <𝐷 𝑡] | 𝐶𝐺

0
]

≤ 𝑂 (𝑧2
log

2 𝑛) · dist𝐺 (𝑠, 𝑡).
Since 𝑧 = 𝑂 (log𝑛), the claim follows. □

We are ready to prove Lemma 4.8, which we restate below.

Lemma 4.8 For all 𝑠, 𝑡 ∈ 𝑉 (𝐺),
E[min(dist𝐷1

(𝑠, 𝑡), dist𝐷2
(𝑠, 𝑡))] = 𝑂 (log

4 𝑛) · dist𝐺 (𝑠, 𝑡) .

Proof.

E[min(dist𝐷1
(𝑠, 𝑡), dist𝐷2

(𝑠, 𝑡))]
≤ E[dist𝐷1

(𝑠, 𝑡) · 1[𝑠 <𝐷 𝑡]] + E[dist𝐷2
(𝑠, 𝑡) · 1[𝑠 >𝐷 𝑡]]

≤ 𝑂 (log
4 𝑛) · dist𝐺 (𝑠, 𝑡),

where the final inequality follows from Lemma 4.11 and Claim

4.14. □

We can now finish the distortion analysis and the proof of Theo-

rem 1.5.

Proof of Theorem 1.5. Wehave finished the running time anal-

ysis and size analysis for Theorem 1.5. What remains is to prove

that with high probability, for all 𝑠, 𝑡 ∈ 𝑉 (𝐺), there exists 𝐷 ∈ D
such that

dist𝐷 (𝑠, 𝑡) ≤ 𝑂 (log
4 𝑛) · dist𝐺 (𝑠, 𝑡) .

Fix a pair of nodes 𝑠, 𝑡 ∈ 𝑉 (𝐺). Since
E[min(dist𝐷1

(𝑠, 𝑡), dist𝐷2
(𝑠, 𝑡))] = 𝑂 (log

4 𝑛) ·dist𝐺 (𝑠, 𝑡) by Lemma

4.8, by Markov’s inequality we conclude that with probability at

least 1/2,

min(dist𝐷1
(𝑠, 𝑡), dist𝐷2

(𝑠, 𝑡)) = 𝑂 (log
4 𝑛) · dist𝐺 (𝑠, 𝑡) .

Then with probability at least

1 −
(

1

2

)
10 log𝑛

≥ 1 − 𝑛−10,

there exists a DAG 𝐷 ∈ D such that dist𝐷 (𝑠, 𝑡) ≤ dist𝐺 (𝑠, 𝑡). Then
by applying the union bound over all pairs of nodes 𝑠, 𝑡 ∈ 𝑉 (𝐺), we
conclude that D is an 𝑂 (log

4 𝑛)-distance-preserving DAG cover of

𝐺 with high probability. □

5 Open Problems
The main problem left open by our work is closing the gap between

our upper and lower bounds for DAG covers with �̃� (𝑚) additional
edges. Our upper bound is polylogarithmic in both the distortion

and the number of DAGs, while our lower bound is for exact dis-

tances and a polynomial number of DAGs. We conjecture that the

lower bound can be improved to handle approximate distances, as

well as a larger polynomial number of DAGs. Another open prob-

lem is to find concrete applications of our DAG cover algorithm. We

suspect that such applications exist, given the wide-reaching appli-

cations of the analogous undirected constructions. Another open

problem is to extend our DAG cover algorithm to various settings

such as the distributed, parallel, online, dynamic, and streaming

settings, since such settings have been fruitful for the analogous

undirected constructions. Lastly, it would be interesting to consider

the “Steiner” version of this problem where vertices, in addition to

edges, are allowed to be added.

Acknowledgements
Wewould like to thank Aaron Bernstein, Shimon Kogan, and Merav

Parter for the conversation that initiated this work, as well as addi-

tional fruitful conversations about how to define the problem.

References
[1] Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Moham-

mad Javad Latifi Jebelli, Stephen Kobourov, and Richard Spence. 2020. Graph

spanners: a tutorial review. Comput. Sci. Rev. 37 (2020), 100253, 30. doi:10.1016/j.
cosrev.2020.100253

[2] Shyan Akmal and Nicole Wein. 2023. A local-to-global theorem for congested

shortest paths. In 31st annual European Symposium on Algorithms. LIPIcs. Leibniz
Int. Proc. Inform., Vol. 274. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, Art.

No. 8, 17. doi:10.4230/lipics.esa.2023.8

[3] Noga Alon, Richard M. Karp, David Peleg, and Douglas West. 1995. A graph-

theoretic game and its application to the 𝑘-server problem. SIAM J. Comput. 24,
1 (1995), 78–100. doi:10.1137/S0097539792224474

[4] Saeed Akhoondian Amiri and Julian Wargalla. 2020. Disjoint shortest paths with

congestion on dags. arXiv preprint arXiv:2008.08368 (2020).
[5] Sunil Arya, Gautam Das, David M Mount, Jeffrey S Salowe, and Michiel Smid.

1995. Euclidean spanners: short, thin, and lanky. In Proceedings of the twenty-
seventh annual ACM symposium on Theory of computing. 489–498.

[6] Sepehr Assadi, Gary Hoppenworth, and Nicole Wein. 2025. Covering Approxi-

mate Shortest Paths with DAGs. arXiv preprint arXiv:2504.11256 (2025).
[7] Baruch Awerbuch, Shay Kutten, and David Peleg. 1991. Efficient deadlock-free

routing. In Proceedings of the tenth annual ACM symposium on Principles of
distributed computing. 177–188.

[8] Baruch Awerbuch, Shay Kutten, and David Peleg. 1994. On buffer-economical

store-and-forward deadlock prevention. IEEE transactions on communications 42,
11 (1994), 2934–2937.

[9] Baruch Awerbuch and David Peleg. 1992. Routing with polynomial

communication-space trade-off. SIAM J. Discrete Math. 5, 2 (1992), 151–162.

doi:10.1137/0405013

[10] Baruch Awerbuch and David Peleg. 1995. Online tracking of mobile users. Journal
of the ACM (JACM) 42, 5 (1995), 1021–1058.

[11] Lorenzo Balzotti. 2022. Non-crossing shortest paths are covered with exactly

four forests. arXiv preprint arXiv:2210.13036 (2022).
[12] Yair Bartal. 1996. Probabilistic approximation of metric spaces and its algorithmic

applications. In 37th Annual Symposium on Foundations of Computer Science
(Burlington, VT, 1996). IEEE Comput. Soc. Press, Los Alamitos, CA, 184–193.

doi:10.1109/SFCS.1996.548477

[13] Yair Bartal. 1999. On approximating arbitrary metrices by tree metrics. In STOC
’98 (Dallas, TX). ACM, New York, 161–168.

[14] Yair Bartal, Nova Fandina, and Ofer Neiman. 2019. Covering metric spaces by few

trees. In 46th International Colloquium on Automata, Languages, and Programming.
LIPIcs. Leibniz Int. Proc. Inform., Vol. 132. Schloss Dagstuhl. Leibniz-Zent. Inform.,

Wadern, Art. No. 20, 16.

[15] Yair Bartal, Nova Fandina, and Seeun William Umboh. 2020. Online probabilis-

tic metric embedding: a general framework for bypassing inherent bounds. In

Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms. SIAM,

Philadelphia, PA, 1538–1557.

[16] Yair Bartal, Ora Nova Fandina, and Ofer Neiman. 2022. Covering metric spaces by

few trees. J. Comput. System Sci. 130 (2022), 26–42. doi:10.1016/j.jcss.2022.06.001
[17] Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. 2005. On metric

Ramsey-type phenomena. Ann. of Math. (2) 162, 2 (2005), 643–709. doi:10.4007/
annals.2005.162.643

[18] Aaron Bernstein, Greg Bodwin, and Nicole Wein. 2024. Are there graphs whose

shortest path structure requires large edge weights? In 15th Innovations in
Theoretical Computer Science Conference. LIPIcs. Leibniz Int. Proc. Inform., Vol. 287.

Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, Art. No. 12, 22. doi:10.4230/

lipics.itcs.2024.12

[19] Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. 2022.

Negative-weight single-source shortest paths in near-linear time. In 2022 IEEE
63rd Annual Symposium on Foundations of Computer Science—FOCS 2022. IEEE
Computer Soc., Los Alamitos, CA, 600–611.

[20] Aaron Bernstein and NicoleWein. 2023. Closing the gap between directed hopsets

and shortcut sets. In Proceedings of the 2023 Annual ACM-SIAM Symposium on

2279

https://doi.org/10.1016/j.cosrev.2020.100253
https://doi.org/10.1016/j.cosrev.2020.100253
https://doi.org/10.4230/lipics.esa.2023.8
https://doi.org/10.1137/S0097539792224474
https://doi.org/10.1137/0405013
https://doi.org/10.1109/SFCS.1996.548477
https://doi.org/10.1016/j.jcss.2022.06.001
https://doi.org/10.4007/annals.2005.162.643
https://doi.org/10.4007/annals.2005.162.643
https://doi.org/10.4230/lipics.itcs.2024.12
https://doi.org/10.4230/lipics.itcs.2024.12

STOC ’25, June 23–27, 2025, Prague, Czechia Sepehr Assadi, Gary Hoppenworth, and Nicole Wein

Discrete Algorithms (SODA). SIAM, Philadelphia, PA, 163–182. doi:10.1137/1.

9781611977554.ch7

[21] Dietmar Berwanger, Anuj Dawar, Paul Hunter, and Stephan Kreutzer. 2006. DAG-

width and parity games. In STACS 2006. Lecture Notes in Comput. Sci., Vol. 3884.

Springer, Berlin, 524–536. doi:10.1007/11672142_43

[22] Guy E. Blelloch, Yan Gu, and Yihan Sun. 2017. Efficient construction of probabilis-

tic tree embeddings. In 44th International Colloquium on Automata, Languages,
and Programming. LIPIcs. Leibniz Int. Proc. Inform., Vol. 80. Schloss Dagstuhl.

Leibniz-Zent. Inform., Wadern, Art. No. 26, 14.

[23] Guy E Blelloch, Anupam Gupta, and Kanat Tangwongsan. 2012. Parallel proba-

bilistic tree embeddings, k-median, and buy-at-bulk network design. In Proceed-
ings of the twenty-fourth annual ACM symposium on Parallelism in algorithms
and architectures. 205–213.

[24] Greg Bodwin. 2017. Linear size distance preservers. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 600–615.

[25] Greg Bodwin. 2019. On the structure of unique shortest paths in graphs. In

Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, Philadelphia, PA, 2071–2089. doi:10.1137/1.9781611975482.125

[26] Greg Bodwin and Gary Hoppenworth. 2023. Folklore sampling is optimal for

exact hopsets: confirming the

√
𝑛 barrier. In 2023 IEEE 64th Annual Symposium on

Foundations of Computer Science—FOCS 2023. IEEE Computer Soc., Los Alamitos,

CA, 701–720. doi:10.1109/FOCS57990.2023.00046

[27] Karl Bringmann, Alejandro Cassis, andNick Fischer. 2023. Negative-weight single-

source shortest paths in near-linear time: now faster! In 2023 IEEE 64th Annual
Symposium on Foundations of Computer Science—FOCS 2023. IEEE Computer Soc.,

Los Alamitos, CA, 515–538. doi:10.1109/FOCS57990.2023.00038

[28] Karl Bringmann, Alejandro Cassis, and Nick Fischer. 2023. Negative-Weight

Single-Source Shortest Paths in Near-Linear Time: Now Faster!. In 2023 IEEE 64th
Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 515–538.

[29] Karl Bringmann, Nick Fischer, Bernhard Haeupler, and Rustam Latypov.

2025. Near-Optimal Directed Low-Diameter Decompositions. arXiv preprint
arXiv:2502.05687 (2025).

[30] Massimo Cairo, Roberto Grossi, and Romeo Rizzi. 2016. New bounds for approxi-

mating extremal distances in undirected graphs. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. ACM, New York,

363–376. doi:10.1137/1.9781611974331.ch27

[31] T.-H. Hubert Chan, Anupam Gupta, Bruce M. Maggs, and Shuheng Zhou. 2016.

On hierarchical routing in doubling metrics. ACM Trans. Algorithms 12, 4 (2016),
Art. 55, 22. doi:10.1145/2915183

[32] Hsien-Chih Chang, Jonathan Conroy, Hung Le, Lazar Milenkovic, Shay Solomon,

and Cuong Than. 2023. Covering planar metrics (and beyond): O (1) trees suffice.

In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE, 2231–2261.

[33] Moses Charikar, Chandra Chekuri, Ashish Goel, and Sudipto Guha. 1999. Round-

ing via trees: deterministic approximation algorithms for group Steiner trees and

𝑘-median. In STOC ’98 (Dallas, TX). ACM, New York, 114–123.

[34] Daniel Cizma and Nati Linial. 2022. Geodesic geometry on graphs. Discrete
Comput. Geom. 68, 1 (2022), 298–347. doi:10.1007/s00454-021-00345-w

[35] Daniel Cizma and Nati Linial. 2023. Irreducible nonmetrizable path systems in

graphs. J. Graph Theory 102, 1 (2023), 5–14.

[36] Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard

Peng, Anup B. Rao, and Shen Chen Xu. 2014. Solving SDD linear systems in

nearly𝑚 log
1/2 𝑛 time. In STOC’14—Proceedings of the 2014 ACM Symposium on

Theory of Computing. ACM, New York, 343–352.

[37] Sabine Cornelsen, Maximilian Pfister, Henry Förster, Martin Gronemann, Michael

Hoffmann, Stephen Kobourov, and Thomas Schneck. 2022. Drawing shortest

paths in geodetic graphs. J. Graph Algorithms Appl. 26, 3 (2022), 353–361. doi:10.
7155/jgaa.00598

[38] Michael Elkin and Ofer Neiman. 2019. Linear-Size Hopsets with Small Hopbound,

and Constant-Hopbound Hopsets in RNC. In The 31st ACM on Symposium on
Parallelism in Algorithms and Architectures, SPAA 2019, Phoenix, AZ, USA, June
22-24, 2019, Christian Scheideler and Petra Berenbrink (Eds.). ACM, 333–341.

doi:10.1145/3323165.3323177

[39] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. 2004. A tight bound on

approximating arbitrary metrics by tree metrics. J. Comput. System Sci. 69, 3
(2004), 485–497. doi:10.1016/j.jcss.2004.04.011

[40] Arnold Filtser and Hung Le. 2022. Locality-sensitive orderings and applications

to reliable spanners. In STOC ’22—Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing. ACM, New York, 1066–1079.

[41] Jeremy T. Fineman. 2024. Single-source shortest paths with negative real weights

in (𝑚𝑛8/9) time. In STOC’24—Proceedings of the 56th Annual ACM Symposium
on Theory of Computing. ACM, New York, 3–14. doi:10.1145/3618260.3649614

[42] Sebastian Forster, Gramoz Goranci, and Monika Henzinger. 2021. Dynamic

maintenance of low-stretch probabilistic tree embeddings with applications. In

Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA).
[Society for Industrial and Applied Mathematics (SIAM)], Philadelphia, PA, 1226–

1245. doi:10.1137/1.9781611976465.75

[43] Stephan Friedrichs and Christoph Lenzen. 2018. Parallel metric tree embedding

based on an algebraic view on Moore-Bellman-Ford. J. ACM 65, 6 (2018), Art. 43,

55. doi:10.1145/3231591

[44] Naveen Garg, Goran Konjevod, and R. Ravi. 2000. A polylogarithmic ap-

proximation algorithm for the group Steiner tree problem. Vol. 37. 66–84.

doi:10.1006/jagm.2000.1096 Ninth Annual ACM-SIAM Symposium on Discrete

Algorithms (San Francisco, CA, 1998).

[45] Mohsen Ghaffari and Christoph Lenzen. 2014. Near-optimal distributed tree

embedding. In Distributed computing. Lecture Notes in Comput. Sci., Vol. 8784.

Springer, Heidelberg, 197–211. doi:10.1007/978-3-662-45174-8_14

[46] Anupam Gupta, Amit Kumar, and Rajeev Rastogi. 2005. Traveling with a pez

dispenser (or, routing issues in mpls). SIAM J. Comput. 34, 2 (2005), 453–474.
[47] Bernhard Haeupler, D. Ellis Hershkowitz, and Goran Zuzic. 2021. Tree embed-

dings for hop-constrained network design. In STOC ’21—Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing. ACM, New York,

356–369. doi:10.1145/3406325.3451053

[48] Chris Harrelson, Kirsten Hildrum, and Satish Rao. 2003. A polynomial-time tree

decomposition to minimize congestion. In Proceedings of the fifteenth annual
ACM symposium on Parallel algorithms and architectures. 34–43.

[49] William Hesse. 2003. Directed graphs requiring large numbers of shortcuts.. In

SODA. Citeseer, 665–669.
[50] Shang-En Huang and Seth Pettie. 2019. Thorup-Zwick emulators are universally

optimal hopsets. Inf. Process. Lett. 142 (2019), 9–13. doi:10.1016/j.ipl.2018.10.001
[51] Yufan Huang, Peter Jin, and Kent Quanrud. 2024. Faster single-source short-

est paths with negative real weights via proper hop distance. arXiv preprint
arXiv:2407.04872 (2024).

[52] Omri Kahalon, Hung Le, Lazar Milenković, and Shay Solomon. 2022. Can’t see the

forest for the trees: Navigating metric spaces by bounded hop-diameter spanners.

In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing.
151–162.

[53] Richard M Karp. 1989. A 2k-competitive algorithm for the circle. Manuscript,
August 5 (1989), 11.

[54] Marek Karpinski, Andrzej Lingas, and Dzmitry Sledneu. 2013. Optimal cuts and

partitions in tree metrics in polynomial time. Inform. Process. Lett. 113, 12 (2013),
447–451. doi:10.1016/j.ipl.2013.03.009

[55] Ken-ichi Kawarabayashi andAnastasios Sidiropoulos. 2022. Embeddings of planar

quasimetrics into directed ℓ1 and polylogarithmic approximation for Directed

Sparsest-Cut. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science—FOCS 2021. IEEE Computer Soc., Los Alamitos, CA, 480–491. doi:10.

1109/FOCS52979.2021.00055

[56] Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal Pandurangan, and Kunal Tal-

war. 2008. Efficient distributed approximation algorithms via probabilistic tree

embeddings. In Proceedings of the twenty-seventh ACM symposium on Principles
of distributed computing. 263–272.

[57] Jon Kleinberg and Éva Tardos. 2002. Approximation algorithms for classification

problems with pairwise relationships: metric labeling and Markov random fields.

J. ACM 49, 5 (2002), 616–639. doi:10.1145/585265.585268

[58] Shimon Kogan and Merav Parter. 2022. New diameter-reducing shortcuts and

directed hopsets: breaking the𝑂 (
√
𝑛) barrier. In Proceedings of the 2022 Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA). [Society for Industrial

and Applied Mathematics (SIAM)], Philadelphia, PA, 1326–1340. doi:10.1137/1.

9781611977073.55

[59] I. Krasikov and S. D. Noble. 2004. Finding next-to-shortest paths in a graph.

Inform. Process. Lett. 92, 3 (2004), 117–119. doi:10.1016/j.ipl.2004.06.020
[60] Willian Lochet. 2021. A polynomial time algorithm for the 𝑘-disjoint shortest

paths problem. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA). [Society for Industrial and Applied Mathematics (SIAM)],

Philadelphia, PA, 169–178. doi:10.1137/1.9781611976465.12

[61] Manor Mendel and Assaf Naor. 2007. Ramsey partitions and proximity data

structures. J. Eur. Math. Soc. (JEMS) 9, 2 (2007), 253–275. doi:10.4171/JEMS/79

[62] Manor Mendel and Chaya Schwob. 2009. Fast CKR Partitions of Sparse Graphs.

Chicago Journal OF Theoretical Computer Science 2 (2009), 1–18.
[63] Harald Racke. 2002. Minimizing congestion in general networks. In The 43rd

Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings.
IEEE, 43–52.

[64] Harald Räcke. 2008. Optimal hierarchical decompositions for congestion mini-

mization in networks. In STOC’08. ACM, New York, 255–263. doi:10.1145/1374376.

1374415

[65] Mikkel Thorup and Uri Zwick. 2005. Approximate distance oracles. Journal of
the ACM (JACM) 52, 1 (2005), 1–24.

[66] Virginia Vassilevska Williams, Yinzhan Xu, and Zixuan Xu. 2024. Simpler and

higher lower bounds for shortcut sets. In Proceedings of the 2024 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). SIAM, Philadelphia, PA, 2643–

2656. doi:10.1137/1.9781611977912.94

Received 2024-11-04; accepted 2025-02-01

2280

https://doi.org/10.1137/1.9781611977554.ch7
https://doi.org/10.1137/1.9781611977554.ch7
https://doi.org/10.1007/11672142_43
https://doi.org/10.1137/1.9781611975482.125
https://doi.org/10.1109/FOCS57990.2023.00046
https://doi.org/10.1109/FOCS57990.2023.00038
https://doi.org/10.1137/1.9781611974331.ch27
https://doi.org/10.1145/2915183
https://doi.org/10.1007/s00454-021-00345-w
https://doi.org/10.7155/jgaa.00598
https://doi.org/10.7155/jgaa.00598
https://doi.org/10.1145/3323165.3323177
https://doi.org/10.1016/j.jcss.2004.04.011
https://doi.org/10.1145/3618260.3649614
https://doi.org/10.1137/1.9781611976465.75
https://doi.org/10.1145/3231591
https://doi.org/10.1006/jagm.2000.1096
https://doi.org/10.1007/978-3-662-45174-8_14
https://doi.org/10.1145/3406325.3451053
https://doi.org/10.1016/j.ipl.2018.10.001
https://doi.org/10.1016/j.ipl.2013.03.009
https://doi.org/10.1109/FOCS52979.2021.00055
https://doi.org/10.1109/FOCS52979.2021.00055
https://doi.org/10.1145/585265.585268
https://doi.org/10.1137/1.9781611977073.55
https://doi.org/10.1137/1.9781611977073.55
https://doi.org/10.1016/j.ipl.2004.06.020
https://doi.org/10.1137/1.9781611976465.12
https://doi.org/10.4171/JEMS/79
https://doi.org/10.1145/1374376.1374415
https://doi.org/10.1145/1374376.1374415
https://doi.org/10.1137/1.9781611977912.94

	Abstract
	1 Introduction
	2 Technical Overview
	2.1 Lower Bounds
	2.2 Upper Bound

	3 Paper Structure
	4 An Upper Bound for DAG Covers with "0365O(m) additional Edges
	4.1 Construction of DAG Cover D
	4.2 Size and Time Analysis of DAG Cover D
	4.3 Initial Distortion Analysis
	4.4 Finishing the Proof of Theorem 1.5

	5 Open Problems
	References

