
Vizing’s Theorem in Near-Linear Time
Sepehr Assadi

University of Waterloo

Waterloo, Canada

sepehr@assadi.info

Soheil Behnezhad

Northeastern University

Boston, USA

s.behnezhad@northeastern.edu

Sayan Bhattacharya

University of Warwick

Coventry, United Kingdom

s.bhattacharya@warwick.ac.uk

Martín Costa

University of Warwick

Coventry, United Kingdom

martin.costa@warwick.ac.uk

Shay Solomon

Tel Aviv University

Tel Aviv, Israel

solo.shay@gmail.com

Tianyi Zhang

ETH Zürich

Zürich, Switzerland

tianyi.zhang@inf.ethz.ch

Abstract
Vizing’s theorem states that any 𝑛-vertex𝑚-edge graph of maxi-

mum degree Δ can be edge colored using at most Δ + 1 different

colors [Vizing, 1964]. Vizing’s original proof is algorithmic and

shows that such an edge coloring can be found in𝑂 (𝑚𝑛) time. This

was subsequently improved to 𝑂̃ (𝑚
√
𝑛) time, independently by

[Arjomandi, 1982] and by [Gabow et al., 1985].

Very recently, independently and concurrently, using randomiza-

tion, this runtime bound was further improved to 𝑂̃ (𝑛2) by [Assadi,
2024] and 𝑂̃ (𝑚𝑛1/3) by [Bhattacharya, Carmon, Costa, Solomon

and Zhang, 2024] (and subsequently to 𝑂̃ (𝑚𝑛1/4) by [Bhattacharya,
Costa, Solomon and Zhang, 2024]).

In this paper, we present a randomized algorithm that computes

a (Δ+1)-edge coloring in near-linear time—in fact, only𝑂 (𝑚 logΔ)
time—with high probability, giving a near-optimal algorithm for this
fundamental problem.

CCS Concepts
• Theory of computation→ Graph algorithms analysis.

Keywords
Edge Coloring, Vizing’s Theorem

ACM Reference Format:
Sepehr Assadi, Soheil Behnezhad, Sayan Bhattacharya, Martín Costa, Shay

Solomon, and Tianyi Zhang. 2025. Vizing’s Theorem in Near-Linear Time.

In Proceedings of the 57th Annual ACM Symposium on Theory of Computing
(STOC ’25), June 23–27, 2025, Prague, Czechia. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3717823.3718265

1 Introduction
Given a simple undirected graph 𝐺 = (𝑉 , 𝐸) on 𝑛 vertices and𝑚

edges, as well as an integer 𝜅 ∈ N+, a 𝜅-edge coloring 𝜒 : 𝐸 →
{1, 2, . . . , 𝜅} of𝐺 assigns a color 𝜒 (𝑒) to each edge 𝑒 ∈ 𝐸 so that any

two adjacent edges receive distinct colors. The minimum possible

value of 𝜅 for which a 𝜅-edge coloring exists in 𝐺 is known as

the edge chromatic number of 𝐺 . If 𝐺 has maximum vertex degree

∗
Full version is available on arXiv [4]: https://arxiv.org/abs/2410.05240

This work is licensed under a Creative Commons Attribution 4.0 International License.

STOC ’25, Prague, Czechia
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1510-5/25/06

https://doi.org/10.1145/3717823.3718265

Δ, any proper edge coloring would require at least Δ different

colors. A classical theorem by Vizing shows that Δ + 1 colors are
always sufficient [54]. Moreover, it was proven by [44] that it is

NP-complete to distinguish whether the edge chromatic number of

a given graph is Δ or Δ + 1, and therefore Δ + 1 is the best bound
we can hope for with polynomial time algorithms.

Vizing’s original proof easily extends to an 𝑂 (𝑚𝑛) time algo-

rithm, which was improved to 𝑂̃ (𝑚
√
𝑛) in the 1980s by [2] and [39]

independently
1
. More recently, the algorithms of [2, 39] were sim-

plified in [52], while shaving off extra logarithmic factors from their

runtime complexities, achieving a clean 𝑂 (𝑚
√
𝑛) runtime bound.

Very recently, this longstanding𝑂 (𝑚
√
𝑛) time barrier was bypassed

in two concurrent works [3] and [11] which improved the runtime

bound to two incomparable bounds of 𝑂̃ (𝑛2) and 𝑂̃ (𝑚𝑛1/3), respec-
tively. In a follow-up work, the 𝑂̃ (𝑚𝑛1/3) runtime bound of [11] to

was further improved to 𝑂̃ (𝑚𝑛1/4) in [16].

In this work, we resolve the time complexity of randomized

(Δ + 1)-edge coloring up to at most a log factor by presenting a

near-linear time algorithm for this problem.

Theorem 1.1. There is a randomized algorithm that, given any
simple undirected graph 𝐺 = (𝑉 , 𝐸) on 𝑛 vertices and𝑚 edges with
maximum degree Δ, finds a (Δ + 1)-edge coloring of𝐺 in𝑂 (𝑚 log𝑛)
time with high probability.

Remarks: Several remarks on our Theorem 1.1 are in order:

• Our algorithm in Theorem 1.1 does not rely on any of the recent

developments in [3, 11, 16] and takes an entirely different path.

We present an overview of our approach, as well as a comparison

to these recent developments in Section 1.2.

• Our main contribution in this work is to improve the time-

complexity of (Δ + 1)-edge coloring by polynomial factors all

the way to near-linear. For this reason, as well as for the sake of

transparency of our techniques, we focus primarily on present-

ing an 𝑂 (𝑚 log
3 𝑛) time randomized algorithm (Theorem 6.1),

which showcases our most novel ideas. In the full version [4], we

show that a more careful implementation of the same algorithm

achieves a clean 𝑂 (𝑚 log𝑛) runtime.

• We can additionally use a result of [9] to further replace the log𝑛

term in Theorem 1.1 with a logΔ term, leading to an algorithm

for (Δ+1)-edge coloring in𝑂 (𝑚 logΔ) timewith high probability

(see full version [4]). This matches the longstanding time bound

1
Throughout, we use 𝑂̃ (𝑓) := 𝑂 (𝑓 polylog (𝑛)) to suppress log-factors in the num-

ber of vertices of the graph.

24

https://orcid.org/0009-0006-8914-5995
https://orcid.org/0000-0002-0104-633X
https://orcid.org/0000-0003-1612-0296
https://orcid.org/0000-0002-0726-9083
https://orcid.org/0000-0003-2254-5100
https://orcid.org/0000-0003-3407-3307
https://doi.org/10.1145/3717823.3718265
https://arxiv.org/abs/2410.05240
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3717823.3718265
https://creativecommons.org/licenses/by/4.0/

STOC ’25, June 23–27, 2025, Prague, Czechia S. Assadi, S. Behnezhad, S. Bhattacharya, M. Costa, S. Solomon, T. Zhang

for Δ-edge coloring bipartite graphs [30] (which, to the best of

our knowledge, is also the best known runtime for (Δ + 1)-edge
coloring bipartite graphs). This bound is also related to a recent

line of work in [9, 10, 33] that focused on the Δ = 𝑛𝑜 (1) case
and gave a randomized (Δ + 1)-coloring algorithm that runs in

𝑂 (𝑚Δ4
logΔ) time with high probability [10].

• Vizing’s theorem generalizes for (loop-less) multigraphs, assert-

ing that any multigraph with edge multiplicity 𝜇 can be (Δ + 𝜇)-
edge colored [54, 55]. A related result is Shannon’s theorem [51]

that asserts that any multigraph can be ⌊3Δ/2⌋ edge colored

independent of 𝜇; both these bounds are tight: see the so-called

Shannon multigraphs [55]. We show that our techniques extend

to these theorems as well, giving𝑂 (𝑚 logΔ) time algorithms for

both problems (see full version [4]), which vastly improves upon

the previous runtime 𝑂 (min{𝑚𝑛 +𝑚Δ, 𝑛 poly(Δ)}) by [32, 51].

1.1 Related Work
In addition to algorithms for Vizing’s theorem, there has also been

a long line of work on fast algorithms for edge coloring that use

more than Δ + 1 colors. It was first shown in [45] that an edge

coloring can be computed in 𝑂̃ (𝑚) time when we have Δ + 𝑂̃ (
√
Δ)

different colors. In addition, there are algorithmswhich run in linear

or near-linear time for (1 + 𝜖)Δ-edge coloring [10, 15, 33, 34, 36]

when 𝜖 ∈ (0, 1) is a constant. Most recently, it was shown in [3] that

even a (Δ+𝑂 (log𝑛))-edge coloring can be computed in𝑂 (𝑚 logΔ)
expected time.

There are other studies on restricted graph classes. In bipartite

graphs, a Δ-edge coloring can be computed in 𝑂̃ (𝑚) time [1, 28, 30,

42]. In bounded degree graphs, one can compute a (Δ + 1)-edge
coloring in 𝑂̃ (𝑚Δ) time [39], and it was generalized recently for

bounded arboricity graphs [14]; see also [13, 24, 46] for further

recent results on edge coloring in bounded arboricity graphs. Sub-

families of bounded arboricity graphs, including planar graphs,

bounded tree-width graphs and bounded genus graphs, were stud-

ied in [25, 26, 29].

Beside the literature on classical algorithms, considerable effort

has been devoted to the study of edge coloring in various computa-

tional models in the past few years, including dynamic [6, 12, 15,

22, 23, 34], online [17–19, 27, 35, 47, 49], distributed [5, 8, 20, 22, 31,

37, 38, 40, 43, 48, 53], and streaming [7, 21, 41, 50] models, among

others.

1.2 Technical Overview
We now present an overview of prior approaches to (Δ + 1)-edge
coloring and describe our techniques at a high level. For the fol-

lowing discussions, we will assume basic familiarity with Vizing’s

proof and its underlying algorithm.

Prior Approaches. A generic approach for (Δ + 1)-edge coloring,
dating back to Vizing’s proof itself, is to extend a partial (Δ+1)-edge
coloring of the graph one edge at a time, possibly by recoloring

some edges, until the entire graph becomes colored. As expected,

the main bottleneck in the runtime of this approach comes from

extending the coloring to the last few uncolored edges. For instance,

given a graph 𝐺 = (𝑉 , 𝐸) with maximum degree Δ, we can apply

Eulerian partitions to divide 𝐺 into two edge-disjoint subgraphs

𝐺 = 𝐺1 ∪𝐺2 with maximum degrees at most ⌈Δ/2⌉. We then find

(⌈Δ/2⌉ + 1)-edge colorings of the subgraphs𝐺1 and𝐺2 recursively.

Directly combining the colorings of𝐺1 and 𝐺2 gives a coloring of

𝐺 with Δ + 3 colors, so we have to uncolor a 2/(Δ + 3) fraction
of the edges—amounting to 𝑂 (𝑚/Δ) edges—and try to extend the

current partial (Δ+1)-edge coloring to these edges. Thus, the “only”
remaining part is to figure out a way to color these final 𝑂 (𝑚/Δ)
edges, and let the above approach take care of the rest.

This task of extending the coloring to the last Θ(𝑚/Δ) edges is
the common runtime bottleneck of all previous algorithms. Vizing’s

original algorithm [54] gives a procedure to extend any partial col-

oring to an arbitrary uncolored edge (𝑢, 𝑣) by rotating some colors

around 𝑢 and flipping the colors of an alternating path starting at

𝑢. The runtime of this procedure would be proportional to the size

of the rotation, usually called a Vizing fan, and the length of the

alternating path, usually called a Vizing chain, which are bounded

by Δ and 𝑛 respectively. As such, the total runtime for coloring the

remaining 𝑂 (𝑚/Δ) edges using Vizing fans and Vizing chains will

be 𝑂 (𝑚𝑛/Δ) time.

As one can see, flipping long alternating paths is the major chal-

lenge in Vizing’s approach. To improve this part of the runtime,

[39] designed an algorithm that groups all uncolored edges into

𝑂 (Δ2) types depending on the two colors of the Vizing chain in-

duced by this edge. Since all the Vizing chains of the same type are

vertex-disjoint, they can be flipped simultaneously and their total

length is only 𝑂 (𝑛). This means that the runtime of coloring all

edges of a single type can be bounded by 𝑂 (𝑛) as well. This leads
to an 𝑂 (𝑛Δ2) time algorithm for handling all 𝑂 (Δ2) types; a more

careful analysis can bound this even with 𝑂 (𝑚Δ) time. Finally, bal-

ancing the two different bounds of 𝑂 (𝑚𝑛/Δ) and 𝑂 (𝑚Δ) yields a
runtime bound of𝑂 (𝑚

√
𝑛) for coloring𝑂 (𝑚/Δ) edges, which leads

to an 𝑂̃ (𝑚
√
𝑛) time algorithm using the above framework.

There has been some very recent progress that broke through this

classical barrier of𝑂 (𝑚
√
𝑛) time in [2, 39]. In [11], the authors speed

up the extension of the coloring to uncolored edges when these

edges admit a small vertex cover. They then show how to precondi-

tion the problem so that uncolored edges admit a small vertex cover,

leading to a 𝑂̃ (𝑚𝑛1/3) time algorithm. In [3], the author avoided

the need for Eulerian partition and recursion altogether by instead

designing a new near-linear time algorithm for (Δ+𝑂 (log𝑛))-edge
coloring. This algorithm borrows insights from sublinear matching

algorithms in regular bipartite graphs by [42] and is thus completely

different from other edge coloring algorithms mentioned above.

By using this algorithm, finding a (Δ + 1)-edge coloring directly

reduces to the color extension problem with 𝑂 ((𝑚 log𝑛)/Δ) un-
colored edges (by removing the colors of a Θ(log𝑛)/Δ fraction of

the edges in the (Δ + 𝑂 (log𝑛))-edge coloring to obtain a partial

(Δ + 1)-edge coloring first). Applying Vizing’s procedure for these

uncolored edges takes additional 𝑂̃ (𝑚𝑛/Δ) = 𝑂̃ (𝑛2) time, leading

to an 𝑂̃ (𝑛2) time algorithm for (Δ + 1)-edge coloring. Finally, in
[16], the authors showed that a (Δ + 1)-coloring can be computed

in 𝑂̃ (𝑚𝑛1/4) time, by using the algorithm of [3] for initial coloring

of the graph and then presenting an improved color extension sub-

routine with a runtime of 𝑂̃ (Δ2 +
√
Δ𝑛) for coloring each remaining

edge; the best previous color extension time bounds were either

the trivial 𝑂 (𝑛) bound or the bound 𝑂̃ (Δ4) by [8, 10].

25

Vizing’s Theorem in Near-Linear Time STOC ’25, June 23–27, 2025, Prague, Czechia

Our Approach: A Near-Linear Time Color Extension Algorithm. We

will no longer attempt to design a faster color extension for a single
edge, and instead color them in large batches like in [39], which al-

lows for a much better amortization of runtime in coloring multiple

edges. This ultimately leads to our main technical contribution: a

new randomized algorithm for solving the aforementioned color ex-

tension problem for the last𝑂 (𝑚/Δ) edges in 𝑂̃ (𝑚) time. With this

algorithm at hand, we can follow the aforementioned Eulerian par-

tition approach and obtain a (Δ+1)-edge coloring algorithm whose

runtime𝑇 (𝑚) follows the recursion𝑇 (𝑚) ≤ 2𝑇 (𝑚/2) + 𝑂̃ (𝑚) with
high probability; this implies that𝑇 (𝑚) = 𝑂̃ (𝑚), hence, giving us a
near-linear time randomized algorithm for (Δ + 1)-edge coloring.
This way, we will not even need to rely on the (Δ +𝑂 (log𝑛))-edge
coloring algorithm of [3] to color the earlier parts of the graph

(although one can use that algorithm instead of Eulerian partition

approach to the same effect).

We now discuss the main ideas behind our color extension algo-

rithm. In the following, it helps to think of the input graph as being

near-regular (meaning that the degree of each vertex is Θ(Δ)), and
thus the total number of edges will be𝑚 = Θ(𝑛Δ); this assumption

is not needed for our algorithm and is only made here to simplify

the exposition.

Color Type Reduction. Recall that the runtime of 𝑂 (𝑛Δ2) for the
color extension algorithm of [39] is due to the fact that there are

generally𝑂 (Δ2) types of alternating paths in the graph and that the
total length of the paths of each color type is bounded by𝑂 (𝑛) edges.
However, if it so happens that the existing partial coloring only

involves 𝑂 (Δ) color types instead, then the same algorithm will

only take 𝑂 (𝑛Δ) = 𝑂 (𝑚) time (by the near-regularity assumption).

The underlying idea behind our algorithm is to modify the current

partial edge coloring (without decreasing the number of uncolored

edges) so that the number of color types reduces from 𝑂 (Δ2) to
𝑂 (Δ) only.

To explore this direction, let us assume for now the input graph is
bipartite, which greatly simplifies the structure of Vizing fans and

Vizing chains, thus allowing us to convey the key ideas more clearly

(see Section 3 for a more detailed exposition); later we highlight

some of the key challenges that arise when dealing with general

graphs. We shall note that it has been known since the 80s that one

can Δ-edge color bipartite graphs in 𝑂̃ (𝑚) time [28, 30]. However,

the algorithms for bipartite graphs use techniques that are entirely

different from Vizing fans and Vizing chains, and which do not

involve solving the color extension problem at all. In particular,

prior to this work, it was unclear whether one can efficiently solve

the color extension problem in bipartite graphs. Therefore, the as-

sumption of a bipartite input graph does not trivialize our goal of

using Vizing fans and Vizing chains for efficiently solving the color

extension problem. Additionally, we can assume that in the color

extension problem, the last𝑂 (𝑚/Δ) edges to be colored can be par-

titioned into 𝑂 (1) matchings (this guarantee follows immediately

from the recursive framework we outlined earlier), and that we

deal with each of these matchings separately. In other words, we

can also assume that the uncolored edges are vertex-disjoint.
Let 𝜒 be a partial (Δ + 1)-edge coloring, and for any vertex

𝑤 ∈ 𝑉 , letmiss𝜒 (𝑤) ⊆ [Δ+1] be the set of colors missing from the

edges incident to𝑤 under 𝜒 . Given any uncolored edge (𝑢, 𝑣), the

color type of this edge (𝑢, 𝑣) would be {𝑐𝑢 , 𝑐𝑣} for some arbitrary

choices of 𝑐𝑢 ∈ miss𝜒 (𝑢) and 𝑐𝑣 ∈ miss𝜒 (𝑣) (it is possible for an
edge to be able to choose more than one color type, but we fix one

arbitrary choice among them); in other words, if we flip the {𝑐𝑢 , 𝑐𝑣}-
alternating path starting at𝑢, then we can assign 𝜒 (𝑢, 𝑣) to be 𝑐𝑣 . To
reduce the total number of different color types to𝑂 (Δ), we would
have tomake some color typesmuchmore popular : at the beginning,
a type spans an Ω(1/Δ2) proportion of the uncolored edges but we

would like to have a type spanning an Ω(1/Δ) proportion. For this
purpose, we fix an arbitrary color type {𝛼, 𝛽}, and want to modify

𝜒 to transform the type of an arbitrary uncolored edge (𝑢, 𝑣) from
{𝑐𝑢 , 𝑐𝑣} to {𝛼, 𝛽} – we call this popularizing the edge (𝑢, 𝑣). To do

this, we can simply flip the {𝛼, 𝑐𝑢 }-alternating path 𝑃𝑢 starting at

𝑢 and the {𝛽, 𝑐𝑣}-alternating path 𝑃𝑣 starting at 𝑣 .

There are two technical issues regarding this path-flipping ap-

proach. Firstly, the alternating paths 𝑃𝑢 and 𝑃𝑣 could be very long,

and require a long time for being flipped. More importantly, flip-

ping 𝑃𝑢 and 𝑃𝑣 could possibly damage other {𝛼, 𝛽}-type (uncol-

ored) edges that we popularized before. More specifically, say that

we have popularized a set Φ of uncolored edges. When popular-

izing the next uncolored edge (𝑢, 𝑣), it could be the case that the

{𝛼, 𝑐𝑢 }-alternating path 𝑃𝑢 is ending at a vertex 𝑢′ for some edge

(𝑢′, 𝑣 ′) ∈ Φ. If we flip the path 𝑃𝑢 , then (𝑢′, 𝑣 ′) would no longer

be of {𝛼, 𝛽}-type as 𝛼 would not be missing at 𝑢′ anymore. See

Figure 1 for an illustration.

Our key observation is that when |Φ| is relatively small, most

choices for an alternating path 𝑃𝑢 cannot be ending at edges in Φ.
Consider the above bad example where 𝑃𝑢 is a {𝑐𝑢 , 𝛼}-alternating
path ending at 𝑢′ for some (𝑢′, 𝑣 ′) ∈ Φ. Let us instead look at this

from the perspective of the {𝛼, 𝛽}-type edge (𝑢′, 𝑣 ′) ∈ Φ. For any
(𝑢′, 𝑣 ′) ∈ Φ and any color 𝛾 , there can be at most one uncolored

edge (𝑢, 𝑣) ∉ Φ whose corresponding path 𝑃𝑢 is the same {𝛾, 𝛼}-
alternating path starting at 𝑢′; this is because any vertex belongs

to at most one alternating path of a fixed type (here, the type

{𝛾, 𝛼}) and each vertex belongs to at most one uncolored edge

(recall that the uncolored edges form a matching). This is also true

for {𝛾, 𝛽}-type edges for the same exact reason. As such, ranging

over all possible choices of 𝛾 ∈ [Δ + 1], there are at most 𝑂 (|Φ|Δ)
uncolored edges (𝑢, 𝑣) whose alternating paths could damage the

set Φ. Therefore, as long as the size of Φ is a 𝑜 (1/Δ) fraction (or

more precisely, an𝑂 (1/Δ) fraction, for a sufficiently small constant

hiding in the 𝑂-notation) of all uncolored edges, the following

property holds: a constant fraction of uncolored edges 𝑒 ∉ Φ can

be popularized using the above method without damaging Φ. See
Figure 2 for an illustration.

This property resolves both technical issues raised earlier si-

multaneously. Let 𝜆 denote the number of uncolored edges. For

the second issue, as long as |Φ| = 𝑜 (𝜆/Δ), we can take a random

uncolored edge (𝑢, 𝑣) ∉ Φ and flip 𝑃𝑢 and 𝑃𝑣 if this does not damage

any already popularized edge in Φ; by the observation above, this

happens with constant probability. For the first issue, we can show

that the expected length of alternating paths 𝑃𝑢 and 𝑃𝑣 , for the

random uncolored edge picked above, is 𝑂 (𝑚/𝜆); indeed, this is
because the number of edges colored 𝛼 or 𝛽 is𝑂 (𝑛), hence the total
length of all alternating paths with one color being fixed to 𝛼 or 𝛽

is 𝑂 (𝑚). All in all, the total time we spend to popularize a single

type {𝛼, 𝛽} to become a Θ(1/Δ) fraction of all uncolored edges

26

STOC ’25, June 23–27, 2025, Prague, Czechia S. Assadi, S. Behnezhad, S. Bhattacharya, M. Costa, S. Solomon, T. Zhang

𝑣 𝑢 𝑢′ 𝑣 ′

𝑐𝑢′ = 𝛼 𝑐𝑣′ = 𝛽𝑐𝑢 = 𝛾𝑐𝑣 = 𝜆

popular𝛽𝜆𝛽 𝛼 𝛾 𝛼 𝛾

𝑣 𝑢 𝑢′ 𝑣 ′

𝑐𝑢′ = 𝛾 𝑐𝑣′ = 𝛽𝑐𝑢 = 𝛼𝑐𝑣 = 𝛽

popular

𝜆𝛽𝜆 𝛾 𝛼 𝛾 𝛼

Figure 1: In this picture, we attempt to popularize edge (𝑢, 𝑣) by flipping the {𝛼,𝛾}-alternating path from 𝑢 and the {𝛽, 𝜆}-
alternating path from 𝑣 . However, flipping the {𝛼,𝛾}-alternating path from 𝑢 makes a previously popular edge (𝑢′, 𝑣 ′) unpopular
as 𝑢′ will not miss color 𝛼 anymore.

is 𝑂 (𝜆/Δ ·𝑚/𝜆) = 𝑂 (𝑚/Δ). Since coloring edges of a single type

takes 𝑂 (𝑛) = 𝑂 (𝑚/Δ) time by our earlier discussion, we can color

in this way a Θ(1/Δ) fraction of all uncolored edges in𝑂 (𝑚/Δ) ex-
pected time. As a direct corollary, we can color all uncolored edges

in 𝑂 (𝑚 log𝑛) time, hence solving the color extension problem, in

(near-regular) bipartite graphs, in near-linear time. The above ar-

gument will be detailed in the proof of Lemma 3.2 in Section 3.

Collecting U-Fans in General Graphs. We now discuss the gen-

eralization of our scheme above to non-bipartite graphs. The exis-

tence of odd cycles in non-bipartite graphs implies that we can no

longer assign a color type {𝑐𝑢 , 𝑐𝑣} to an uncolored edge (𝑢, 𝑣) for
𝑐𝑢 ∈ miss𝜒 (𝑢), 𝑐𝑣 ∈ miss𝜒 (𝑣), and hope that flipping the {𝑐𝑢 , 𝑐𝑣}-
alternating path from 𝑢 allows us to color the edge (𝑢, 𝑣) with 𝑐𝑣
(because the path may end at 𝑣 , and thus after flipping it 𝑐𝑣 will no

longer be missing from 𝑣). This is where Vizing fans and Vizing

chains come into play: in non-bipartite graphs, a color type of an

uncolored edge (𝑢, 𝑣) is {𝑐𝑢 , 𝛾𝑢,𝑣} where 𝑐𝑢 is an arbitrary color in

miss𝜒 (𝑢) but 𝛾𝑢,𝑣 is determined by the Vizing fan around 𝑢 and the

alternating path that we take for coloring (𝑢, 𝑣) (or the Vizing chain
of (𝑢, 𝑣)). Thus, while as before we can switch 𝑐𝑢 with some fixed

color 𝛼 , it is unclear how to flip alternating paths to change𝛾𝑢,𝑣 to 𝛽

also, in order to popularize the edge (𝑢, 𝑣) to be of some designated

type {𝛼, 𝛽}, without damaging another popularized edge as a result.

To address this challenge, we rely on the notion of a u-fan, in-
troduced by [39], which is the non-bipartite graph analogue of

an uncolored edge in bipartite graphs. A u-fan of type {𝛼, 𝛽} is a
pair of uncolored edges (𝑢, 𝑣), (𝑢,𝑤) such that 𝛼 ∈ miss𝜒 (𝑢) and
𝛽 ∈ miss𝜒 (𝑢) ∩ miss𝜒 (𝑣). Consider the {𝛼, 𝛽}-alternating path

starting at 𝑢. As at least one of 𝑣 or𝑤 is not the other endpoint of

this alternating path (say 𝑣), flipping this path allows us to assign

the color 𝛽 to (𝑢, 𝑣). Consequently, as u-fans are similar to edges in

bipartite graphs, we can still essentially (but not exactly) apply our

color type reduction approach if all the uncolored edges are paired

as u-fans. Therefore, it suffices to modify 𝜒 to pair all uncolored

edges together to form u-fans.

In order to pair different uncolored edges together and form 𝑢-

fans, we should first be able to move uncolored edges around. Such

operations already appeared in some previous work on dynamic

edge coloring [22, 23, 34]. Basically, for any uncolored edge (𝑢, 𝑣),
we can modify 𝜒 to shift this uncolored edge to any position on

its Vizing chain. This naturally leads to a win-win situation: if the

Vizing chain is short, then (𝑢, 𝑣) can be colored efficiently using

Vizing’s procedure; otherwise if most Vizing chains are long, then

there must be a pair of Vizing chains meeting together after a

few steps, so we can shift two uncolored edges to form a u-fan

efficiently.

Let us make this a bit more precise. Fix an arbitrary color 𝛼

and consider the set 𝑈𝛼 of all the uncolored edges (𝑢, 𝑣) such that

𝛼 ∈ miss𝜒 (𝑢) and the respective Vizing chain is of type {𝛼, ·}. Also,
assume there are𝑚𝛼 edges colored 𝛼 under 𝜒 . If most {𝛼, ·}-Vizing
chains have length larger than Ω(𝑚𝛼/|𝑈𝛼 |), then on average, two

Vizing chains should meet within the first 𝑂 (𝑚𝛼/|𝑈𝛼 |) steps; in
this case, we can repeatedly pick two intersecting Vizing chains

and create a u-fan by shifting their initial uncolored edges to the in-

tersection of these Vizing chains; see Figure 3 for illustration. Given

the length of the chains, this takes 𝑂 (𝑚𝛼/|𝑈𝛼 |) time. Otherwise,

the average cost of applying Vizing’s color extension procedure is

𝑂 (𝑚𝛼/|𝑈𝛼 |), and in this case we can directly color all those edges

in𝑂 (𝑚𝛼) time. Summing over all different 𝛼 ∈ [Δ+ 1] gives a near-
linear runtime. The above argument will be stated in Lemma 6.2.

The above discussion leaves out various technical challenges. For

instance, moving around uncolored edges as described above breaks

the assumption that the uncolored edges form amatching. Handling

this requires dedicating different colors from miss𝜒 (𝑢) for every
uncolored edge incident on a vertex 𝑢. This is formalized via the

notion of separability in Section 5.1. Additionally, we have ignored

all algorithmic aspects of (efficiently) finding pairs of intersecting

Vizing chains, as well as the corner cases of Vizing fan intersections

and fan-chain intersections. We defer the discussions on these

details to the actual proofs in subsequent sections.

2 Basic Notation
Let 𝐺 = (𝑉 , 𝐸) be graph on 𝑛 vertices with𝑚 edges and maximum

degree Δ and let 𝜒 : 𝐸 → [Δ + 1] ∪ {⊥} be a (partial) (Δ + 1)-edge
coloring of 𝐺 . We refer to edges 𝑒 ∈ 𝐸 with 𝜒 (𝑒) = ⊥ as uncolored.
Given a vertex 𝑢 ∈ 𝑉 , we denote the set of colors that are not

assigned to any edge incident on 𝑢 by miss𝜒 (𝑢). We sometimes

refer to miss𝜒 (𝑢) as the palette of 𝑢. We say that the colors in

miss𝜒 (𝑢) are missing (or available) at 𝑢.
Given a path 𝑃 = 𝑒1, . . . , 𝑒𝑘 in 𝐺 , we say that 𝑃 is an {𝛼, 𝛽}-

alternating path if 𝜒 (𝑒𝑖) = 𝛼 whenever 𝑖 is odd and 𝜒 (𝑒𝑖) = 𝛽

27

Vizing’s Theorem in Near-Linear Time STOC ’25, June 23–27, 2025, Prague, Czechia

𝑢′𝑣 ′

𝑣1𝑢1

𝑣2𝑢2

𝑣3𝑢3

𝑣4𝑢4

𝑣5𝑢5

𝛽𝛽

𝛽𝛽

𝛽𝛽

𝛽𝛽

𝛽𝛽

Figure 2: In this picture, (𝑢′, 𝑣 ′) ∈ Φ with 𝑐𝑢′ = 𝛼, 𝑐𝑣′ = 𝛽. For each uncolored edge (𝑢𝑖 , 𝑣𝑖), flipping the {𝑐𝑖 , 𝛽}-alternating path
from 𝑣𝑖 would damage the property that 𝑐𝑣′ = 𝛽. Fortunately, there are at most Δ many different such (𝑢𝑖 , 𝑣𝑖) because each of
them is at the end of an {𝛽, ·}-alternating path starting at 𝑣 ′.

𝑢1

𝑣1

𝑤1

𝑥 𝑦

𝑢2

𝑣2
𝑤2

𝛼 𝛼

𝛼

𝛼 𝛼

𝑢1

𝑣1

𝑤1

𝑥 𝑦

𝑢2

𝑣2

𝑤2

𝛼
𝛼

𝛼

𝛼

𝛼

Figure 3: In this picture, we have two different uncolored edges (𝑢1, 𝑣1), (𝑢2, 𝑣2) such that 𝛼 ∈ miss𝜒 (𝑢1) ∩miss𝜒 (𝑢2), and their
Vizing chains first intersect at edge (𝑥,𝑦) which currently has color 𝛼 under 𝜒 . Then we can rotate their Vizing fans and flip part
of their Vizing chains to shift (𝑢1, 𝑣1), (𝑢2, 𝑣2) to (𝑤1, 𝑥), (𝑤2, 𝑥) respectively to form a u-fan; note that 𝛼 ∈ miss𝜒 (𝑤1) ∩miss𝜒 (𝑤2)
after this shifting procedure.

whenever 𝑖 is even (or vice versa). We say that the alternating path

𝑃 is maximal if one of the colors 𝛼 or 𝛽 is missing at each of the

endpoints of 𝑃 . We refer to the process of changing the color of

each edge 𝑒𝑖 ∈ 𝑃 with color 𝛼 (resp. 𝛽) to 𝛽 (resp. 𝛼) as flipping the

path 𝑃 . We denote by |𝑃 | the length (i.e., the number of edges) of

the alternating path 𝑃 . We define the length 𝑖 prefix of the path 𝑃

to be the path 𝑃≤𝑖 := 𝑒1, . . . , 𝑒𝑖 .

Consider a set 𝑈 ⊆ 𝐸 of edges that are uncolored under 𝜒 , i.e.,

𝜒 (𝑒) = ⊥ for all 𝑒 ∈ 𝑈 . We use the phrase “extending 𝜒 to 𝑈 ” to
mean the following: Modify 𝜒 so as to ensure that 𝜒 (𝑒) ≠ ⊥ for all

𝑒 ∈ 𝑈 , without creating any new uncolored edges. When the set𝑈

consists of a single edge 𝑒 (i.e., when𝑈 = {𝑒}), we use the phrase
“extending 𝜒 to the edge 𝑒” instead of “extending 𝜒 to𝑈 ”.

Our algorithms will always work by modifying a partial coloring

𝜒 ; unless explicitly specified otherwise, every new concept we

define (such as u-fans and separable collection in Section 5) will be

defined with respect to this particular partial coloring 𝜒 .

3 Showcase: Our Algorithm Instantiated on
Bipartite Graphs

In this section, we instantiate our algorithm on bipartite graphs to

showcase some of our key insights, and outline a proof of Theo-

rem 3.1 below.

Theorem 3.1. There is a randomized algorithm that, given a bi-
partite graph 𝐺 = (𝑉 , 𝐸) with maximum degree Δ, returns a Δ-edge
coloring of 𝐺 in 𝑂̃ (𝑚) time with high probability.

As explained in Section 1.2, focusing on bipartite graphs allows

us to ignore the technical issues that arise while dealing with Vizing

fans. At the same time, this does not trivialize the main concep-

tual ideas underpinning our algorithm. In particular, we prove

Theorem 3.1 via Lemma 3.2 below, which gives a specific color-
extension algorithm on bipartite graphs. Although near-linear time

Δ-edge coloring algorithms on bipartite graphs existed since the

1980s [28, 30], to the best of our knowledge there was no known

algorithm for Lemma 3.2 prior to our work.

Lemma 3.2. Let 𝜒 : 𝐸 → [Δ] ∪ {⊥} be a partial Δ-edge coloring
in a bipartite graph 𝐺 = (𝑉 , 𝐸), and let𝑈 ⊆ 𝐸 be a matching of size
𝜆 such that every edge 𝑒 ∈ 𝑈 is uncolored in 𝜒 . Furthermore, suppose
that we have access to an “auxiliary data structure”, which allows us

28

STOC ’25, June 23–27, 2025, Prague, Czechia S. Assadi, S. Behnezhad, S. Bhattacharya, M. Costa, S. Solomon, T. Zhang

to detect in 𝑂̃ (1) time the two least common colors 𝛼, 𝛽 ∈ [Δ] in 𝜒 .2

Then there is a randomized algorithm that can extend 𝜒 to Ω(𝜆/Δ)
many edges of𝑈 in 𝑂̃ (𝑚/Δ) time with high probability.

Let us start by showing that Lemma 3.2 implies Theorem 3.1

easily.

Proof of Theorem 3.1. We follow the strategy outlined in Sec-

tion 1.2. Given a bipartite graph𝐺 , we first find an Eulerian partition

of the graph to partition the edges of𝐺 into two subgraphs of maxi-

mum degree ⌈Δ/2⌉ each, and color them recursively using different

colors. This leads to a 2 · ⌈Δ/2⌉ ≤ (Δ + 2) edge coloring of 𝐺 . We

then form a partial Δ edge coloring 𝜒 by uncoloring the two color

classes of this (Δ + 2)-edge coloring with the fewest edges assigned

to them, which leaves us with two edge-disjoint matchings 𝑈1 and

𝑈2 to color. This is our previously mentioned color extension prob-

lem. To solve this problem, we apply Lemma 3.2 to𝑈1 first to extend

𝜒 to Ω(1/Δ) fraction of it, and keep applying this lemma to the

remaining uncolored edges of𝑈1 until they are all colored. We then

move to𝑈2 in the same exact way and extend 𝜒 to its edges as well,

obtaining a Δ-coloring of the entire 𝐺 as a result.

The correctness of the algorithm follows immediately by induc-

tion. The runtime can also be analyzed as follows. When coloring

𝑈1 (or 𝑈2), each invocation of Lemma 3.2 reduces the number of

uncolored edges in 𝑈1 (or 𝑈2) by a (1 − Ω(1/Δ)) factor and thus

we apply this lemma a total of 𝑂 (Δ · log𝑛) time. Moreover, each

application of Lemma 3.2 takes 𝑂̃ (𝑚/Δ) time with high probability.

Thus, with high probability, it only takes 𝑂̃ (𝑚) time to extend the

coloring 𝜒 to 𝑈1 and 𝑈2 in the color extension problem. Hence,

the runtime of the algorithm, with high probability, follows the

recurrence𝑇 (𝑚,Δ) ≤ 2𝑇 (𝑚/2,Δ/2) +𝑂̃ (𝑚), and thus itself is 𝑂̃ (𝑚)
time.

Finally, note that with𝑂 (𝑚) preprocessing time, we canmaintain

access to the “auxiliary data structure” throughout the repeated

invocations of Lemma 3.2 above: All we need to do is maintain a

counter for each color 𝛾 ∈ [Δ], which keeps track of how many

edges in 𝐺 are currently assigned the color 𝛾 in 𝜒 . We maintain

these counters in a balanced search tree, and update the relevant

counter whenever we change the color of an edge in 𝐺 . □

The rest of this section is dedicated to the proof of Lemma 3.2.

3.1 Our Bipartite Color Extension Algorithm
in Lemma 3.2

At a high level, our algorithm for Lemma 3.2 consists of the follow-

ing three steps.

(1) Pick the two least common colors 𝛼, 𝛽 ∈ [Δ] in Δ. This implies

that there are at most𝑂 (𝑚/Δ) edges in𝐺 that are colored with

𝛼 or 𝛽 in 𝜒 .

(2) Modify the coloring 𝜒 so that Ω(𝜆/Δ) of the edges (𝑢, 𝑣) ∈
𝑈 either receive a color under 𝜒 , or have 𝛼 ∈ miss𝜒 (𝑢) and
𝛽 ∈ miss𝜒 (𝑣). While implementing this step, we ensure that

the total number of edges with colors 𝛼 or 𝛽 remains at most

𝑂 (𝑚/Δ).

2
Specifically, for every 𝛾 ∈ [Δ] \ {𝛼, 𝛽 } and 𝛾 ′ ∈ {𝛼, 𝛽 }, we have

| {𝑒 ∈ 𝐸 | 𝜒 (𝑒) = 𝛾 } | ≥ | {𝑒 ∈ 𝐸 | 𝜒 (𝑒) = 𝛾 ′ } | .

(3) Let Φ denote the set of edges (𝑢, 𝑣) ∈ 𝑈 with 𝛼 ∈ miss𝜒 (𝑢) and
𝛽 ∈ miss𝜒 (𝑣). We call these edges popular. We extend 𝜒 to a

constant fraction of the edges in Φ, by flipping a set of maximal

{𝛼, 𝛽}-alternating paths.

We now formalize the algorithm; the pseudocode is provided in

Algorithm 1. As input, we are given a bipartite graph 𝐺 = (𝑉 , 𝐸), a
partial Δ-edge coloring 𝜒 of𝐺 , and a matching𝑈 ⊆ 𝐸 of uncolored

edges of size 𝜆.

The algorithm starts by fixing the two least common colors

𝛼, 𝛽 ∈ [Δ] in 𝜒 . The main part is the while loop in Line 3, which

runs in iterations. In each iteration of the while loop, the algorithm
samples an edge 𝑒 = (𝑢, 𝑣) from 𝑈 u.a.r. and attempts to either

(1) directly extend the coloring 𝜒 to 𝑒 (see Line 10), which adds

𝑒 to a set 𝐶 ⊆ 𝑈 of colored edges in 𝑈 or (2) modify 𝜒 so that

𝛼 ∈ miss𝜒 (𝑢) and 𝛽 ∈ miss𝜒 (𝑣)—we refer to this as making the

edge (𝑢, 𝑣) popular—, which adds 𝑒 to a set Φ ⊆ 𝑈 of popular edges

(see Line 20). The attempt to modifying 𝜒 is done by essentially

finding a maximal {𝑐𝑢 , 𝛼}-alternating path 𝑃𝑢 starting at 𝑢 and

a {𝑐𝑣, 𝛽}-alternating path 𝑃𝑣 starting at 𝑣 for 𝑐𝑢 ∈ miss𝜒 (𝑢) and
𝑐𝑣 ∈ miss𝜒 (𝑣) (see Line 12 and Lines 14 and 15). The modification

itself is done only if 𝑃𝑢 and 𝑃𝑣 do not intersect any other popular

edge already in Φ.
We say that the concerned iteration of thewhile loop FAILS if it

chooses an already colored edge in𝐶 (Line 6), or modifying the color

leads to an already popular edge in Φ to no longer remain popular

(Line 17); otherwise, we say the iteration succeeds. As stated earlier,

the algorithm maintains a subset Φ ⊆ 𝑈 of popular edges, and a

subset of edges 𝐶 ⊆ 𝑈 that got colored since the start of the while
loop. Initially, we have 𝐶 = Φ = ∅. Thus, the quantity |Φ| + |𝐶 |
denotes the number of successful iterations of the while loop that

have been performed so far. The algorithm performs iterations until

|Φ| + |𝐶 | = Ω(𝜆/Δ), and then it proceeds to extend the coloring 𝜒

to at least a constant fraction of the edges in Φ by finding {𝛼, 𝛽}-
alternating paths for edges in Φ that admits such paths (see the for
loop in Line 22).

3.2 Analysis of the Bipartite Color Extension
Algorithm: Proof of Lemma 3.2

We start by summarizing a few key properties of Algorithm 1.

Claim 3.3. Throughout the while loop in Algorithm 1, there are
at most𝑂 (𝑚/Δ) edges in𝐺 that receive either the color 𝛼 or the color
𝛽 , under 𝜒 .

Proof. We start with𝑂 (𝑚/Δ) such edges in𝐺 and each success-

ful iteration of the while loop increases the number of such edges

by 𝑂 (1), and there are 𝑂 (𝜆/Δ) = 𝑂 (𝑚/Δ) such iterations. □

Lemma 3.4. Throughout the execution of the while loop in Algo-
rithm 1, the following conditions hold: (i) the set 𝐶 consists of all the
edges in 𝑈 that are colored under 𝜒 ; (ii) for every edge (𝑢, 𝑣) ∈ Φ, we
have 𝛼 ∈ miss𝜒 (𝑢) and 𝛽 ∈ miss𝜒 (𝑣).

Proof. Part (i) of the lemma follows from Line 2 and Line 10.

For part (ii), consider an edge 𝑒 = (𝑢, 𝑣) that gets added to Φ. This
happens only after flipping the paths 𝑃𝑢 and 𝑃𝑣 in Line 19. Just

before we execute Line 19, the following conditions hold:

29

Vizing’s Theorem in Near-Linear Time STOC ’25, June 23–27, 2025, Prague, Czechia

Algorithm 1: BipartiteExtension(𝐺, 𝜒,𝑈)
1 Let 𝛼, 𝛽 ∈ [Δ] be the two least common colors in 𝜒 // We

have 𝛼 ≠ 𝛽

2 Initialize Φ← ∅, 𝐶 ← ∅, and set 𝜆 ← |𝑈 |
3 while |Φ| + |𝐶 | < 𝜆/(10Δ) do
4 Sample an edge 𝑒 = (𝑢, 𝑣) ∼ 𝑈 independently and u.a.r.

5 if (𝑢, 𝑣) ∈ Φ ∪𝐶 then
6 The iteration FAILS

7 go to Line 3

8 Identify (arbitrarily) two colors 𝑐𝑢 ∈ miss𝜒 (𝑢) and
𝑐𝑣 ∈ miss𝜒 (𝑣)

9 if 𝑐𝑢 = 𝑐𝑣 then
10 Set 𝜒 (𝑢, 𝑣) ← 𝑐𝑢 and 𝐶 ← 𝐶 ∪ {(𝑢, 𝑣)}
11 go to Line 3

12 if 𝑐𝑢 = 𝛽 or 𝑐𝑣 = 𝛼 then
13 Set (𝑢, 𝑣) ← (𝑣,𝑢) // Now 𝑐𝑢 ≠ 𝑐𝑣, 𝑐𝑢 ≠ 𝛽,

𝑐𝑣 ≠ 𝛼 (see Lines 9 and 12)

14 Let 𝑃𝑢 be the maximal {𝑐𝑢 , 𝛼}-alternating path starting

at 𝑢 (𝑃𝑢 = ∅ if 𝛼 ∈ miss𝜒 (𝑢))
15 Let 𝑃𝑣 be the maximal {𝑐𝑣, 𝛽}-alternating path starting

at 𝑣 (𝑃𝑣 = ∅ if 𝛽 ∈ miss𝜒 (𝑣))
16 if either 𝑃𝑢 or 𝑃𝑣 ends at a node that is incident on some

edge in Φ \ {𝑒} then
17 The iteration FAILS

18 else
19 Modify 𝜒 by flipping the alternating paths 𝑃𝑢 and 𝑃𝑣

20 Set Φ← Φ ∪ {(𝑢, 𝑣)} // Now 𝛼 ∈ miss𝜒 (𝑢) and

𝛽 ∈ miss𝜒 (𝑣)
21 Φ′ ← Φ

22 for each edge 𝑒 = (𝑢, 𝑣) ∈ Φ′ do
23 Φ′ ← Φ′ \ {𝑒}
24 W.l.o.g., suppose that 𝛼 ∈ miss𝜒 (𝑢) and 𝛽 ∈ miss𝜒 (𝑣)
25 if there exists a color 𝑐 ∈ {𝛼, 𝛽} such that

𝑐 ∈ miss𝜒 (𝑢) ∩miss𝜒 (𝑣) then
26 𝜒 (𝑢, 𝑣) ← 𝑐

27 else
28 Let 𝑃★𝑢 be the maximal {𝛼, 𝛽}-alternating path

starting at 𝑢

29 (Since 𝐺 is bipartite, 𝛼 ∈ miss𝜒 (𝑢) and
𝛽 ∈ miss𝜒 (𝑣), 𝑃★𝑢 does not end at 𝑣)

30 Modify 𝜒 by flipping the alternating path 𝑃★𝑢 , and

set 𝜒 (𝑢, 𝑣) ← 𝛽

31 if the path 𝑃★𝑢 ends at a node that is incident on some
edge in 𝑒′ ∈ Φ′ \ {𝑒} then

32 Φ′ ← Φ′ \ {𝑒′}

• 𝛼 ≠ 𝛽 (see Line 1).

• 𝑐𝑢 ∈ miss𝜒 (𝑢) and 𝑐𝑣 ∈ miss𝜒 (𝑣) (see Line 8).
• 𝑐𝑢 ≠ 𝑐𝑣 , 𝑐𝑢 ≠ 𝛽 and 𝑐𝑣 ≠ 𝛼 (see Line 12).

• If 𝛼 ∈ miss𝜒 (𝑢) then 𝑃𝑢 = ∅ (see Line 14), and if 𝛽 ∈
miss𝜒 (𝑣) then 𝑃𝑣 = ∅ (see Line 15).

• The path 𝑃𝑢 (resp. 𝑃𝑣) does not end at that a vertex that

is incident on some edge in Φ \ {𝑒} (see Lines 16 and 17),

although it might possibly end at 𝑣 (resp. 𝑢).

From these conditions, it follows that the paths 𝑃𝑢 and 𝑃𝑣 are edge-

disjoint, and after we flip them in Line 19, we have 𝛼 ∈ miss𝜒 (𝑢)
and 𝛽 ∈ miss𝜒 (𝑣) in Line 20.

In subsequent iterations of thewhile loop, the only places where
we change the coloring 𝜒 are Lines 10 and 19. Since the edges

in 𝑈 form a matching, changing the coloring in Line 10 cannot

affect whether or not the edge (𝑢, 𝑣) ∈ Φ remains popular (i.e., has

𝛼 ∈ miss𝜒 (𝑢) and 𝛽 ∈ miss𝜒 (𝑣)). Finally, during a subsequent

iteration of the while loop where we sample an edge (𝑢′, 𝑣 ′) ∼ 𝑈 ,

we flip the paths 𝑃𝑢′ , 𝑃𝑣′ in Line 19 only if their endpoints are

not incident on any edges in Φ \ {(𝑢′, 𝑣 ′)} (see Line 16), and in

particular, on 𝑢 or 𝑣 . Thus, this operation cannot change what

colors are available at 𝑢 and 𝑣 , and so cannot change whether or

not the edge (𝑢, 𝑣) ∈ Φ remains popular. □

We use the following lemma to bound the number of iterations

of the while loop in Algorithm 1.

Lemma 3.5. Each iteration of the while loop in Algorithm 1 in-
creases the value of |Φ| + |𝐶 | by an additive one, with probability at
least 1/2 and otherwise keep it unchanged.

Proof. Fix any given iteration of the while loop. At the start of
this iteration, we sample an edge from𝑈 u.a.r. We say that an edge

𝑒 ∈ 𝑈 is bad if the iteration FAILS when we sample 𝑒 (see Line 6

and Line 17), and good otherwise. Note that if we sample a good

edge 𝑒 ∈ 𝑈 , then the iteration either adds one edge to the set Φ
(see Line 20), or adds one edge to the set 𝐶 (see Line 10). In other

words, if we sample a good (resp. bad) edge 𝑒 ∈ 𝑈 at the start of

the iteration, then this increases in the value of |Φ| + |𝐶 | by one

(resp. keeps the value of |Φ| + |𝐶 | unchanged). We will show that

at most 𝜆/2 edges in 𝑈 are bad. Since |𝑈 | = 𝜆, this will imply the

lemma.

To see why this claimed upper bound on the number of bad

edges holds, first note that there are (|Φ| + |𝐶 |) many bad edges that

cause the iteration to FAIL in Line 6. It now remains to bound the

number of bad edges which cause the iteration to FAIL in Line 17.

Towards this end, note that for each edge (𝑢′, 𝑣 ′) ∈ Φ, there
are at most 4Δ many maximal {𝛼, ·}- or {𝛽, ·}-alternating paths

that end at either 𝑢′ or 𝑣 ′. Furthermore, each such alternating path

has its other endpoint incident on at most one edge in𝑈 since the

edges in𝑈 form a matching. Thus, for each edge (𝑢′, 𝑣 ′) ∈ Φ, there
are at most 4Δ many edges 𝑓(𝑢′,𝑣′) ∈ 𝑈 that satisfy the following

condition: Some alternating path constructed by the algorithm after

sampling 𝑓(𝑢′,𝑣′) ends at either 𝑢
′
or 𝑣 ′ (see Line 14 and Line 15).

Each such edge 𝑓(𝑢′,𝑣′) is a bad edge which causes the iteration to

FAIL in Line 17, and moreover, only such edges are causing the

iteration to FAIL in Line 17. Thus, the number of such bad edges is

at most |Φ| · 4Δ.
To summarize, the total number of bad edges is at most (|Φ| +

|𝐶 |) + |Φ| ·4Δ < 𝜆/2, where the last inequality holds since |Φ| + |𝐶 | <
𝜆/(10Δ) (see Line 3). This concludes the proof. □

Similarly, we can bound the expected runtime of each iteration

of the while loop in Algorithm 1.

30

STOC ’25, June 23–27, 2025, Prague, Czechia S. Assadi, S. Behnezhad, S. Bhattacharya, M. Costa, S. Solomon, T. Zhang

Lemma 3.6. Each iteration of the while loop in Algorithm 1 takes
𝑂̃ (𝑚/𝜆) time in expectation, regardless of the outcome of previous
iterations.

Proof. Alternating path flips can be done in time proportional

to the path lengths using standard data structures, so we only need

to analyze the path lengths. Fix any given iteration of the while
loop. At the start of this iteration, we can classify the edges in 𝑈

into one of the following three categories: An edge 𝑒 ∈ 𝑈 is of “Type

I” if the iteration ends at Line 7 when we sample 𝑒 , is of “Type II” if

the iteration ends at Line 11 when we sample 𝑒 , and is of “Type III”

otherwise. Let 𝜆1, 𝜆2 and 𝜆3 respectively denote the total number of

Type I, Type II and Type III edges, with 𝜆1 + 𝜆2 + 𝜆3 = 𝜆. For every

Type III edge 𝑒 = (𝑢, 𝑣) ∈ 𝑈 , we refer to the alternating paths 𝑃𝑢 and

𝑃𝑣 (see Line 14 and Line 15) as the “characteristic alternating paths”

for 𝑒 . Let P3 denote the collection of characteristic alternating paths
of all Type III edges. Since the set of Type III edges is a subset of

𝑈 , they form a matching, and hence different paths in P3 have

different starting points. Furthermore, every path in P3 is either
a maximal {𝛼, ·}-alternating path or a maximal {𝛽, ·}-alternating
path. Accordingly, Theorem 3.3 implies that the total length of all

the paths in P3 is at most 𝑂 ((𝑚/Δ) · Δ) = 𝑂 (𝑚).
Now, if at the start of the iteration, we happen to sample either

a Type I or a Type II edge 𝑒 ∈ 𝑈 , then the concerned iteration takes

𝑂 (1) time. In the paragraph below, we condition on the event that

the edge 𝑒 = (𝑢, 𝑣) ∈ 𝑈 sampled at the start of the iteration is of

Type III.

Using appropriate data structures, the time taken to implement

the concerned iteration is proportional (up to 𝑂̃ (1) factors) to the

lengths of the alternating paths 𝑃𝑢 and 𝑃𝑣 (see Line 14 and Line 15).

The key observation is that for each 𝑥 ∈ {𝑢, 𝑣}, the path 𝑃𝑥 is

sampled almost uniformly (i.e., with probability Θ(1/𝜆3)) from the

collection P3. Since the total length of all the paths in P3 is 𝑂 (𝑚),
it follows that the expected length of each of the paths 𝑃𝑢 , 𝑃𝑣 is

𝑂 (𝑚/𝜆3).
To summarize, with probability 𝜆3/𝜆, we sample a Type III edge

at the start of the concerned iteration of the while loop, and con-

ditioned on this event the expected time spent on that iteration is

𝑂̃ (𝑚/𝜆3). In contrast, if we sample a Type I or a Type II edge at

the start of the concerned iteration, then the time spent on that

iteration is 𝑂 (1). This implies that we spend at most 𝑂̃ (𝑚/𝜆3) ·
(𝜆3/𝜆) +𝑂 (1) = 𝑂̃ (𝑚/𝜆) expected time per iteration of the while
loop. □

Finally, we show that in the very last step of the algorithm, the

for loop in Line 22, the algorithm succeeds in coloring a constant

fraction of popular edges.

Lemma 3.7. The for loop in Line 22 extends the coloring 𝜒 to at
least half of the edges in Φ.

Proof. Consider any given iteration of the for loop where we

pick an edge 𝑒 = (𝑢, 𝑣) ∈ Φ′ in Line 22, where w.l.o.g. 𝛼 ∈ miss𝜒 (𝑢)
and 𝛽 ∈ miss𝜒 (𝑣). It is easy to verify that during this iteration,

we successfully extend the coloring 𝜒 to 𝑒 , either in Line 26 or in

Line 30. In the latter case, we crucially rely on the fact that the

graph 𝐺 is bipartite (see Line 29), and hence the maximal {𝛼, 𝛽}-
alternating path 𝑃★𝑢 starting at 𝑢 cannot end at 𝑣 ; in fact, this is

the only place where we rely on the biparteness of 𝐺 . Lines 31

and 32 ensure that the following invariant is satisfied: For every

edge 𝑒′ = (𝑢′, 𝑣 ′) ∈ Φ′, we have 𝛼 ∈ miss𝜒 (𝑢′) and 𝛽 ∈ miss𝜒 (𝑣 ′),
i.e., the edge 𝑒′ is popular; indeed, Lemma 3.4 implies that this

invariant holds just before the for loop starts (see Line 21), and any

edge 𝑒′ ∈ Φ′ that may violate this invariant at a later stage, which

may only occur due to flipping an alternating path that ends at a

node incident on 𝑒′ (in Line 31), is removed from Φ′ (in Line 32).

Now, the lemma follows from the observation that each time we

successfully extend the coloring to one edge 𝑒 in Φ′, we remove

at most one other edge 𝑒′ ≠ 𝑒 from Φ′ (see Line 32), due to the

vertex-disjointness of the edges in𝑈 ⊇ Φ ⊇ Φ′. □

We are now ready to conclude the running time analysis of Algo-

rithm 1 and establish the required lower bound on the number of

newly colored edges in𝑈 under 𝜒 by this algorithm.

Lemma 3.8. Algorithm 1 takes 𝑂̃ (𝑚/Δ) time in expectation and
extends 𝜒 to Ω(𝜆/Δ) new edges.

Proof. We start with the runtime analysis:

• Line 1 can be implemented in 𝑂̃ (1) time using the auxiliary data

structure, and Lines 2 and 21 take constant time.

• Next, we bound the running time of the while loop (Line 3). For

any integer 𝑘 ≥ 0, let𝑇 (𝑘) denote the expected runtime ofwhile
loop if we start the loop under the condition that |Φ|+ |𝐶 | = 𝑘 . We

are interested in𝑇 (0) and we know that𝑇 (𝜆/10Δ) = 𝑂 (1) by the
termination condition of the loop. By Lemma 3.5 and Lemma 3.6,

for any 0 < 𝑘 < 𝜆/10Δ, we have,

𝑇 (𝑘) ≤ 𝑂̃ (𝑚/𝜆) + 1

2

·𝑇 (𝑘) + 1

2

·𝑇 (𝑘 + 1),

where we additionally used the monotonicity of 𝑇 (·), as well
as the fact that each while-loop of Algorithm 1 has expected

runtime 𝑂̃ (𝑚/𝜆) regardless of previous iterations, according

to Lemma 3.6. Thus, 𝑇 (𝑘) ≤ 𝑇 (𝑘 + 1) + 𝑂̃ (𝑚/𝜆) and hence

𝑇 (0) ≤ 𝜆/10Δ · 𝑂̃ (𝑚/𝜆) = 𝑂̃ (𝑚/Δ).
• Finally, since the total number of edges with colors 𝛼 and 𝛽 just

before Line 22 is 𝑂 (𝑚/Δ) (see Theorem 3.3), the for loop can be

implemented in 𝑂̃ (𝑚/Δ) time deterministically in a straightfor-

ward manner.

Thus, the total runtime is 𝑂̃ (𝑚/Δ) in expectation.

We now establish the bound on the number of newly colored

edges. When the while loop terminates, we have |Φ| + |𝐶 | ≥
𝜆/(10Δ) (see Line 3), and all the edges in𝐶 are colored under 𝜒 (see

Lemma 3.4). Next, by Lemma 3.7, the for loop in Line 22 further

extends the coloring 𝜒 to a constant fraction of the edges in Φ,
by only flipping {𝛼, 𝛽}-alternating paths. Consequently, we get at
least Ω(𝜆/Δ) newly colored edges in 𝑈 under 𝜒 . This concludes

the proof. □

We can now conclude the proof of Lemma 3.2. To achieve the

algorithm in this lemma, we simply run Algorithm 1 in parallel

Θ(log𝑛) times and use the coloring of whichever one finishes first

(and terminate the rest at that point). This ensures the high probabil-

ity guarantee of Lemma 3.2 still in 𝑂̃ (𝑚/Δ) runtime. This concludes

the entire proof.

31

Vizing’s Theorem in Near-Linear Time STOC ’25, June 23–27, 2025, Prague, Czechia

3.3 Extension to General Graphs
In our Lemma 3.2, we crucially need the graph 𝐺 to be bipartite

while executing Lines 28 to 30 in Algorithm 1. Otherwise, if 𝐺

contains odd cycles, then the maximal {𝛼, 𝛽}-alternating path 𝑃★𝑢
starting from 𝑢 can end at 𝑣 . In that case, the color 𝛽 will no longer

be missing at 𝑣 once we flip the path 𝑃★𝑣 , and so we will not be

able to extend the coloring 𝜒 to the edge (𝑢, 𝑣) via 𝜒 (𝑢, 𝑣) ← 𝛽 . We

shall emphasize that this is not a minor technicality, but rather the

key reason general graphs are not necessarily Δ edge colorable and

rather require (Δ + 1) colors.
The standard machinery to deal with this issue is the Vizing

fan (Section 4). However, if we try to use Vizing fans inside the

framework of Algorithm 1 in a naive manner, then we lose control

over one of the colors in the alternating path being flipped while

extending the coloring to an edge, leading to a weaker averaging

argument and a running time of 𝑂̃ (Δ𝑚) instead of 𝑂̃ (𝑚).
To address this bottleneck, one of our key conceptual contribu-

tions is to focus on Vizing fans with respect to an object called

a separable collection of u-components (see Section 5). Using this

concept, in Section 6 we present our algorithmic framework in

general graphs. Our main result (see Theorem 6.1) relies upon two

fundamental subroutines. The second subroutine (see Lemma 6.3)

generalizes Algorithm 1 presented in this section. In contrast, the

first subroutine (see Lemma 6.2) either efficiently extends the cur-

rent coloring to a constant fraction of the uncolored edges, or

changes the colors of some edges in the input graph so as to create

a situation whereby we can invoke Lemma 6.3. Due to page limit,

the proofs of Lemmas 6.2 and 6.3 are deferred to the full version of

our paper [4].

4 Preliminaries: Vizing Fans and Vizing Chains
We now define the notion of Vizing fans, which has been used

extensively in the edge coloring literature [39, 52, 54].

Definition 4.1 (Vizing fan). A Vizing fan is a sequence

F = (𝑢, 𝛼), (𝑣1, 𝑐1), . . . , (𝑣𝑘 , 𝑐𝑘)
where𝑢, 𝑣1, . . . , 𝑣𝑘 are distinct vertices and 𝑐1, . . . , 𝑐𝑘 are colors such

that

(1) 𝛼 ∈ miss𝜒 (𝑢) and 𝑐𝑖 ∈ miss𝜒 (𝑣𝑖) for all 𝑖 ∈ [𝑘].
(2) 𝑣1, . . . , 𝑣𝑘 are distinct neighbours of 𝑢.

(3) 𝜒 (𝑢, 𝑣1) = ⊥ and 𝜒 (𝑢, 𝑣𝑖) = 𝑐𝑖−1 for all 𝑖 > 1.

(4) Either 𝑐𝑘 ∈ miss𝜒 (𝑢) or 𝑐𝑘 ∈ {𝑐1, . . . , 𝑐𝑘−1}.

We say that the Vizing fan F = (𝑢, 𝛼), (𝑣1, 𝑐1), . . . , (𝑣𝑘 , 𝑐𝑘) is 𝛼-
primed, has center 𝑢 and leaves 𝑣1, . . . , 𝑣𝑘 . We refer to 𝑐𝑖 as the

color of 𝑣𝑖 within F. A crucial property is that we can rotate colors
around the Vizing fan F by setting 𝜒 (𝑢, 𝑣1) ← 𝑐1, . . . , 𝜒 (𝑢, 𝑣𝑖−1) ←
𝑐𝑖−1, 𝜒 (𝑢, 𝑣𝑖) ← ⊥ for any 𝑖 ∈ [𝑘]. We say that F is a trivial Vizing
fan if 𝑐𝑘 ∈ miss𝜒 (𝑢). Note that, if F is trivial, we can immediately

extend the coloring 𝜒 to (𝑢, 𝑣1) by rotating all the colors around F
and setting 𝜒 (𝑢, 𝑣𝑘) ← 𝑐𝑘 .

Algorithm 2 describes the standard procedure used to construct

Vizing fans. As input, it takes a vertex 𝑢 and a color 𝛼 ∈ miss𝜒 (𝑢),
and returns an 𝛼-primed Vizing fan with center 𝑢.

The Algorithm Vizing. We now describe the algorithm Vizing that,
given a Vizing fan F = (𝑢, 𝛼), (𝑣1, 𝑐1), . . . , (𝑣𝑘 , 𝑐𝑘) as input, extends

Algorithm 2: Vizing-Fan(𝑢, 𝑣, 𝛼)
1 For each 𝑥 ∈ 𝑉 , let clr(𝑥) ∈ miss𝜒 (𝑥)
2 𝑘 ← 1 and 𝑣1 ← 𝑣

3 𝑐1 ← clr(𝑣1)
4 while 𝑐𝑘 ∉ {𝑐1, . . . , 𝑐𝑘−1} and 𝑐𝑘 ∉ miss𝜒 (𝑢) do
5 Let (𝑢, 𝑣𝑘+1) be the edge with color 𝜒 (𝑢, 𝑣𝑘+1) = 𝑐𝑘

6 𝑐𝑘+1 ← clr(𝑣𝑘+1)
7 𝑘 ← 𝑘 + 1
8 return (𝑢, 𝛼), (𝑣1, 𝑐1), . . . , (𝑣𝑘 , 𝑐𝑘)

the coloring 𝜒 to the edge (𝑢, 𝑣1) by building a Vizing chain. Algo-

rithm 3 gives a formal description of this procedure.

Algorithm 3: Vizing(F)
1 if F is trivial then
2 𝜒 (𝑢, 𝑣𝑖) ← 𝑐𝑖 for all 𝑖 ∈ [𝑘]
3 return
4 Let 𝑃 denote the maximal {𝛼, 𝑐𝑘 }-alternating path starting

at 𝑢

5 Extend 𝜒 to (𝑢, 𝑣1) by flipping the path 𝑃 and rotating

colors in F (details in Lemma 4.2)

Thus, running Vizing(F) extends the coloring 𝜒 to the uncolored

edge (𝑢, 𝑣1) by rotating colors in the Vizing fan F and flipping the

colors of the alternating path 𝑃 . We sometimes refer to the process

of running Vizing(F) as activating the Vizing fan F.

Lemma 4.2. Algorithm 3 extends the coloring 𝜒 to the edge (𝑢, 𝑣1)
in time 𝑂 (Δ + |𝑃 |).

Given a Vizing fan F, we denote the path 𝑃 considered by Algo-

rithm 3 by Vizing-Path(F). If the Vizing fan F is trivial, then

Vizing-Path(F) denotes an empty path ∅.

5 Basic Building Blocks
In this section, we introduce the notation of u-fans, u-edges and

separable collections, which are the definitions that work as the

basic building blocks for our algorithms.

5.1 U-Fans and U-Edges
We begin by defining the notion of u-fans that was used by [39].

3

Definition 5.1 (u-fan, [39]). A u-fan is a tuple f = (𝑢, 𝑣,𝑤, 𝛼, 𝛽)
where𝑢, 𝑣 and𝑤 are distinct vertices and 𝛼 and 𝛽 are distinct colors

such that:

(1) (𝑢, 𝑣) and (𝑢,𝑤) are uncolored edges.

(2) 𝛼 ∈ miss𝜒 (𝑢) and 𝛽 ∈ miss𝜒 (𝑣) ∩miss𝜒 (𝑤).

We say that 𝑢 is the center of f and that 𝑣 and𝑤 are the leaves of f.
We also say that the u-fan f is {𝛼, 𝛽}-primed and define 𝑐f (𝑢) := 𝛼 ,

𝑐f (𝑣) := 𝛽 and 𝑐f (𝑤) := 𝛽 (i.e. given a vertex 𝑥 ∈ f, 𝑐f (𝑥) is the
available color that f ‘assigns’ to 𝑥).

3
The term ‘u-fan’ was originally introduced by [39] as an abbreviation for ‘uncolored

fan’.

32

STOC ’25, June 23–27, 2025, Prague, Czechia S. Assadi, S. Behnezhad, S. Bhattacharya, M. Costa, S. Solomon, T. Zhang

Activating U-Fans. Let f be an {𝛼, 𝛽}-primed u-fan with center 𝑢

and leaves 𝑣 and𝑤 . The key property of u-fans is that at most one of

the {𝛼, 𝛽}-alternating paths starting at 𝑣 or𝑤 ends at𝑢. Say that the

{𝛼, 𝛽}-alternating path starting at 𝑣 does not end at 𝑢. Then, after

flipping this {𝛼, 𝛽}-alternating path, both 𝑢, 𝑣 are missing color 𝛼 .

Thus, we can extend the coloring 𝜒 by assigning 𝜒 (𝑢, 𝑣) ← 𝛼 . We

refer to this as activating the u-fan f.
We also define the notion of a u-edge similarly to u-fans.

Definition 5.2 (u-edge). A u-edge is a tuple e = (𝑢, 𝑣, 𝛼) where
(𝑢, 𝑣) is an uncolored edge and 𝛼 is a color such that 𝛼 ∈ miss𝜒 (𝑢).

We say that 𝑢 is the center of e and that 𝛼 is the active color of e. For
notational convenience, we also say that the u-edge e is 𝛼-primed
and define 𝑐e (𝑢) := 𝛼 and 𝑐e (𝑣) = ⊥.4

Collections of U-Components. While working with both u-fans and

u-edges simultaneously, we sometimes refer to some g that is either
a u-fan or a u-edge as a u-component. Throughout this paper, we
often consider collections of u-components U. We only use the

term ‘collection’ in this context, so we abbreviate ‘collection of u-

components’ by just ‘collection’. We will be particularly interested

in collections satisfying the following useful property, which we

refer to as separability.

Definition 5.3 (Separable Collection). Let 𝜒 be a partial (Δ + 1)-
edge coloring of 𝐺 andU be a collection of u-components (i.e. u-

fans and u-edges). We say that the collectionU is separable if the
following holds:

(1) All of the u-components inU are edge-disjoint.

(2) For each 𝑥 ∈ 𝑉 , the colors in the multi-set𝐶U (𝑥) := {𝑐g (𝑥) |
g ∈ U, 𝑥 ∈ g} are distinct.

We remark that the second property of this definition is rather

important because we need to ensure that different u-components

are not interfering with each other when they share common ver-

tices. Check Figure 4 for an illustration.

Damaged U-Components. Suppose we have a partial (Δ + 1)-edge
coloring 𝜒 and a separable collectionU w.r.t. 𝜒 . Now, suppose that

we modify the coloring 𝜒 . We say that a u-component g ∈ U is

damaged if it is no longer a u-component w.r.t. the new coloring 𝜒 .

We note that this can only happen for one of the following two

reasons: (1) one of the uncolored edges in g is now colored, or (2)

there is a vertex 𝑥 ∈ g such the color 𝑐g (𝑥) that g assigns to 𝑥 is no

longer missing at 𝑥 .

The following lemma shows that flipping the colors of an al-

ternating path cannot damage many u-components in a separable

collectionU.

Lemma 5.4. Let 𝜒 be a partial (Δ + 1)-edge coloring of a graph
𝐺 ,U a separable collection and 𝑃 a maximal alternating path in 𝜒 .
Then flipping the colors of the alternating path 𝑃 damages at most 2
u-components inU (corresponding to the two endpoints of the path).

4
Whenever we refer to an “uncolored edge 𝑒”, we are referring to an edge 𝑒 ∈ 𝐸 such

that 𝜒 (𝑒) = ⊥, whereas a ‘u-edge e’ always refers to the object from Definition 5.2

and is denoted in bold.

5.2 Vizing Fans in Separable Collections
Within our algorithm, we only construct Vizing fans and Vizing

chains in a setting where there is some underlying separable col-

lection U. To ensure that activating and rotating colors around

Vizing fans does not damage too many u-components, we choose

the missing colors involved in Vizing fan constructions so that they

‘avoid’ the colors assigned to the u-components inU.

Definition 5.5. LetU be a separable collection and

F = (𝑢, 𝛼), (𝑣1, 𝑐1), . . . , (𝑣𝑘 , 𝑐𝑘)

be a Vizing fan. We say that the Vizing fan F is U-avoiding if

𝑐𝑖 ∈ miss𝜒 (𝑣𝑖) \𝐶U (𝑣𝑖) for each leaf 𝑣𝑖 ∈ F.

We say that a Vizing fan F is a Vizing fan of the u-edge e = (𝑢, 𝑣, 𝛼)
if F is 𝛼-primed, has center 𝑢 and its first leaf is 𝑣 . The following

lemma shows that we can always find aU-avoiding Vizing fan for

a u-edge.

Lemma 5.6. Given a u-edge e ∈ U, there exists a U-avoiding
Vizing fan F of e. Furthermore, we can compute such a Vizing fan in
𝑂 (Δ) time.

The lemma below describes some crucial properties ofU-avoiding

Vizing fans.

Lemma 5.7. Let 𝜒 be a (Δ + 1)-edge coloring of a graph 𝐺 andU
be a separable collection. For any u-edge e = (𝑢, 𝑣, 𝛼) ∈ U with a
U-avoiding Vizing fan F, we have the following:

(1) Rotating colors around F does not damage any u-component
inU \{e}.

(2) CallingVizing(F) damages atmost one u-component inU \{e}.
Furthermore, we can identify the damaged u-component in
𝑂 (1) time.

6 The Main Algorithm
We are now ready to present our main technical result, which is a

slightly weaker version of Theorem 1.1, and focuses on achieving

a near-linear time algorithm for (Δ + 1) edge coloring (instead of

the exact𝑂 (𝑚 log𝑛) time in Theorem 1.1; see the remark after that

theorem).

Theorem 6.1. There is a randomized algorithm that, given any
simple undirected graph 𝐺 = (𝑉 , 𝐸) on 𝑛 vertices and𝑚 edges with
maximum degree Δ, finds a (Δ + 1)-edge coloring of𝐺 in 𝑂̃ (𝑚) time
with high probability.

Our main algorithm consists of two main components. The first

component is an algorithm called Construct-U-Fans that takes a
partial (Δ + 1)-edge coloring 𝜒 with 𝜆 uncolored edges and either

extends 𝜒 to Ω(𝜆) of these edges or modifies the coloring to con-

struct a separable collection of Ω(𝜆) u-fans. Lemma 6.2 summarizes

the behavior of this algorithm.

Lemma 6.2. Given a graph 𝐺 , a partial (Δ + 1)-edge coloring 𝜒 of
𝐺 and a set of 𝜆 uncolored edges𝑈 , the algorithm Construct-U-Fans
does one of the following in 𝑂 (𝑚 + Δ𝜆) time:

(1) Extends the coloring to Ω(𝜆) uncolored edges.
(2) Modifies 𝜒 to obtain a separable collection of Ω(𝜆) u-fansU.

33

Vizing’s Theorem in Near-Linear Time STOC ’25, June 23–27, 2025, Prague, Czechia

𝑥

𝑢1

𝑥1

𝑢2

𝑥2

Figure 4: This picture shows two u-fans (𝑢1, 𝑥1, 𝑥, ∗, 𝛽1) and (𝑢2, 𝑥2, 𝑥, ∗, 𝛽2) sharing a common vertex 𝑥 . The separable condition
requires that 𝛽1 ≠ 𝛽2; for instance 𝛽1, 𝛽2 could be magenta and cyan as shown here.

The second component is an algorithm called Color-U-Fans that
takes a collection of 𝜆 u-fans and extends the coloring to Ω(𝜆) of
the edges in the u-fans. Lemma 6.3 summarizes the behavior of

this algorithm. The reader may find it helpful to keep in mind that

the algorithm for Lemma 6.3 is a generalization of algorithm for

Lemma 3.2 in Section 3.

Lemma 6.3. Given a graph𝐺 , a partial (Δ+1)-edge coloring 𝜒 of𝐺
and a separable collection of 𝜆 u-fansU, the algorithm Color-U-Fans
extends 𝜒 to Ω(𝜆) edges in 𝑂 (𝑚 log𝑛) time w.h.p.

In the full version [4], we prove Lemmas 6.2 and 6.3 respectively.

Using these lemmas, we now show how to efficiently extend an

edge coloring 𝜒 to the remaining uncolored edges.

Lemma 6.4. Given a graph 𝐺 and a partial (Δ + 1)-edge coloring
𝜒 of 𝐺 with 𝜆 uncolored edges 𝑈 , we can extend 𝜒 to the remaining
uncolored edges in time 𝑂 ((𝑚 + Δ𝜆) log2 𝑛) w.h.p.

Proof. Let 𝑈 denote the set of edges that are uncolored by 𝜒 .

We can then apply Lemma 6.2 to either extend 𝜒 to a constant

fraction of the edges in 𝑈 or construct a separable collection of

Ω(𝜆) u-fansU in𝑂 (𝑚 + Δ𝜆) time. In the second case, we can then

apply Lemma 6.3 to color Ω(𝜆) of the edges contained in these u-

fans in 𝑂 (𝑚 log𝑛) time w.h.p. Thus, we can extend 𝜒 to a constant

fraction of the uncolored edges in𝑂 (𝑚 log𝑛+Δ𝜆) time w.h.p. After

repeating this process 𝑂 (log 𝜆) ≤ 𝑂 (log𝑛) many times, no edges

remain uncolored. Thus, we can extend the coloring 𝜒 to the entire

graph in 𝑂 ((𝑚 + Δ𝜆) log2 𝑛) time w.h.p. □

We now use this lemma to prove Theorem 6.1.

Proof of Theorem 6.1. We prove this by applying Lemma 6.4

to the standard Euler partition framework [39, 52]. Given a graph𝐺 ,

we partition it into two edge-disjoint subgraphs 𝐺1 and 𝐺2 on the

same vertex set such that Δ(𝐺𝑖) ≤ ⌈Δ/2⌉ for each𝐺𝑖 , where Δ(𝐺𝑖)
denotes the maximum degree of 𝐺𝑖 . We then recursively compute

a (Δ(𝐺𝑖) + 1)-edge coloring 𝜒𝑖 for each 𝐺𝑖 . Combining 𝜒1 and 𝜒2,

we obtain a (Δ + 3)-edge coloring 𝜒 of𝐺 . We then uncolor the two

smallest color classes in 𝜒 , which contain𝑂 (𝑚/Δ) edges, and apply
Lemma 6.4 to recolor all of the uncolored edges in 𝜒 using only

Δ + 1 colors in 𝑂 (𝑚 log
2 𝑛) time w.h.p.

To show that the total running time of the algorithm is𝑂 (𝑚 log
3 𝑛),

first note that the depth of the recursion tree is𝑂 (logΔ). Next, con-
sider the 𝑖𝑡ℎ level of the recursion tree, for an arbitrary 𝑖 = 𝑂 (logΔ):
we have 2

𝑖
edge-disjoint subgraphs 𝐺1, . . . ,𝐺2

𝑖 such that Δ(𝐺 𝑗) ≤
𝑂 (Δ/2𝑖) and ∑

2
𝑖

𝑗=1 |𝐸 (𝐺 𝑗) | = 𝑚. Since the total running time at

recursion level 𝑖 is 𝑂 (𝑚 log
2 𝑛) and the depth of the recursion tree

is 𝑂 (logΔ), it follows that the total running time is 𝑂 (𝑚 log
3 𝑛)

w.h.p. □

Acknowledgments
Part of this work was conducted while Sepehr Assadi and Soheil

Behnezhad were visiting the Simons Institute for the Theory of

Computing as part of the Sublinear Algorithms program.

Sepehr Assadi is supported in part by a Sloan Research Fellow-

ship, an NSERCDiscovery Grant (RGPIN-2024-04290), and a Faculty

of Math Research Chair grant from University of Waterloo. Soheil

Behnezhad is funded by an NSF CAREER award CCF-2442812 and

a Google Faculty Research Award. Martín Costa is supported by a

Google PhD Fellowship. Shay Solomon is funded by the European

Union (ERC, DynOpt, 101043159). Views and opinions expressed

are however those of the author(s) only and do not necessarily

reflect those of the European Union or the European Research

Council. Neither the European Union nor the granting authority

can be held responsible for them. Shay Solomon is also funded by

a grant from the United States-Israel Binational Science Founda-

tion (BSF), Jerusalem, Israel, and the United States National Science

Foundation (NSF). Tianyi Zhang is supported by funding from the

starting grant “A New Paradigm for Flow and Cut Algorithms” (no.

TMSGI2_218022) of the Swiss National Science Foundation.

References
[1] Noga Alon. 2003. A simple algorithm for edge-coloring bipartite multigraphs.

Inform. Process. Lett. 85, 6 (2003), 301–302. doi:10.1016/S0020-0190(02)00446-5
[2] Eshrat Arjomandi. 1982. An efficient algorithm for colouring the edges of a graph

with Δ + 1 colours. INFOR: Information Systems and Operational Research 20, 2

(1982), 82–101. doi:10.1080/03155986.1982.11731850

[3] Sepehr Assadi. 2025. Faster Vizing and Near-Vizing Edge Coloring Algorithms.

In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). doi:10.1137/1.
9781611978322.165

[4] Sepehr Assadi, Soheil Behnezhad, Sayan Bhattacharya, Martín Costa, Shay

Solomon, and Tianyi Zhang. 2024. Vizing’s Theorem in Near-Linear Time. CoRR
abs/2410.05240 (2024). doi:10.48550/ARXIV.2410.05240 arXiv:2410.05240

[5] Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. 2022. Dis-

tributed edge coloring in time polylogarithmic in Δ. In Proceedings of the 2022
ACM Symposium on Principles of Distributed Computing. 15–25. doi:10.1145/

3519270.3538440

[6] Leonid Barenboim and Tzalik Maimon. 2017. Fully-Dynamic Graph Algorithms

with Sublinear Time Inspired by Distributed Computing. In International Con-
ference on Computational Science (ICCS) (Procedia Computer Science, Vol. 108).
Elsevier, 89–98. doi:10.1016/j.procs.2017.05.098

[7] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Marina

Knittel, and Hamed Saleh. 2019. Streaming and Massively Parallel Algorithms for

Edge Coloring. In 27th Annual European Symposium on Algorithms (ESA) (LIPIcs,
Vol. 144). 15:1–15:14. doi:10.4230/LIPIcs.ESA.2019.15

34

https://doi.org/10.1016/S0020-0190(02)00446-5
https://doi.org/10.1080/03155986.1982.11731850
https://doi.org/10.1137/1.9781611978322.165
https://doi.org/10.1137/1.9781611978322.165
https://doi.org/10.48550/ARXIV.2410.05240
https://arxiv.org/abs/2410.05240
https://doi.org/10.1145/3519270.3538440
https://doi.org/10.1145/3519270.3538440
https://doi.org/10.1016/j.procs.2017.05.098
https://doi.org/10.4230/LIPIcs.ESA.2019.15

STOC ’25, June 23–27, 2025, Prague, Czechia S. Assadi, S. Behnezhad, S. Bhattacharya, M. Costa, S. Solomon, T. Zhang

[8] Anton Bernshteyn. 2022. A fast distributed algorithm for (Δ + 1)-edge-coloring.
J. Comb. Theory, Ser. B 152 (2022), 319–352. doi:10.1016/j.jctb.2021.10.004

[9] Anton Bernshteyn and Abhishek Dhawan. 2023. Fast algorithms for Vizing’s

theorem on bounded degree graphs. CoRR abs/2303.05408 (2023).

[10] Anton Bernshteyn and Abhishek Dhawan. 2024. A linear-time algorithm for

(1 + 𝜖)Δ-edge-coloring. arXiv preprint arXiv:2407.04887 (2024).

[11] Sayan Bhattacharya, Din Carmon, Martín Costa, Shay Solomon, and Tianyi

Zhang. 2024. Faster (Δ + 1)-Edge Coloring: Breaking the𝑚
√
𝑛 Time Barrier. In

65th IEEE Symposium on Foundations of Computer Science (FOCS). doi:10.1109/
FOCS61266.2024.00128

[12] Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon

Nanongkai. 2018. Dynamic Algorithms for Graph Coloring. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM, 1–20. doi:10.1137/1.9781611975031.1

[13] Sayan Bhattacharya, Martín Costa, Nadav Panski, and Shay Solomon. 2024.

Arboricity-Dependent Algorithms for Edge Coloring. In 19th Scandinavian Sym-
posium and Workshops on Algorithm Theory (SWAT) (LIPIcs, Vol. 294). 12:1–12:15.
doi:10.4230/LIPIcs.SWAT.2024.12

[14] Sayan Bhattacharya, Martín Costa, Nadav Panski, and Shay Solomon. 2024.

Density-Sensitive Algorithms for (Δ + 1)-Edge Coloring. In 32nd Annual Eu-
ropean Symposium on Algorithms, ESA 2024 (LIPIcs, Vol. 308). 23:1–23:18. doi:10.
4230/LIPIcs.ESA.2024.23

[15] Sayan Bhattacharya, Martín Costa, Nadav Panski, and Shay Solomon. 2024. Nib-

bling at Long Cycles: Dynamic (and Static) Edge Coloring in Optimal Time. In

Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM.

doi:10.1137/1.9781611977912.122

[16] Sayan Bhattacharya, Martín Costa, Shay Solomon, and Tianyi Zhang. 2025.

Even Faster (Δ + 1)-Edge Coloring via Shorter Multi-Step Vizing Chains. In

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). doi:10.1137/1.
9781611978322.167

[17] Sayan Bhattacharya, Fabrizio Grandoni, and David Wajc. 2021. Online Edge

Coloring Algorithms via the Nibble Method. In Proceedings of theACM-SIAM
Symposium on Discrete Algorithms (SODA). SIAM, 2830–2842. doi:10.1137/1.

9781611976465.168

[18] Joakim Blikstad, Ola Svensson, Radu Vintan, and David Wajc. 2024. Online

Edge Coloring is (Nearly) as Easy as Offline. In Proceedings of the Annual ACM
Symposium on Theory of Computing (STOC). ACM. doi:10.1145/3618260.3649741

[19] Joakim Blikstad, Ola Svensson, Radu Vintan, and DavidWajc. 2025. Deterministic

Online Bipartite Edge Coloring. In Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). doi:10.1137/1.9781611978322.49

[20] Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. 2020. Dis-

tributed Edge Coloring and a Special Case of the Constructive Lovász Local

Lemma. ACM Trans. Algorithms 16, 1 (2020), 8:1–8:51. doi:10.1145/3365004
[21] Shiri Chechik, Doron Mukhtar, and Tianyi Zhang. 2024. Streaming Edge Coloring

with Subquadratic Palette Size. In 51st International Colloquium on Automata,
Languages, and Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia (LIPIcs,
Vol. 297). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 40:1–40:12. doi:10.

4230/LIPIcs.ICALP.2024.40

[22] Aleksander Bjørn Grodt Christiansen. 2023. The Power of Multi-step Vizing

Chains. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing
(STOC). ACM, 1013–1026. doi:10.1145/3564246.3585105

[23] Aleksander B. G. Christiansen. 2024. Deterministic Dynamic Edge-Colouring.

CoRR abs/2402.13139 (2024). https://doi.org/10.48550/arXiv.2402.13139

[24] Aleksander B. G. Christiansen, Eva Rotenberg, and Juliette Vlieghe. 2024. Sparsity-

Parameterised Dynamic Edge Colouring. In 19th Scandinavian Symposium and
Workshops on Algorithm Theory (SWAT) (LIPIcs, Vol. 294). 20:1–20:18. doi:10.4230/
LIPIcs.SWAT.2024.20

[25] Marek Chrobak and Takao Nishizeki. 1990. Improved edge-coloring algorithms

for planar graphs. Journal of Algorithms 11, 1 (1990), 102–116. doi:10.1016/0196-
6774(90)90032-A

[26] Marek Chrobak and Moti Yung. 1989. Fast algorithms for edge-coloring planar

graphs. Journal of Algorithms 10, 1 (1989), 35–51. doi:10.1016/0196-6774(89)90022-
9

[27] Ilan Reuven Cohen, Binghui Peng, and DavidWajc. 2019. Tight Bounds for Online

Edge Coloring. In 60th IEEE Annual Symposium on Foundations of Computer
Science (FOCS). IEEE Computer Society, 1–25. doi:10.1109/FOCS.2019.00010

[28] Richard Cole and John Hopcroft. 1982. On edge coloring bipartite graphs. SIAM
J. Comput. 11, 3 (1982), 540–546. doi:10.1137/0211043

[29] Richard Cole and Łukasz Kowalik. 2008. New linear-time algorithms for edge-

coloring planar graphs. Algorithmica 50, 3 (2008), 351–368. doi:10.1007/s00453-
007-9044-3

[30] Richard Cole, Kirstin Ost, and Stefan Schirra. 2001. Edge-Coloring Bipartite Multi-

graphs in𝑂 (𝐸 log𝐷) Time. Comb. 21, 1 (2001), 5–12. doi:10.1007/s004930170002
[31] Peter Davies. 2023. Improved Distributed Algorithms for the Lovász Local Lemma

and Edge Coloring. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 4273–4295. doi:10.1137/1.9781611977554.ch163

[32] Abhishek Dhawan. 2024. Edge-Coloring Algorithms for Bounded Degree Multi-

graphs. In Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2024, Alexandria, VA, USA, January 7-10, 2024, David P. Woodruff (Ed.).

SIAM, 2120–2157. doi:10.1137/1.9781611977912.77

[33] Abhishek Dhawan. 2024. A Simple Algorithm for Near-Vizing Edge-Coloring in

Near-Linear Time. arXiv preprint arXiv:2407.16585 (2024).
[34] Ran Duan, Haoqing He, and Tianyi Zhang. 2019. Dynamic edge coloring with

improved approximation. In 30th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). doi:10.1137/1.9781611975482.117

[35] Aditi Dudeja, Rashmika Goswami, and Michael Saks. 2025. Randomized Greedy

Online Edge Coloring Succeeds for Dense and Randomly-Ordered Graphs. In

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). doi:10.1137/1.
9781611978322.168

[36] Michael Elkin and Ariel Khuzman. 2024. Deterministic Simple (1 + 𝜖)-Edge-
Coloring in Near-Linear Time. arXiv preprint arXiv:2401.10538 (2024).

[37] Michael Elkin, Seth Pettie, and Hsin-Hao Su. 2014. (2Δ − 1)-Edge-Coloring is
Much Easier than Maximal Matching in the Distributed Setting. In Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,

355–370. doi:10.1137/1.9781611973730.26

[38] Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. 2017. Deterministic dis-

tributed edge-coloring via hypergraph maximal matching. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 180–191.
doi:10.1109/FOCS.2017.25

[39] Harold N Gabow, Takao Nishizeki, Oded Kariv, Daneil Leven, and Osamu Terada.

1985. Algorithms for edge coloring. Technical Rport (1985).
[40] Mohsen Ghaffari, Fabian Kuhn, Yannic Maus, and Jara Uitto. 2018. Deterministic

distributed edge-coloring with fewer colors. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing. 418–430. doi:10.1145/3188745.
3188906

[41] Prantar Ghosh and Manuel Stoeckl. 2024. Low-Memory Algorithms for Online

Edge Coloring. In 51st International Colloquium on Automata, Languages, and
Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia (LIPIcs, Vol. 297). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 71:1–71:19. doi:10.4230/LIPIcs.ICALP.

2024.71

[42] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. 2010. Perfect matchings in

𝑂 (𝑛 log𝑛) time in regular bipartite graphs. In Proceedings of the Forty-second
ACM Symposium on Theory of Computing. 39–46. doi:10.1145/1806689.1806697

[43] Jan Grebík and Oleg Pikhurko. 2020. Measurable versions of Vizing’s theorem.

Advances in Mathematics 374 (2020), 107378. doi:10.1016/j.aim.2020.107378

[44] Ian Holyer. 1981. The NP-completeness of edge-coloring. SIAM Journal on
computing 10, 4 (1981), 718–720. doi:10.1137/0210055

[45] Howard J Karloff and David B Shmoys. 1987. Efficient parallel algorithms for edge

coloring problems. Journal of Algorithms 8, 1 (1987), 39–52. doi:10.1016/0196-
6774(87)90026-5

[46] Lukasz Kowalik. 2024. Edge-Coloring Sparse Graphs with Δ Colors in Quasilinear

Time. In 32nd Annual European Symposium on Algorithms, ESA 2024 (LIPIcs,
Vol. 308). 81:1–81:17. doi:10.4230/LIPIcs.ESA.2024.81

[47] Janardhan Kulkarni, Yang P. Liu, Ashwin Sah, Mehtaab Sawhney, and Jakub

Tarnawski. 2022. Online edge coloring via tree recurrences and correlation decay.

In 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC). ACM,

104–116. doi:10.1145/3519935.3519986

[48] Alessandro Panconesi and Romeo Rizzi. 2001. Some simple distributed algorithms

for sparse networks. Distributed computing 14, 2 (2001), 97–100. doi:10.1007/

PL00008932

[49] Amin Saberi and David Wajc. 2021. The Greedy Algorithm Is not Optimal for On-

Line Edge Coloring. In 48th International Colloquium on Automata, Languages,
and Programming (ICALP) (LIPIcs, Vol. 198). 109:1–109:18. doi:10.4230/LIPIcs.

ICALP.2021.109

[50] Mohammad Saneian and Soheil Behnezhad. 2024. Streaming Edge Coloring with

Asymptotically Optimal Colors. In 51st International Colloquium on Automata,
Languages, and Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia (LIPIcs,
Vol. 297). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 121:1–121:20. doi:10.

4230/LIPIcs.ICALP.2024.121

[51] Claude E Shannon. 1949. A theorem on coloring the lines of a network. Journal
of Mathematics and Physics 28, 1-4 (1949), 148–152. doi:10.1002/sapm1949281148

[52] Corwin Sinnamon. 2019. Fast and simple edge-coloring algorithms. arXiv preprint
arXiv:1907.03201 (2019).

[53] Hsin-Hao Su and Hoa T. Vu. 2019. Towards the locality of Vizing’s theorem. In

51st Annual ACM SIGACT Symposium on Theory of Computing (STOC), Moses

Charikar and Edith Cohen (Eds.). doi:10.1145/3313276.3316393

[54] V. G. Vizing. 1964. On an estimate of the chromatic class of a p-graph. Discret
Analiz 3 (1964), 25–30.

[55] Vadim G Vizing. 1965. The chromatic class of a multigraph. Cybernetics 1, 3
(1965), 32–41. doi:10.1007/BF01885700

Received 2024-11-04; accepted 2025-02-01

35

https://doi.org/10.1016/j.jctb.2021.10.004
https://doi.org/10.1109/FOCS61266.2024.00128
https://doi.org/10.1109/FOCS61266.2024.00128
https://doi.org/10.1137/1.9781611975031.1
https://doi.org/10.4230/LIPIcs.SWAT.2024.12
https://doi.org/10.4230/LIPIcs.ESA.2024.23
https://doi.org/10.4230/LIPIcs.ESA.2024.23
https://doi.org/10.1137/1.9781611977912.122
https://doi.org/10.1137/1.9781611978322.167
https://doi.org/10.1137/1.9781611978322.167
https://doi.org/10.1137/1.9781611976465.168
https://doi.org/10.1137/1.9781611976465.168
https://doi.org/10.1145/3618260.3649741
https://doi.org/10.1137/1.9781611978322.49
https://doi.org/10.1145/3365004
https://doi.org/10.4230/LIPIcs.ICALP.2024.40
https://doi.org/10.4230/LIPIcs.ICALP.2024.40
https://doi.org/10.1145/3564246.3585105
https://doi.org/10.48550/arXiv.2402.13139
https://doi.org/10.4230/LIPIcs.SWAT.2024.20
https://doi.org/10.4230/LIPIcs.SWAT.2024.20
https://doi.org/10.1016/0196-6774(90)90032-A
https://doi.org/10.1016/0196-6774(90)90032-A
https://doi.org/10.1016/0196-6774(89)90022-9
https://doi.org/10.1016/0196-6774(89)90022-9
https://doi.org/10.1109/FOCS.2019.00010
https://doi.org/10.1137/0211043
https://doi.org/10.1007/s00453-007-9044-3
https://doi.org/10.1007/s00453-007-9044-3
https://doi.org/10.1007/s004930170002
https://doi.org/10.1137/1.9781611977554.ch163
https://doi.org/10.1137/1.9781611977912.77
https://doi.org/10.1137/1.9781611975482.117
https://doi.org/10.1137/1.9781611978322.168
https://doi.org/10.1137/1.9781611978322.168
https://doi.org/10.1137/1.9781611973730.26
https://doi.org/10.1109/FOCS.2017.25
https://doi.org/10.1145/3188745.3188906
https://doi.org/10.1145/3188745.3188906
https://doi.org/10.4230/LIPIcs.ICALP.2024.71
https://doi.org/10.4230/LIPIcs.ICALP.2024.71
https://doi.org/10.1145/1806689.1806697
https://doi.org/10.1016/j.aim.2020.107378
https://doi.org/10.1137/0210055
https://doi.org/10.1016/0196-6774(87)90026-5
https://doi.org/10.1016/0196-6774(87)90026-5
https://doi.org/10.4230/LIPIcs.ESA.2024.81
https://doi.org/10.1145/3519935.3519986
https://doi.org/10.1007/PL00008932
https://doi.org/10.1007/PL00008932
https://doi.org/10.4230/LIPIcs.ICALP.2021.109
https://doi.org/10.4230/LIPIcs.ICALP.2021.109
https://doi.org/10.4230/LIPIcs.ICALP.2024.121
https://doi.org/10.4230/LIPIcs.ICALP.2024.121
https://doi.org/10.1002/sapm1949281148
https://doi.org/10.1145/3313276.3316393
https://doi.org/10.1007/BF01885700

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Technical Overview

	2 Basic Notation
	3 Showcase: Our Algorithm Instantiated on Bipartite Graphs
	3.1 Our Bipartite Color Extension Algorithm in lem:main:bipartite
	3.2 Analysis of the Bipartite Color Extension Algorithm: Proof of lem:main:bipartite
	3.3 Extension to General Graphs

	4 Preliminaries: Vizing Fans and Vizing Chains
	5 Basic Building Blocks
	5.1 U-Fans and U-Edges
	5.2 Vizing Fans in Separable Collections

	6 The Main Algorithm
	Acknowledgments
	References

