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Abstract
Correlation clustering is a widely-used approach for clustering

large data sets based only on pairwise similarity information. In

recent years, there has been a steady stream of better and better

classical algorithms for approximating this problem. Meanwhile, an-

other line of research has focused on porting the classical advances

to various sublinear algorithm models, including semi-streaming,

Massively Parallel Computation (MPC), and distributed computing.

Yet, these latter works typically rely on ad-hoc approaches that

do not necessarily keep up with advances in approximation ratios

achieved by classical algorithms. Hence, the motivating question

for our work is this: can the gains made by classical algorithms for

correlation clustering be ported over to sublinear algorithms in a

black-box manner? We answer this question in the affirmative by

introducing the paradigm of graph de-sparsification.

A versatile approach for designing sublinear algorithms across

various models is the graph (linear) sketching. It is known that one

can find a cut sparsifier of a given graph—which approximately pre-

serves cut structures—via graph sketching, and that this is sufficient

information-theoretically for recovering a near-optimal correlation

clustering solution. However, no efficient algorithms are known

for this task as the resulting cut sparsifier is necessarily a weighted

graph, and correlation clustering is known to be a distinctly harder

problem on weighted graphs.

Our main result is a randomized linear sketch of 𝑂 (𝑛) size for
𝑛-vertex graphs, from which one can recover with high probability

an (𝛼 + 𝑜 (1))-approximate correlation clustering in polynomial

time, where 𝛼 is the best approximation ratio of any polynomial

time classical algorithm for (unweighted) correlation clustering.

This is proved via our new de-sparsification result: we recover in

polynomial-time from some 𝑂 (𝑛) size linear sketch of a graph 𝐺 ,

an unweighted, simple graph that approximately preserves the cut

structure of 𝐺 . In fact we show that under some mild conditions,

any spectral sparsifier of a graph 𝐺 can be de-sparsified into an

unweighted simple graph with nearly the same spectrum. We be-

lieve the de-sparsification paradigm is interesting in its own right
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as a way of reducing graph complexity when weighted version of a

problem is harder than its unweighted version.

Finally, we use our techniques to get efficient algorithms for

correlation clustering that match the performance of best classical

algorithms, in a variety of different models, including dynamic

streaming, MPC, and distributed communication models.
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1 Introduction
Correlation clustering is a widely studied problem in theoretical

computer science with applications to various areas. Given an undi-

rected graph 𝐺 = (𝑉 , 𝐸), the goal is to cluster the vertices in a

way that minimizes the cost, defined as the number of edges be-

tween the clusters and the number of non-edges
1
inside the clusters.

We present a new approach for solving correlation clustering via

graph sketching with approximation guarantees that can match the

performance of any polynomial time algorithm for this problem.

This immediately leads to improved algorithms for this problem

across different sublinear algorithms models for processing massive

graphs. The core to our approach is a new problem of its own inde-

pendent interest: how do we de-sparsify an already sparsified graph

in an efficient manner? We now elaborate more on our results and

their context.

1.1 Correlation Clustering and Graph Sketches
Motivated by applications to processing massive graphs, there has

been a rapidly growing interest in algorithms for correlation clus-

tering across various sublinear algorithms models such as semi-

streaming, Massively Parallel Computation (MPC), distributed com-

puting, and alike. The key challenge in these models is that the

resources available to the algorithm, say, its space or communica-

tion, is much smaller than the input size. Thus, the algorithms often

need to ‘compress’ or ‘sparsify’ the input graphs before they are

able to solve the problem in these models.

1
By a non-edge, we mean a pair of vertices with no edges between them in the graph.
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A highly successful paradigm here, especially when it comes to

flexibility and portability across different models, is graph sketching
pioneered by [2]: one compresses the graph into a sketch through

a small number of linear measurements (say, of its adjacency or

Laplacian matrix) and then solve the original problem given only

this sketch (see Definition 2.7). Graph sketching has been quite suc-

cessful for various graph problems including edge connectivity [2],

vertex connectivity [6], cut sparsification [3], spectral sparsifica-

tion [33], densest subgraph [39], maximum matchings [5], and sub-

graph counting [3], among many others. This leads to the following

natural question:

Can we approximate correlation clustering via graph
sketching?

In some sense, this question was already settled in [11] (build-

ing on [1]): it turns out the cost of any clustering can be specified

as a sum of cut sizes of the clusters plus some normalization; as

such, to preserve (near-)optimal correlation clusterings, it suffices

to preserve cut values of the graph in the sketch. But this latter

task is precisely the goal of cut sparsifiers [13], which are weighted

subgraphs of the input with only 𝑂 (𝑛/𝜖2) edges that preserve the
value of every cut to within a (1 ± 𝜖) factor, and already admit effi-

cient graph sketches [3]. Thus, we can also find (1+𝜖)-approximate

correlation clusterings using graph sketching.

There is a however a serious caveat with this approach: while

information-theoretically we can recover a near-optimal solution

from the sparsifier, we do not know how to do this in polynomial-

time. In particular, recovering any solution from the sparsifier es-

sentially amounts to solving a weighted version of correlation clus-

tering (given that sparsification necessarily generates a weighted

graph in general), which currently only admits an𝑂 (log𝑛) approx-
imation [30]

2
. Thus, when it comes to polynomial time algorithms,

the above approach appears to hit a dead end.

As a result of the above shortcoming, recent work has come up

with different graph sketches, or more often even entirely different

techniques, for solving correlation clustering in this context; these

results mostly collect “enough” information from the graph through

the compression so as to simulate a specific classical algorithm

(often, the pivot algorithm of [4] but also recently more improved

combinatorial algorithms in [28]). These approaches then lead to a

host of different sublinear algorithms for this problemwith different

guarantees across many of these models; again, see Section 1.5 for

a brief summary. However, this means that these techniques do not

necessarily keep up with the improvements on classical algorithms

on this problem—which have seen many exciting developments just

recently; see Section 1.5—and rely on an ad hoc approach each time

for porting these improvements to sublinear algorithms as well.

Thus, we can ask a more nuanced version of our original question:

Can we approximate correlation clustering via graph
sketching in polynomial time, matching the approxima-
tion ratio of best polynomial-time classical algorithms?

We show that the answer to this question is indeed yes. Let 𝛼best de-
note the best approximation ratio possible for correlation clustering

2
In fact, it is shown by [30] that weighted correlation clustering is equivalent to the

minimum multicut problem and is thus difficult to approximate better than a Θ(log𝑛)
factor, and does not admit any constant factor approximation under the Unique Games

Conjecture.

in polynomial time (via classical algorithms), which satisfies

1 + Ω(1) ≤
[20]

𝛼best ≤
[18]

1.437. (1)

due to the APX-hardness established in [20] and the recent approx-

imation algorithm of [18].

Result 1. For any 𝑛-vertex graph 𝐺 , there is a randomized
linear sketch of𝑂 (𝑛) size from which one can recover with high
probability an (𝛼best+𝑜 (1))-approximate correlation clustering
of 𝐺 in polynomial time.

We establish this result by introducing a new direction of re-

search, termed de-sparsification, and then use it for our particular

application to correlation clustering.

1.2 A New Question: Graph Simplification via
Desparsification?

Let us revisit the approaches of [1, 11] that designed

(1 + 𝜖)-approximate graph sketches for correlation clustering

(information-theoretically) via weighted cut sparsifiers. As stated

earlier, the weights in the sparsifier forces us to solve a weighted

correlation clustering instance which is a much harder version of

the problem than the unweighted one. But what if these instances

can be made unweighted
3
while preserving their correlation clus-

tering structure? This will then allow us to run any approximation

algorithm for unweighted correlation clustering on this instance

and recover essentially the same approximation guarantee on the

original graph.

To address this, we ask a general question that is entirely inde-

pendent of correlation clustering:

Can we efficiently de-sparsify a weighted cut sparsifier
𝐻 to an unweighted, simple (but not necessarily sparse)
graph 𝐺 while (nearly) preserving the value of every
cut?

Two important remarks are in order: (𝑎) firstly, the cut structure
of weighted graphs is more general than unweighted ones, and

thus in general, we cannot hope for approximating an arbitrary

weighted graph with a (simple) unweighted graph; however, in

our case, the weighted graph 𝐻 is a sparsifier of an unweighted

graph and thus certainly can be approximated by an unweighted

graph; (𝑏) secondly, information-theoretically it is impossible to

recover the original graph from its weighted sparsifier due to the

many-to-one nature of the sparsification; but here our goal is to

find some graph that approximates the cut structure of 𝐻 (and by

extension the original graph), and hence, we do not run into this

information-theoretic barrier. Note that there has been prior work

on a topic called “densification” [32]. This line of work seeks to

understand when weighted graphs admit dense sparsifiers. In our

case, the question is not an existential one, but an algorithmic one.

I.e., how do we efficiently recover these denser sparsifiers.
Unfortunately, we do not know a definitive answer to the above

question in this formulation. It seems likely that the answer is no
as it is even NP-hard to determine if a given weighted graph 𝐻

is a cut sparsifier of a given graph 𝐺 or not. This suggests that

3
Here, and throughout the paper, we use unweighted to also mean simple (i.e., that
there are no multi-edges permitted).
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preserving only the structure of the cuts may not allow for an effi-

cient recovery/de-sparsification. But this then naturally suggests an

alternative direction: what if we instead use spectral sparsifiers [42]
that are generally known to be a robust strengthening of cut spar-

sifiers?
4

Leveraging spectral sparsifiers, we obtain the following general

de-sparsification result:

Result 2. For any 𝑛-vertex unweighted graph 𝐺 and any 𝜖 ∈
(0, 1), there is a randomized linear sketch of 𝑂 (𝑛/𝜖2) size from
which one can recover in polynomial-time with high probability
another 𝑛-vertex unweighted graph 𝐺̃ with the same number of
edges as 𝐺 such that 𝐺̃ is a (1 ± 𝜖)-spectral sparsifiera of 𝐺 .
a
We note that using the term ‘sparsifier’ might be an abuse of notation here:

graph 𝐺̃ has the same exact number of edges as𝐺 and thus is not sparser than

𝐺 in any way (nor is a subgraph of𝐺 ). We only use the term spectral

sparsifier, here and throughout the paper, to mean that its spectrum is nearly

the same as𝐺 .

As we will show later, Result 2 turns out to be sufficient to

obtain Result 1 by simply setting 𝜖 = 𝑜 (1), and then running any

𝛼-approximation correlation clustering algorithm on the graph 𝐺̃ .

Result 2 gives efficient de-sparsification for sparsifiers obtained

by a particular linear sketching scheme. Specifically, it relies on

the linear sketches for spectral sparsification given in [33] that

faithfully implement effective resistance-based sampling. One may

ask the question if in fact any arbitrary spectral sparsifier can be

efficiently de-sparsified, nomatter how it was created.We show that

the answer to this question is in the affirmative as well, assuming

some mild conditions on the underlying graph.

Result 3. For any 𝜖 ∈ (0, 1) and 𝑛-vertex unweighted graph𝐺 ,
there is a randomized polynomial-time algorithm that given any
(1±𝜖)-spectral sparsifier𝐻 of𝐺 , recovers with high probability

(a) an 𝑛-vertex unweighted graph 𝐺̃ with the same number
of edges as 𝐺 such that 𝐺̃ is a (1 ± 2𝜖)-cut sparsifier of
𝐺 , provided the minimum cut in 𝐺 is Ω(log𝑛/𝜖2).

(b) an 𝑛-vertex unweighted graph 𝐺̃ with the same number
of edges as 𝐺 such that 𝐺̃ is a (1 ± 2𝜖)-spectral sparsi-
fier of 𝐺 , provided maximum effective resistance in 𝐺 is
𝑂 (𝜖2/log𝑛).

We believe the de-sparsification question posed in this paper

to be of its own independent interest specifically from the view

point of graph simplification: while traditionally one often considers
simplifying a graph as making it sparser, it is also quite natural

to simplify a graph by making it unweighted even at the cost of

increasing its density (given that many problems are easier to solve

on unweighted graphs such as correlation clustering considered

here). Such simplification questions have also recently been con-

sidered for other graph problems in entirely different contexts,

e.g., for preserving shortest path structures without using very

4
Formally, using 𝐿𝐺 and 𝐿𝐻 to denote the Laplacian matrix of𝐺 and 𝐻 , respectively,

a cut sparsifier 𝐻 of𝐺 satisfies 𝑥⊤ · 𝐿𝐻 · 𝑥 = (1 ± 𝜖 ) · 𝑥⊤𝐿𝐺 · 𝑥 for all 𝑥 ∈ {0, 1}𝑛
whereas a spectral sparsifier satisfies the same for all 𝑥 ∈ R𝑛

. Note that the evidence

earlier no longer holds as checking if 𝐻 is a spectral sparsifier of 𝐺 boils down to

checking if all singular values of 𝐿𝐻 and 𝐿𝐺 are within (1 ± 𝜖 ) factor of each other,

which can be easily done in polynomial time.

large weights [14], or for approximating weighted matching via

unweighted matching algorithms [15, 16].

1.3 Implication to Sublinear Algorithms
Finally, we can use our efficient graph sketches for correlation

clustering in Result 1 to obtain new sublinear algorithms for this

problem across a variety of different models, that can achieve ap-

proximation ratios nearly matching 𝛼best defined in Equation (1).

Our first algorithm is in the distributed communication model,

studied for various clustering problems in [8, 22, 44] (although we

are not aware of prior work on correlation clustering here). In this

model, the input graph 𝐺 = (𝑉 , 𝐸) is edge-partitioned across 𝑘

machines plus a coordinator that receives no input. The machines

and the coordinator can communicate in a distributed point-to-

point manner. The goal is to limit the total communication while

allowing the coordinator to output a correlation clustering of the

entire input.

Corollary 1.1. There is a polynomial-time randomized algorithm
for correlation clustering in the distributed communication model
with 𝑘 machines that uses 𝑂 (𝑛𝑘) communication in total, and with
high probability, achieves an (𝛼best + 𝑜 (1))-approximation.

The second algorithm is in the Massively Parallel Computation

(MPC) model [9, 36]. Here, the input graph 𝐺 = (𝑉 , 𝐸) is edge-
partitioned across multiple machines. Computation happens in

synchronous rounds wherein each machine can send and receive

𝑂 (𝑛)-size messages. After the last round, one designated machine

outputs a solution to the problem.

Corollary 1.2. There is a polynomial-time randomized algorithm
for correlation clustering in the MPC model that uses𝑂 (1) rounds and
𝑂 (𝑛)-size messages per-machine, and with high probability, achieves
an (𝛼best + 𝑜 (1))-approximation.

Corollary 1.2 improves upon the 1.87-approximation MPC al-

gorithm of [28] (given Equation (1)), although we note that the

algorithm of [28] runs in 𝑂 (1) rounds even when memory per

machine is 𝑛𝛿 for any constant 𝛿 ∈ (0, 1). But importantly, our

algorithm in Corollary 1.2 has the benefit of automatically improv-

ing in future using any other advances on classical algorithms for

correlation clustering.

We can also implement our algorithm in the dynamic stream-

ing model. Here, the input graph 𝐺 = (𝑉 , 𝐸) is presented to the

algorithm as a stream of edge insertions and deletions, and the

algorithm can make a single pass (or a few passes) over this stream

and should output the answer to the problem on the graph𝐺 at the

end.

Corollary 1.3. There is a polynomial-time randomized streaming
algorithm for correlation clustering that uses 𝑂 (𝑛) memory when
making a single pass over a dynamic stream, andwith high probability,
achieves an (𝛼best + 𝑜 (1))-approximation.

Again, our result improves upon the prior 3-approximation algo-

rithm of [17] in dynamic streams and 1.84-approximation algorithm

of [28] in insertion-only streams.

Finally, our approach also have an interesting consequence to

insertion-only streams using non-sketching techniques (in particu-

lar using Result 3 and not Result 2 used in our other algorithms):
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it provides the first polynomial time algorithm that processes the

stream deterministically and uses randomness only at the end of

the stream. This guarantee in particular satisfies the notion of

adversarially-robust streaming algorithms [12] in the strongest

possible sense as it works even against an adversary that sees its

internal state; see also [19].

Corollary 1.4. There is a polynomial-time streaming algorithm for
correlation clustering that uses 𝑂 (𝑛) memory to deterministically
build a data structure 𝐷 using a single pass over an insertion-only
stream, and only at the end, uses randomization to, with high proba-
bility, recover from𝐷 an (𝛼best +𝑜 (1))-approximation for correlation
clustering.

Before moving on, an important remark about our sublinear

algorithms is in order.

Remark 1.5. Our approach inherently bounds the size of the

sketch it computes and not the post-processing algorithms (given

we have no control over the space-complexity of the best classical

algorithm we run at the end beside it being polynomial). For our

distributed algorithms, this is inconsequential. In the MPC model,

this means the in- and out-communication by each machine will

be bounded by 𝑂 (𝑛) (but not the internal memory) which is inline

with the original definitions in [9] (see also [40]) that allow for any

complex operations to be done on each machine. For the streaming

algorithms, this means that the memory of the algorithm during the
stream is bounded by 𝑂 (𝑛) but after the stream finishes, to recover

the solution, the space used by the algorithm may become larger.

We note that to our knowledge, all existing streaming lower bounds
only bound the space of the algorithm during the stream

5
.

1.4 Our Techniques
Our approach in establishing Result 3 consists of two steps: (1)

recovering a fractional sparsifier, namely, a graph with all edge-

weights in [0, 1], from the given spectral sparsifier 𝐻 of 𝐺 , and

then, (2) rounding this fractional sparsifier into a simple unweighted

graph to obtain the graph 𝐺̃ . We implement the first step (for both

parts of this result) by formulating the problem as a convex pro-

gram and devising a separation oracle to run Ellipsoid algorithm

on this program (the separation oracle crucially relies on 𝐻 be-

ing a spectral sparsifier, as the oracle for cut sparsifiers is solving

an NP-hard problem in general). The second part is done via a

randomized rounding approach—which, additionally ensures the

number of sampled edges exactly matches the original graph—but

requires different analysis for each part: a union bound approach

using Karger’s cut-bounding bound (see Proposition 3.9) relying

on the assumption that minimum cut is not too small, or, following

the standard effective resistance sampling approach (see Proposi-

tion 4.2) for constructing spectral sparsifiers, using the assumption

that effective resistances are not too large.

To obtain our sketch in Result 2 from Result 3, we first use a

sketch due to [2, 37] that identifies 𝑂̃ (𝑛) edges, whose removal

partitions the graphs into subgraphs with large enough minimum

cut as required by Result 3; in parallel, we also use a sketch by [33]

5
Specifically, the techniques in communication complexity and branching programs

used for proving streaming lower bounds are inherently oblivious to the post-

processing space of the algorithm.

for spectral sparsification, and use linearity of these sketches to

recover a sketch for each of these large-min-cut subgraphs. A final

argument then shows we can use the recovered edges plus the

unweighted sparsifiers on each component obtained via Result 3

to get an unweighted sparsifier of the entire graph as well (in Sec-

tion 3, we show how the plan outlined above can recover a cut

sparsifier from the sketch, which is a weaker version of Result 2

but is sufficient for proving Result 1 for correlation clustering; we

then improve this to recover a spectral sparsifier in Section 4).

Finally, to obtain Result 1 from our Result 2, we follow previ-

ous arguments in [1, 11] that show cut sparsifiers (information-

theoretically) preserve correlation clustering structure; the new

part here is to ensure the problem reduces to an instance of corre-

lation clustering on the (unweighted) sparsifier (not some rather

arbitrary computation as in [1, 11]), which further requires us to

exactly match the number of edges in the original graph and the

unweighted sparsifier (which was an additional property obtained

in Result 2).

1.5 Related Work
The last couple of years has witnessed a flurry of results on corre-

lation clustering both for sublinear as well as classical algorithms.

For instance, [25] designed 𝑂 (1)-round MPC algorithms for cor-

relation clustering, and building on this, [7] obtained single-pass

streaming and sublinear time 𝑂 (1)-approximation algorithms for

this problem
6
(see also [1, 24] and references therein for earlier

work on this problem). These results were subsequently improved

in a series of work in [10, 11, 17, 28, 29, 38] culminating in the

work of [28] that achieves a 1.847-approximation via single-pass

streaming or sublinear time algorithms and 1.876-approximation

in 𝑂 (1) MPC rounds (considerably simpler algorithms achieving a

(3 + 𝜖)-approximation were also developed in [17, 38] by adapting

the landmark Pivot algorithm of [4] to these models).

Meanwhile, there has also been exciting progress on classical

algorithms for correlation clustering. Early work on this problem

led to 3-approximation combinatorial and 2.5-approximation LP

based algorithms for this problem [4], which was then improved to

a 2.06 [21]. Recently, [27] broke the 2-approximation barrier—the in-

tegrality gap of the LP of [4]—and achieved a 1.995-approximation

which was then improved to a 1.73-approximation in [26] and

subsequently 1.437-approximation in [18]. Finally, [28] gave a com-

binatorial 1.84-approximation algorithm which, as stated earlier,

can also be implemented in streaming and sublinear time (and with

some small loss MPC) models.

2 Preliminaries
Notation. Throughout, we work with undirected graphs 𝐺 =

(𝑉 , 𝐸) and use 𝑛 to denote the number of vertices in 𝐺 . For a set

𝑆 ⊆ 𝑉 , we use𝐺 [𝑆] to denote the induced subgraph of𝐺 on 𝑆 , and

𝛿 (𝑆) to denote the edges crossing the cut induced by 𝑆 . For a vertex
𝑣 ∈ 𝑉 , we use 𝑁 (𝑣) and deg(𝑣) = |𝑁 (𝑣) | to denote its neighbors

and its degree, respectively.

For weighted graphs, we use𝑤𝐺 : 𝐸 → R to denote the weights.

We often treat unweighted graphs as weighted graphs with weight

6
The constants in these algorithms are quite large, around 700 for [25] and more than

10000 for [7].
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one on every edge (primarily, to avoid repeating definitions for them

separately). For a cut 𝑆 ⊆ 𝑉 , we use cut𝐺 (𝑆) := ∑
𝑒∈𝛿 (𝑆 ) 𝑤𝐺 (𝑒) to

denote the weight of the edges in the cut. We use mincut(𝐺) to
denote the minimum cut value in 𝐺 . Additionally, we use 𝐿𝐺 to

denote the Laplacian matrix of the graph 𝐺 , where (𝐿𝐺 )𝑢,𝑢 is the

weighted degree of each vertex 𝑢 ∈ 𝑉 , and (𝐿𝐺 )𝑢,𝑣 = −𝑤𝑢,𝑣 for

each edge (𝑢, 𝑣) ∈ 𝐸 and 0 otherwise.

We say an event happens with high probability if its probability

is at least 1 − 1/poly(𝑛) where 𝑛 is the number of vertices in the

underlying graph (which will be clear from the context).

Likewise, we will often use the shorthand 𝑎 ∈ (1 ± 𝜖)𝑏 to mean

that (1 − 𝜖)𝑏 ≤ 𝑎 ≤ (1 + 𝜖)𝑏.

Correlation clustering. For a partition 𝑉1, . . .𝑉𝑘 , we use
𝐸+
𝐺
(𝑉1, . . .𝑉𝑘 ) to denote all the edges in 𝐺 which are crossing be-

tween 𝑉1, . . .𝑉𝑘 . Likewise, we use 𝐸
−
𝐺
(𝑉𝑖 ) to denote the set of non-

edges (i.e., not present edges in 𝐺) which are contained in 𝑉𝑖 .

Definition 2.1. Let 𝐺 = (𝑉 , 𝐸) be an arbitrary unweighted graph.
Then, for a partition 𝑉1, . . .𝑉𝑘 , the value of the partition under the
correlation clustering objective is:

CC𝐺 (𝑉1, . . .𝑉𝑘 ) =
∑︁
𝑖∈[𝑘 ]

|𝐸− (𝑉𝑖 ) | + |𝐸+ (𝑉1, . . .𝑉𝑘 ) |.

The goal in the correlation clustering problem is to find a partition
that minimizes this objective.

2.1 Cut and Spectral Sparsifiers
We will frequently be concerned with graph sparsifiers and specif-

ically cut sparsifiers [13] and spectral sparsifiers [42]. We review

their definitions here.

Cut sparsifiers. A basic notion of sparsification is cut sparsifica-
tion introduced by [13].

Definition 2.2 ([13]). Given a graph 𝐺 = (𝑉 , 𝐸) and 𝜖 ∈ (0, 1), a
graph 𝐺 is said to be a (1 ± 𝜖) cut sparsifier of 𝐺 iff for every cut
𝑆 ⊆ 𝑉 ,

(1 − 𝜖) · cut𝐺 (𝑆) ≤ cut
𝐺
(𝑆) ≤ (1 + 𝜖) · cut𝐺 (𝑆) .

We note that one often requires a cut sparsifier of a graph to be

its subgraph. However, as stated in Result 2, this is not the case in

our paper due to our de-sparsification approach (which does not

require this guarantee, nor can provide it without trivializing the

problem).

A key quantity of interest when designing cut sparsifiers is

known as the strength of an edge:

Definition 2.3. Given a graph𝐺 = (𝑉 , 𝐸), the strength of an edge
𝑒 ∈ 𝐸 is defined as

𝜆𝑒 = max

𝑆⊆𝑉 :𝑒⊆𝑆
mincut(𝐺 [𝑆]) .

Spectral sparsifiers. A strictly stronger notion than cut sparsifiers

are spectral sparsifiers [42].

Definition 2.4 ([42]). Given a graph 𝐺 = (𝑉 , 𝐸), a graph 𝐺 is con-
sidered a (1±𝜖) spectral sparsifier of𝐺 iff for every vector 𝑥 ∈ R𝑉 ,

(1 − 𝜖) · 𝑥⊤𝐿𝐺𝑥 ≤ 𝑥⊤𝐿
𝐺
𝑥 ≤ (1 + 𝜖) · 𝑥𝑇 𝐿𝐺𝑥,

where 𝐿𝐺 and 𝐿
𝐺
denote the Laplacian matrix of 𝐺 and 𝐺 , respec-

tively.

Similar to strength of edges defined in the context of cut sparsi-

fiers, we have effective resistances for spectral sparsifiers.

Definition 2.5. For a graph 𝐺 = (𝑉 , 𝐸), and a pair of vertices
(𝑢, 𝑣) ∈

(𝑉
2

)
, we say that the effective resistance of (𝑢, 𝑣) in 𝐺 is:

𝑅
eff,𝐺 (𝑢, 𝑣) = max

𝑥∈R𝑉 ,𝑥≠0

(𝑥𝑢 − 𝑥𝑣)2

𝑥𝑇 𝐿𝐺𝑥
.

Finally, we need some additional properties from sparsifiers

captured in the following definition.

Definition 2.6. Given a (1 ± 𝜖) cut/spectral sparsifier 𝐺 of a graph
𝐺 = (𝑉 , 𝐸), we say that 𝐺 is total weight preserving if it addi-
tionally satisfies

∑
𝑒∈𝐺 𝑤𝐺 (𝑒) = ∑

𝑒∈𝐺 𝑤𝐺
(𝑒). Similarly, we say 𝐺

is simple iff it is an unweighted simple graph.

2.2 Graph Sketches
In this work, wewill frequently be concernedwith designing (linear)

graph sketches, introduced in the work of [2] (for graph problems).

Definition 2.7. A linear sketch of a graph 𝐺 is identified by a
(possibly randomized) matrix𝑀 of dimensions 𝑠 ×

(𝑛
2

)
, chosen inde-

pendently of the graph. Then, given an unweighted graph𝐺 with edge
incidence vector 1𝐺 ∈ {0, 1}(

𝑛
2
) , the sketch of the graph is given by

𝑀 · 1𝐺 . Finally, there is a recovery algorithm that given only the
sketch and the sketching matrix, with no direct access to 𝐺 , outputs
the solution to a given problem on 𝐺 .

The convention is that the entries in the linear sketch should be

bounded in magnitude by poly(𝑛), and thus the space complexity

of the linear sketch is 𝑂 (𝑠 log(𝑛)) bits.
We note that even though we work with both weighted and un-

weighted graphs in this work, we have opted to define the sketching

only for unweighted graphs given certain subtleties in the defini-

tion for weighted graphs, which will not be relevant to our work

(see [23] for more details).

3 Desparsification for Correlation Clustering:
Proof of Result 1

In this section, we prove the following theorem that formalizes Re-

sult 1.

Theorem 3.1. Let 𝛼best be the best possible approximation ratio
for correlation clustering on simple graphs in polynomial time. There
is a linear sketch of size 𝑂 (𝑛) bits, which for any simple graph 𝐺 on
𝑛 vertices can be used to recover an (𝛼best + 𝑜 (1)) approximation to
correlation clustering in 𝐺 in polynomial time with high probability.

The key building block in the proof of Theorem 3.1 is the follow-

ing general de-sparsification result, which is a weaker version of

Result 2 (we opted to start with this weaker version as it suffices

for our application and contains many of ideas for the full result as

well).

Theorem 3.2. There is a (randomized) linear sketch using𝑂 (𝑛/𝜖2)
bits of space which, for any simple graph 𝐺 , can be used to recover
with high probability a simple, (1 ± 𝜖) total weight preserving cut
sparsifier of 𝐺 in polynomial time.
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In the rest of this section, we first show how to use total weight

preserving sparsifiers to solve correlation clustering and prove The-

orem 3.1 using Theorem 3.2. We then switch to the proof of Theo-

rem 3.2 by presenting its sketch first, and then going through the

two separate steps outlined in Section 1.4 needed for its proof.

3.1 Correlation Clustering from Total Weight
Preserving Sparsifiers

The following lemma motivates total weight preserving cut sparsi-

fiers for correlation clustering.

Lemma 3.3. Let𝐺 and 𝐻 be graphs on the same vertex set such that
𝐻 is a (1 ± 𝜖) total weight preserving cut sparsifier of 𝐺 . Then, for
any partition 𝑉1, . . .𝑉𝑘 of vertices,

CC𝐻 (𝑉1, . . .𝑉𝑘 ) ∈ (1 ± 2𝜖) · CC𝐺 (𝑉1, . . .𝑉𝑘 ).

We note that similar but not identical statements as Lemma 3.3

have been used in prior work in [1, 11]; as such, we omit the proof

of this lemma, and leave it to the full version of the paper. With

this lemma, we can immediately obtain Theorem 3.1, assuming

Theorem 3.2.

Proof of Theorem 3.1. The linear sketch is exactly the one of

Theorem 3.2. Let 𝐺 denote the recovered simple graph which is a

(1 ± 𝜖) total weight preserving cut sparsifier of 𝐺 . By Lemma 3.3,

we see that for any clustering 𝑉1, . . .𝑉𝑘 ,

CC
𝐺
(𝑉1, . . .𝑉𝑘 ) ∈ (1 ± 2𝜖) · CC𝐺 (𝑉1, . . .𝑉𝑘 ) .

So, if we let OPT(𝐺) denote the minimum correlation clustering

value on 𝐺 , we know that

OPT(𝐺) ≤ (1 + 2𝜖) · OPT(𝐺).

Now, let us run any black-box 𝛼best-approximation, polynomial

time algorithm for correlation clustering on 𝐺 in (crucially using

the fact that 𝐺 is simple). We are guaranteed that this recovers a

partition 𝑃 = (𝑉1, . . . ,𝑉𝑘 ) of vertices such that

CC
𝐺
(𝑃) ≤ 𝛼 · OPT(𝐺).

Returning 𝑃 as the answer on 𝐺 , by Lemma 3.3 satisfies

CC𝐺 (𝑃) ≤ (1 + 2𝜖) · CC
𝐺
(𝑃) ≤

(1 + 2𝜖) · 𝛼 · OPT(𝐺) ≤ 𝛼 · (1 + 2𝜖)2 · OPT(𝐺).
Finally, by setting 𝜖 = 𝑜 (1), the linear sketch we use requires

only 𝑂 (𝑛) bits, yet still recovers an (𝛼best + 𝑜 (1))-approximate

solution to correlation clustering on 𝐺 in polynomial time.

3.2 Building the Linear Sketch used in
Theorem 3.2

We now switch to proving Theorem 3.2 which is the main technical

contribution of this section. We will require three distinct linear

sketches for constructing our total-weight preserving sparsifier:

(1) First, we require a linear sketch which, for some parameter

𝜆 = Θ(log(𝑛)/𝜖2) to be chosen later, can be used to (ex-

actly) recover all edges of strength at most 𝜆 in the graph 𝐺 ,

denoted by 𝑆1 (𝐺). This is done via the following result.

Proposition 3.4 (cf. [2],[37, Claim 4.9]). For any given 𝜆 ≥ 1,
there is a linear sketch for (unweighted) graphs𝐺 on 𝑛 vertices
for recovering all edges of strength ≤ 𝜆 with high probability
in polynomial time, using 𝑂 (𝑛𝜆) space.

(2) Second, we require a linear sketch which recovers a (1 ± 𝜖)
spectral sparsifier of the graph 𝐺 , denoted by 𝑆2 (𝐺). This is
done via the following result.

Proposition 3.5 ([34]). For any given 𝜖 ∈ (0, 1), there is a
linear sketch for (unweighted) graphs𝐺 on 𝑛 vertices for recov-
ering a (1 ± 𝜖) spectral sparsifier of 𝐺 with high probability
in polynomial time, using 𝑂 (𝑛/𝜖2) space.

(3) Finally, our remaining linear sketch is simply the total num-

ber of edges present in the graph. This is a deterministic

linear sketch that simply tracks the size of the support of

the

(𝑛
2

)
dimensional vector describing the graph𝐺 , and we

denote this sketch by 𝑆3 (𝐺), but will often implicitly refer

to this quantity as𝑚.

The lemma below shows how these these three linear sketches

can be used to recover structural information about 𝐺 that will be

sufficient for de-sparsification.

Lemma 3.6. Given the linear sketches 𝑆1 (𝐺), 𝑆2 (𝐺), 𝑆3 (𝐺), one can
recover:

(1) a set of edges 𝑇 ⊆ 𝐺 such that 𝐺 −𝑇 has minimum cut > 𝜆,
(2) a (1 ± 𝜖)-spectral sparsifier of the graph 𝐺 −𝑇 , and
(3) the total number of edges in 𝐺 −𝑇 .

Further, the space complexity of these sketches is 𝑂 (𝑛𝜆 + 𝑛/𝜖2) bits.

Proof. We start by using 𝑆1 (𝐺) to recover the edges of strength
at most 𝜆 in𝐺 , denoted by𝑇 . Importantly, because we recover only
these edges, the resulting graph 𝐺 − 𝑇 has all edges of strength

greater than 𝜆. This step implicitly partitions the vertex set 𝑉 into

𝑉1,𝑉2, ...,𝑉𝑘 such that for 𝑖 ∈ [𝑘], the subgraph of 𝐺 −𝑇 induced

by 𝑉𝑖 has minimum cut greater than 𝜆. We rely here on the basic

property of edge strengths, namely, the certificate of an edge having

strength greater than 𝜆 in𝐺 never uses an edge of strength at most

𝜆. In other words, any edge in 𝑇 necessarily connects a vertex in

some 𝑉𝑖 to a vertex in some 𝑉𝑗 for 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑘 .
Next, because we have recovered the set𝑇 ⊆ 𝐺 of edges, we can

simply delete these edges from the linear sketch 𝑆2 (𝐺), yielding
a linear sketch 𝑆2 (𝐺 −𝑇 ). Now, invoking the recovery algorithm

of Proposition 3.5, we can recover a (1 ± 𝜖)-spectral sparsifier for
each of 𝐺 [𝑉1],𝐺 [𝑉2], ...,𝐺 [𝑉𝑘 ].

Finally, number of edges in 𝐺 −𝑇 is obtained by subtracting the

number of edges in 𝑇 from𝑚.

The space complexities of linear sketches 𝑆1 (𝐺) and 𝑆2 (𝐺) follow
from Proposition 3.4 and Proposition 3.5, respectively. The sketch

𝑆3 (𝐺) takes only 𝑂 (log𝑛) space.

The combination of 𝑆1, 𝑆2, 𝑆3 is the entirety of the linear sketches

that we will store. The rest of the complexity in our procedure is in

recovering a specific type of sparsifier. We discuss this more in the

coming subsections.
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3.3 Recovering Fractional Total Weight
Preserving Sparsifiers

We now describe how given a total weight preserving spectral

sparsifier 𝐻 of some unweighted graph 𝐺 with𝑚 edges, we can

recover in polynomial time a fractional, total weight preserving
sparsifier 𝐺 . We say 𝐺 is fractional in the sense that every edge

𝑒 ∈ 𝐺 will have a fraction 𝑌𝑒 ∈ [0, 1] assigned to it, which can be

seen as its weight. In the next subsection wewill show how𝐺 can be

rounded to an unweighted graph that is a total weight-preserving

cut-sparsifier of 𝐻 and as such 𝐺 as well.

In this section, we prove the following lemma:

Lemma 3.7. Given a (potentially weighted) graph 𝐻 which is
promised to be a (1 ± 𝜖) spectral sparsifier of some unweighted graph
𝐺 , along with the number of edges in𝐺 , one can recover (in polynomial
time) a (1 ± 3𝜖) fractional total weight preserving spectral sparsifier
of the graph 𝐺 .

Proof. Consider the following convex program in R(𝑉
2
)
, for

which we wish to find a feasible point:

𝑌𝑒 ∈ [0, 1] ∀𝑒 ∈
(
𝑉

2

)
,∑︁

𝑒∈(𝑉
2
)
𝑌𝑒 · 𝑧⊤𝐿𝑒𝑧 ≥ (1 − 𝜖)𝑧⊤𝐿𝐻𝑧 ∀𝑧 ∈ R𝑉

: ∥𝑧∥2 = 1,

∑︁
𝑒∈(𝑉

2
)
𝑌𝑒 · 𝑧⊤𝐿𝑒𝑧 ≤ (1 + 𝜖)𝑧⊤𝐿𝐻𝑧 ∀𝑧 ∈ R𝑉

: ∥𝑧∥2 = 1,

∑︁
𝑒∈(𝑉

2
)
𝑌𝑒 =𝑚.

Here, 𝐿𝑒 is the Laplacian matrix of the 𝑛-vertex graph consists of

only the single edge 𝑒 .

Each of the infinitely many constraints of this program are linear

in the variables 𝑌𝑒 since 𝑧⊤𝐿𝐻𝑧 (and similar for 𝐿𝐺 ) are simply

numbers for each fixed 𝑧. This program also has a feasible solution,

as the original graph 𝐺 is a (1 ± 𝜖) spectral sparsifier of 𝐻 (and

vice versa), with𝑚 edges and weights that are {0, 1} and hence the

characteristic vector of its edges form a feasible solution to this

program.

We now show there is a polynomial time separation oracle for

this program. Fix any assignment to 𝑌𝑒 ’s yielding a fractional graph

which we will denote by 𝐺 (𝑌 ), where the weight of edge 𝑒 is 𝑌𝑒 .
We can check in polynomial time whether the total edge weights

in 𝐺 (𝑌 ) equal𝑚, that each 𝑌𝑒 ∈ [0, 1], and that 𝐺 (𝑌 ) and 𝐻 have

the same connected components. If any of these checks fail, we

have found a violated constraint. We now focus on verifying that

𝐿𝐺 (𝑌 ) is a (1±𝜖) spectral sparsifier of 𝐿𝐻 . That is, we wish to check

whether

(1 − 𝜖) · 𝐿𝐻 ⪯ 𝐿𝐺 (𝑌 ) ⪯ (1 + 𝜖) · 𝐿𝐻 ,
where ⪯ refers to the Loewner order of PSD matrices. Observe

that this condition passes if and only if 𝐺 (𝑌 ) is a (1 ± 𝜖)-spectral
sparsifier of 𝐻 , as

(1 − 𝜖) · 𝐿𝐻 ⪯ 𝐿𝐺 (𝑌 ) ⪯ (1 + 𝜖) · 𝐿𝐻 ⇐⇒

∀𝑧 ∈ R𝑉
: (1 − 𝜖) · 𝑧𝑇 𝐿𝐻𝑧 ≤ 𝑧𝑇 𝐿𝐺 (𝑌 )𝑧 ≤ (1 + 𝜖) · 𝑧𝑇 𝐿𝐻𝑧,

by the definition of the Loewner order.

By left and right multiplying by 𝐿
†/2
𝐻

, where 𝐿
†
𝐻
is the pseudo-

inverse of 𝐿𝐻 (and restricting our attention to the image of 𝐿𝐻 ),

this is equivalent to checking whether

(1 − 𝜖) · 𝐼
Im(𝐿𝐻 ) ⪯ 𝐿

†/2
𝐻

· 𝐿𝐺 (𝑌 ) · 𝐿
†/2
𝐻

⪯ (1 + 𝜖) · 𝐼
Im(𝐿𝐻 ) , (2)

where 𝐼
Im(𝐿𝐻 ) is simply the projection operator on to Im(𝐿𝐻 )7.

Next, we note that Equation (2) is true if and only if all non-trivial

eigenvalues of 𝐿
†/2
𝐻

·𝐿𝐺 (𝑌 ) ·𝐿
†/2
𝐻

are in (1±𝜖). This shows that𝐺 (𝑌 )
is a (1 ± 𝜖) spectral sparsifier of 𝐻 if and only if every (non-trivial)

eigenvalue of 𝐿
†/2
𝐻

· 𝐿𝐺 (𝑌 ) · 𝐿
†/2
𝐻

is in the range (1 ± 𝜖).
Next, we want to show that if we identify an eigenvector 𝑣 of

𝐿
†/2
𝐻

·𝐿𝐺 (𝑌 ) ·𝐿
†/2
𝐻

with eigenvalue 𝜆 ∉ (1±𝜖), then we can use this

to find a violated constraint in our convex program.

Indeed, let us suppose that we recover such a 𝑣 and 𝜆:

𝐿
†/2
𝐻

· 𝐿𝐺 (𝑌 ) · 𝐿
†/2
𝐻

· 𝑣 = 𝜆 · 𝑣 ;

by left multiplying with 𝑣𝑇 this yields

𝑣⊤ · 𝐿†/2
𝐻

· 𝐿𝐺 (𝑌 ) · 𝐿
†/2
𝐻

· 𝑣 = 𝜆 · 𝑣⊤𝑣 .

However, for the vector 𝐿
†/2
𝐻

· 𝑣 , we also see that

𝑣⊤ · 𝐿†/2
𝐻

· 𝐿𝐻 · 𝐿†/2
𝐻

· 𝑣 = 𝑣⊤ · 𝐿†/2
𝐻

· 𝐿1/2
𝐻

· 𝐿1/2
𝐻

· 𝐿†/2
𝐻

· 𝑣 = 𝑣𝑇 𝑣 .

Thus, if 𝜆 ∉ (1 ± 𝜖), we have

𝑣⊤ · 𝐿†/2
𝐻

· 𝐿𝐺 (𝑌 ) · 𝐿
†/2
𝐻

· 𝑣 = 𝜆 · 𝑣⊤𝑣 ∉ (1 ± 𝜖) · 𝑣⊤𝑣

= (1 ± 𝜖) · 𝑣⊤ · 𝐿†/2
𝐻

· 𝐿𝐻 · 𝐿†/2
𝐻

· 𝑣,

and so we can use the constraint specified by 𝑧 = 𝐿
†/2
𝐻

· 𝑣 as a

violated constraint in the convex program. Since calculating pseudo-

inverses, multiplying matrices, and finding eigenvalues can all be

done in polynomial time, the procedure above gives a polynomial-

time separation oracle.

To conclude, since the feasible region for the above convex pro-

gram is non-empty, and we have a polynomial time separation

oracle, we can find an assignment to the 𝑌𝑒 ’s which satisfies all

of the above constraints in polynomial time by using the ellipsoid

method (see [31, Theorem 6.4.1], for instance). For the feasible so-

lution 𝑌 found at the end, the fractional graph𝐺 (𝑌 ) defined by the

assignment 𝑌 is a (1 ± 𝜖)2 spectral sparsifier of 𝐺 (it is a (1 ± 𝜖)
sparsifier of 𝐻 , which is in turn a (1 ± 𝜖) sparsifier of 𝐺), with the

same total weight as the graph 𝐺 .

3.4 Rounding the Fractional Sparsifier
Finally, in this section we will show how, given a fractional total

weight preserving graph 𝐻 , we can round the weights in such a

way that we get a simple (unweighted) graph which is a (1 ± 𝜖)
cut-sparsifier of 𝐻 , while still preserving the total weight exactly.

For any edge 𝑒 in 𝐻 , we will denote by𝑤𝐻 (𝑒) the fractional weight
assigned to the edge 𝑒 , that is, 𝑤𝐻 (𝑒) ∈ [0, 1]. Towards this goal,
we establish the following lemma.

7
This technicality is due to the fact that 𝐿𝐻 and 𝐿

†
𝐻

have a non-trivial null-space (i.e.,

they will always contain the vector of all 1’s).
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Lemma 3.8. Let 𝐻 be a fractional graph whose minimum cut is
at least 𝜆 ≥ 200 log(𝑛)/𝜖2, and whose total edge weight sums to an
integer. Then, there is a polynomial time randomized rounding scheme
which with high probability recovers a simple graph 𝐻 which is a
total weight preserving (1 ± 𝜖) cut sparsifier of 𝐻 .

To prove this lemma, we require the following classic result due

to [35].

Proposition 3.9 (Karger’s Cut-counting Bound [35]). Let𝐺 be any
(potentially weighted) graph on 𝑛 vertices with minimum cut size
𝜆(𝐺). Then, the number of cuts in 𝐺 of size ≤ 𝛼 · 𝜆 is at most 𝑛2𝛼 .

We are now ready to prove Lemma 3.8.

Proof of Lemma 3.8. The rounding scheme itself is elementary:

we create a simple, unweighted graph 𝐻 , where for every edge

𝑒 ∈ 𝐻 , we keep 𝑒 independently with probability𝑤𝐻 (𝑒). First, we
will show that this procedure recovers a (1±𝜖) sparsifier with prob-

ability ≥ 1 − 1/𝑛5 (although it may not be total weight preserving).

Let 𝑡 := 200 log (𝑛)/𝜖2. Because the minimum cut in 𝐻 is of size

≥ 𝑡 , by Karger’s cut-counting bound (Proposition 3.9), we know

that for any 𝛼 ∈ Z+
, the number of cuts of size at most 𝛼 · 𝑡 is

bounded by 𝑛2𝛼 . Now, fix a cut 𝑆 of size ∈ [𝛼 · 𝑡, 2𝛼 · 𝑡). It follows
from Chernoff bound that

Pr

(
cut

𝐻
(𝑆) ∉ (1 ± 𝜖) · cut𝐻 (𝑆)

)
≤ exp

(
−𝜖2 · 𝛼 · 𝑡/12

)
≤ exp

(
−𝜖2 · 𝛼 · 200 log (𝑛)

12𝜖2

)
< 𝑛−10𝛼 ;

(to apply Chernoff bound, we can simply view the weight con-

tributed by each edge as a Bernoulli random variable. The expected

weight of a cut under the sampling procedure is exactly equal to its

current weight, and the Chernoff bound then follows simply).

Taking a union bound over all 𝑛4𝛼 possible cuts, this then yields

that every cut of size ∈ [𝛼 · 𝑡, 2𝛼 · 𝑡) is preserved to within a (1± 𝜖)
factor with probability at least 1 − 1/𝑛6𝛼 . Finally, integrating over
all choices of 𝛼 ≥ 1, we get that every cut is preserved to a factor

of (1 ± 𝜖) with probability at least 1 − 1/𝑛5.
The next step is to show that we can also sample exactly∑
𝑒 𝑤𝐻 (𝑒) edges in 𝐻 in our randomized rounding approach. For

this, we need the following auxiliary claim.

Claim 3.10. Let 𝑝1, . . . 𝑝𝑚 each be in [0, 1], and let 𝐾 =
∑𝑚
𝑖=1 𝑝𝑖 be

an integer. Now, let 𝑋𝑖 = Bern(𝑝𝑖 ) and let the 𝑋𝑖 ’s be independently
distributed. Then,

Pr[
𝑚∑︁
𝑖=1

𝑋𝑖 = 𝐾] ≥
1

𝑚 + 1

.

Proof. This follows from the fact that the mode of a Poisson

binomial distribution is either its mean, or differs from its mean by

at most 1. In particular, in our case when the mean is an integer

(𝐾), it must be the case that the mode ℓ = 𝐾 also (see [43], page

2, Darroch’s rule for instance). Now, because the support of the

distribution has size at most𝑚 + 1 (i.e., 0, . . .𝑚), it follows that the

mode must occur with probability ≥ 1/(𝑚 + 1), yielding our claim

above.
Claim 3.10

To conclude the proof of Lemma 3.8, we can apply Claim 3.10 to

our randomized rounding procedure. We see that with probability

≥ 1

𝑛2
, we will sample exactly

∑
𝑒∈𝐻 𝑤𝐻 (𝑒) edges in 𝐻 . This is

because our edge sampling procedure is exactly a Poisson binomial

distribution fitting the form of Claim 3.10.

So, we employ the following simple procedure: for 𝑛3 rounds,

we randomly sample edges in accordance with the above scheme.

With probability 1 − (1 − 1/𝑛2)𝑛3

= 1 − 2
−Ω (𝑛)

, we know that

in at least one round, we will recover a graph 𝐻 which exactly

preserves the total edge mass compared to 𝐻 . Further, by a union

bound over all 𝑛3 graphs generated in these rounds, we know that

with probability 1 − 1/𝑛2 every single graph we generate will be a

(1 ± 𝜖) cut sparsifier of 𝐻 . Thus, the graph 𝐻 that we return is the

first graph which preserves the total weight, and it will be a (1± 𝜖)
total weight preserving cut sparsifier of 𝐻 with high probability.

Lemma 3.8

3.5 Concluding the Proof of Theorem 3.2
Finally, in this section we synthesize our claims to conclude the

proof of Theorem 3.2.

Proof of Theorem 3.2. First, we initialize the linear sketch of

Lemma 3.6, using 𝜆 = 200 log(𝑛)/𝜖2. The space complexity of our

sketch then follows from Lemma 3.6.

Using our sketch, we can recover all edges of strength at most 𝜆

(we denote this set by 𝑇 ), as well as a (1 ± 𝜖) spectral sparsifier of
the graph𝐺 −𝑇 , and the total number of edges in𝐺 −𝑇 . Next, using
Lemma 3.7, we find a fractional (1 ± 3𝜖) total weight preserving
spectral sparsifier 𝐻 of 𝐺 −𝑇 in polynomial time. Finally, we use

Lemma 3.8 to, with high probability, round this into a simple (1±𝜖)
total weight preserving cut sparsifier 𝐻 of 𝐻 in polynomial time.

By composition of the sparsifier approximations, we also get that𝐻

is a (1 ± 5𝜖) simple total weight-preserving cut sparsifier of 𝐺 −𝑇 .
Finally, we add back the edges from 𝑇 , and conclude that 𝐻 ∪𝑇 is

a (1 ± 5𝜖) simple total weight-preserving cut sparsifier of 𝐺 .

We remark on a minor subtlety here. It seems possible that an

edge in 𝑇 is also included in our rounded solution 𝐻 , and thus

appears twice in𝐻 ∪𝑇 . However, recall that when we remove edges

in 𝑇 , this partitions 𝐺 into connected components 𝑉1, . . .𝑉𝑘 each

with minimum cut greater than 𝜆. The set of edges 𝑇 is exactly the

set of all edges in 𝐺 that go across these components. We observe

that our spectral sparsifier for the graph𝐺 −𝑇 will thus not contain

any edges crossing𝑉1, . . .𝑉𝑘 . This in turn implies that the fractional

graph 𝐻 generated by our convex program will not have any edges

crossing between𝑉1, . . .𝑉𝑘 also, as otherwise, for some𝑉𝑖 , cut𝐻 (𝑉𝑖 )
would be non-zero, whereas cut𝐺−𝑇 (𝑉𝑖 ) = 0, violating the spectral

approximation constraint in our convex program. So, for every edge

𝑒 in 𝑇 , 𝑒 is not present in the rounded graph 𝐻 .

Finally, we can re-parameterize 𝜖 to someΘ(𝜖) to obtain a (1±𝜖)
cut sparsifier with high probability, concluding the proof.

Before moving on from this section, we note that by combin-

ing Lemma 3.7 and Lemma 3.8, we get the following general de-

sparsification corollary that formalizes part 1 of Result 3.
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Corollary 3.11 (Part 1 of Result 3). Given a (potentially weighted)
graph 𝐻 which is promised to be a (1 ± 𝜖) spectral sparsifier of some
unweighted simple graph 𝐺 with minimum cut 𝜆 ≥ 200 log(𝑛)/𝜖2,
along with the number of edges in 𝐺 , we can recover in polynomial
time a simple graph 𝐺 which is a (1 ±𝑂 (𝜖)) total weight preserving
cut sparsifier of 𝐺 , with high probability.

4 De-sparsifying Spectral Sparsifiers: Proofs
of Result 2 and 3

In the previous section, we focused on recovering an unweighted,

simple total weight preserving cut sparsifiers of our original graph.
This was motivated by applications to correlation clustering but

also leads to a simpler analysis, as the rounding procedure yields

correct outputs so long as the minimum cut value is sufficiently

large. We now show that we can also recover a spectral sparsifier

of the original graph via de-sparsification.

Theorem 4.1. There is a randomized linear sketch of size𝑂 (𝑛/𝜖2)
bits which, on any graph 𝐺 , can be used to recover, with high proba-
bility, an unweighted, simple (1 ± 𝜖) total weight preserving spectral
sparsifier of 𝐺 in polynomial time.

To prove Theorem 4.1, we follow the strategy of [41] in con-

structing spectral sparsifiers by sampling edges proportional to

their effective resistance (Definition 2.5). Formally,

Proposition 4.2 ([41]). Let𝐺 be an arbitrary graph on 𝑛 vertices, let
𝜖 ∈ (0, 1), and let 𝐶 be a sufficiently large constant. Then, indepen-
dently sampling each edge with probability

𝑝𝑒 ≥ 𝑤𝑒 ·
𝐶 log(𝑛) · 𝑅

eff,𝐺 (𝑒)
𝜖2

(and assigning weight 𝑤𝑒/𝑝𝑒 if sampled) yields a (1 ± 𝜖) spectral
sparsifier of 𝐺 with high probability.

4.1 De-sparsifying With Small Effective
Resistances

In this subsection, we prove part 2 of Result 3, as its intuition will

be very valuable in the proof of Result 2. We first restate the result

before providing our proof:

Theorem 4.3 (Part 2 of Result 3). For any 𝜖 ∈ (0, 1) and 𝑛-
vertex unweighted graph𝐺 , there is a randomized polynomial-time
algorithm that given any (1 ± 𝜖)-spectral sparsifier 𝐻 of 𝐺 , recovers
with high probability an 𝑛-vertex, simple unweighted graph 𝐺 such
that 𝐺 is a (1 ± 5𝜖)-spectral sparsifier of 𝐺 , provided the effective
resistance of every pair (𝑢, 𝑣) in 𝐺 is ≤ 𝜖2

2𝐶 log(𝑛) , where 𝐶 is the
constant from Proposition 4.2.

Proof. First, recall that by Lemma 3.7 we can recover a frac-

tional, total weight preserving graph 𝐻 which is a (1 ± 𝜖) spectral
sparsifier of 𝐻 and thus a (1 ± 3𝜖) spectral sparsifier of 𝐺 . All that
remains is to perform a randomized rounding of 𝐻 which yields

a spectral sparsifier and preserves the total weight. We use the

same rounding procedure as in Lemma 3.8, and thus, just as in

the proof of the lemma, by repeating the procedure a polynomial

number of times, we can guarantee that the number of edges in our

rounding matches the number of edges in the original graph. All

that remains to be shown is that the rounded graph is a spectral

sparsifier with high probability. For this, by Proposition 4.2, we

know that sampling every edge 𝑒 with probability

𝑝𝑒 ≥ 𝐶 log(𝑛)
𝜖2

·𝑤𝑒 · 𝑅eff (𝑒),

and assigning weight 𝑤𝑒/𝑝𝑒 to the sampled edges yields a (1 ±
𝜖) spectral sparsifier with high probability. By the hypothesis of

our theorem, it follows that every edge 𝑒 ∈ 𝐻 will have effective

resistance at most

(1 + 2𝜖) · 𝜖2

2𝐶 log(𝑛) .

This is because 𝐻 is a (1 ± 𝜖) spectral sparsifier of 𝐺 , and so for

every pair of vertices (𝑢, 𝑣) ∈
(𝑉
2

)
, it is the case that 𝑅

eff,𝐻
(𝑢, 𝑣) ∈

(1 ± 2𝜖)𝑅
eff,𝐺 (𝑢, 𝑣) (see Definition 2.5).

So, by Proposition 4.2 we must only sample each edge 𝑒 ∈ 𝐻
with probability

𝑝𝑒 ≥ (1 + 2𝜖) · 𝐶 log(𝑛)
𝜖2

·𝑤𝑒 ·
𝜖2

2𝐶 log(𝑛) =
1 + 2𝜖

2

·𝑤𝑒 .

Since𝑤𝑒 ≥ 𝑝𝑒 , we can keep each edge 𝑒 independently with proba-

bility𝑤𝑒 , while still yielding a (1 ± 𝜖) spectral sparsifier of 𝐻 with

high probability. Indeed, because 𝐻 was already a (1 ± 3𝜖) spectral
sparsifier to 𝐺 , the resulting graph is a (1 ± 5𝜖) spectral sparsifier
of 𝐺 while also being a simple graph.

4.2 Proof of Theorem 4.1
We now provide a formal proof of Theorem 4.1. The main challenge

here is to handle the pairs of vertices whose effective resistances

will be higher than the bounds in Theorem 4.3 which requires a non-

black-box modification of our approach in establishing Theorem 3.2.

To prove Theorem 4.1, we need to use the followingmore detailed

analysis from [34].

Proposition 4.4 ([34]). Given any parameter 𝜙 ≥ 0, there is a (ran-
domized) linear sketch S such that for a graph𝐺 on 𝑛 vertices, S(𝐺)
can be used to recover each edge 𝑒 independently with probability at
least 𝜙 · 𝑟eff,𝐺 (𝑢, 𝑣), and likewise assigns appropriate weights to create
a (1 ± 𝜖) spectral sparsifier with probability 1 − 1/poly(𝑛). Further,
S requires only 𝑂 (𝑛𝜙) bits of space to store.

We are now ready to start the proof.

Linear sketch. The linear sketch in Theorem 4.1 is very sim-

ple: we simply store the sketch of Proposition 4.4 with parameter

𝜙 =
𝐶 log

3 (𝑛)
𝜖2

, for 𝐶 a sufficiently large constant. It follows then by

Proposition 4.4 that this allows us to recover a (1± 𝜖) spectral spar-
sifier of the graph 𝐺 with high probability. Further, since the linear

sketch of Proposition 4.4 implicitly performs effective-resistance

sampling, it follows that every edge 𝑒 with effective resistance

≥ 1

𝜙
= 𝜖2

𝐶 log
3 (𝑛) is necessarily recovered, as each such edge is

sampled with probability ≥ 𝜙

𝜙
= 1.

Recovery from the sketch. Now, let𝐻 denote theweighted spectral

sparsifier recovered by the above sketch, and let 𝐻𝑈 denote the

corresponding unweighted version of 𝐻 (where every edge in 𝐻

is given weight 1). Observe that it must be the case that 𝐻𝑈 ⊆ 𝐺 ,
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as it is the result of sub-sampling 𝐺 . Observe also that because

𝐻 is a (1 ± 𝜖) spectral sparsifier of 𝐺 , for every pair of vertices

(𝑢, 𝑣) ∈
(𝑉
2

)
, it is the case that 𝑅

eff,𝐻
(𝑢, 𝑣) ∈ (1±2𝜖)𝑅

eff,𝐺 (𝑢, 𝑣) (see
Definition 2.5).

Now, we define the set 𝐸 ⊆
(𝑉
2

)
:

𝐸 =

{
(𝑢, 𝑣) ∈

(
𝑉

2

)
: (𝑢, 𝑣) ∉ 𝐻𝑈 , 𝑅

eff,𝐻
(𝑢, 𝑣) ≤ 𝜖2

100 log
2 (𝑛)

}
.

In words, this is simply the set of pairs of vertices which have small

effective resistance with respect to the recovered spectral sparsifier

𝐻 . Using this we create our convex program, for which we wish to

find a feasible point:

𝑌𝑒 ∈ [0, 1] ∀𝑒 ∈ 𝐸,
∀𝑧 ∈ R𝑛

: ∥𝑧∥2 = 1 :

𝑧𝑇 𝐿
𝐻𝑈
𝑧 +

∑︁
𝑒∈(𝑉

2
)
𝑌𝑒 · 𝑧𝑇 𝐿𝑒𝑧 ≥ (1 − 𝜖)𝑧𝑇 𝐿

𝐻
𝑧

𝑧𝑇 𝐿
𝐻𝑈
𝑧 +

∑︁
𝑒∈(𝑉

2
)
𝑌𝑒 · 𝑧𝑇 𝐿𝑒𝑧 ≤ (1 + 𝜖)𝑧𝑇 𝐿

𝐻
𝑧

|𝐻𝑈 | +
∑︁

𝑒∈(𝑉
2
)
𝑌𝑒 =𝑚.

As before, we must show that this program is feasible:

Claim 4.5. The stated convex program is feasible.

Proof. This follows because the original graph𝐺 will be a (1±𝜖)
spectral sparsifier of 𝐻 which preserves the total weight. Because

we are already including the contribution of 𝐻𝑈 in each of the

constraints, there is a feasible solution corresponding to 𝐺 −𝐻𝑈 ,

which will contain only edges that are in 𝐸. This is because any

edge in𝐺 with effective resistance larger than
𝜖2

100 log
2 (𝑛) is already

in 𝐻𝑈 , so the entire support of 𝐺 − 𝐻𝑈 is thus in 𝐸.

Likewise, the separation oracle is efficiently implementable:

Claim 4.6. There is a polynomial time separation oracle for the
above convex program.

Proof. This follows from all of the same reasons as in Lemma 3.7.

Indeed certifying the constraints that 𝑌𝑒 ∈ [0, 1] and that∑
𝑒∈𝐿

𝐻𝑈

1 +∑
𝑒∈(𝑉

2
) 𝑌𝑒 =𝑚 are both trivial. Thus, it remains only

to check whether

𝑧𝑇 𝐿
𝐻𝑈
𝑧 +

∑︁
𝑒∈(𝑉

2
)
𝑌𝑒 · 𝑧𝑇 𝐿𝑒𝑧 ∈ (1 + 𝜖)𝑧𝑇 𝐿

𝐻
𝑧 ∀𝑧 ∈ R𝑛

: ∥𝑧∥2 = 1.

Letting 𝐺 denote the graph whose edge weights are given by 𝑌𝑒
(and is 0 otherwise), this constraint is equivalent to

𝑧𝑇 𝐿
𝐻𝑈
𝑧 + 𝑧𝑇 𝐿

𝐺̂
𝑧 ∈ (1 ± 𝜖)𝑧𝑇 𝐿

𝐻
𝑧 ∀𝑧 ∈ R𝑛

: ∥𝑧∥2 = 1.

By linearity of the Laplacians, this can be re-written as ∀𝑧 ∈ R𝑛
:

∥𝑧∥2 = 1,

𝑧𝑇 (𝐿
𝐻𝑈

+ 𝐿
𝐺̂
)𝑧 ∈ (1 ± 𝜖)𝑧𝑇 𝐿

𝐻
𝑧,

which is now exactly in the same form as the constraints of

Lemma 3.7, and so can be checked by calculating the eigenvalues

of 𝐿
†/2
𝐻

(𝐿
𝐻𝑈

+ 𝐿
𝐺̂
)𝐿†/2

𝐻
.

Now, because of Claim 4.5 and Claim 4.6, we can use the ellipsoid

method to find a feasible solution in polynomial time [31]. So, let𝐺

then denote this feasible solution recovered by the above program,

where the edge set is 𝐸, and the corresponding weight on each edge

𝑒 ∈ 𝐸 is 𝑌𝑒 . Observe that 𝐺 ∪ 𝐻𝑈 is a fractional (1 ± 𝜖) spectral
sparsifier of𝐻 , and thus a fractional total weight preserving (1±3𝜖)
spectral sparsifier of 𝐺 .

All that remains is to show that efficiently rounding this solution

is possible. For this, by Proposition 4.2, we know that sampling

each edge 𝑒 with probability 𝑝𝑒 ≥ 𝐶 log(𝑛)
𝜖2

·𝑤𝑒 · 𝑅eff (𝑒), and giving
weight

𝑤𝑒

𝑝𝑒
yields a (1 ± 𝜖) spectral sparsifier with high probability.

Now, because𝐺 ∪𝐻𝑈 is a (1± 𝜖) spectral sparsifier of 𝐻 , it follows

that for every pair of vertices (𝑢, 𝑣),

𝑅
eff,𝐺̂∪𝐻𝑈

(𝑢, 𝑣) ≤ (1 + 2𝜖)𝑅
eff,𝐻

(𝑢, 𝑣).

In particular, for every edge (𝑢, 𝑣) ∈ 𝐸, we have

𝑅
eff,𝐺̂∪𝐻𝑈

(𝑢, 𝑣) ≤ (1 + 2𝜖) 𝜖2

100 log
2 (𝑛)

.

Thus, in the graph 𝐺 ∪ 𝐻𝑈 , for every edge 𝑒 ∈ 𝐸, we calculate the
minimal sampling rate as

𝑝𝑒 =
𝐶 log(𝑛)
𝜖2

·𝑤𝑒 ·𝑅
eff,𝐺̂∪𝐻𝑈

(𝑒) ≤ 𝐶 log(𝑛)
𝜖2

·𝑤𝑒 ·
𝜖2

𝐶 log(𝑛) ≤ 𝑤𝑒 .

So, we can independently keep each edge 𝑒 ∈ 𝐺 with probability

𝑤𝑒 while still creating a (1 ± 𝜖) spectral sparsifier of 𝐺 ∪ 𝐻𝑈 . By

composing sparsifiers (as before) this yields a (1 ± 5𝜖) spectral
sparsifier of the original graph 𝐺 , while also yielding a simple,

unweighted graph (the edges in 𝐻𝑈 are already unweighted).

By starting with an error parameter of 𝜖/5, we then obtain the

stated accuracy of our spectral sparsifier. Likewise, because we are

performing the simple, independent Bernoulli rounding, we can

repeat this procedure 𝑛3 times and be guaranteed by Claim 3.10

that in some round, the total weight is exactly preserved.

This concludes the proof of Theorem 4.1.
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