CS 860: Space Bounded Computation University of Waterloo: Winter 2026

Lecture 2: Tree Evaluation and Simulating Time with Space
January 20, 2026

Instructor: Sepehr Assadi

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Topics of this Lecture

1 The Tree Evaluation Problem 1
1.1 Warm-Up: Linear Functions 2
2 The Main Algorithm for Tree Evaluation 3
2.1 Background: Multi-linear Extensions and Polynomial Interpolation 4
2.2 The Algorithm 5
3 Simulating Time with Space on Multi-Tape Turing Machines 8

We will examine the breakthrough work of Cook and Mertz [CM24] on space-efficient algorithms for the
tree evaluation problem, and one of its more important consequences due to Williams [Wil25] for simulating
time on restricted Turing Machines in nearly square root space.

1 The Tree Evaluation Problem

The tree evaluation problem defined below—introduced first by [CMW ' 12]—is generalization of the circuit
evaluation we saw in the last lecture.

Problem 1. In the tree evaluation problem for parameters d,t € N, we have a rooted full binary tree T’
of depth d. The root of the tree is named 0 and we recursively name left-child and right-child of a node
named y with 0 and y1. Each internal node v is assigned a function f, : {0,1}" x {0,1}" — {0,1}".
Every node u in the tree is assigned a ¢-bit string, called its value, denoted by wal, € {0, 1}t. For a
leaf-node, the value is given explicitly as input. For an internal node v, its value is defined as

val, = fy(valyo,valy),

namely, the string obtained by applying the function f, to the values of its child-nodes.

The goal is that given the tree T and values of the leaf-nodes and the truth-tables of functions {f,}
for internal-nodes, evaluate the value of the root.

This problem sometimes is called word circuit evaluation [Vio25] since it is basically evaluating a circuit
with fan-in two and arbitrary gates on t-bit words. Our goal in this lecture is to study the space complexity
of this problem.

Exactly as in the last lecture, there is an obvious algorithm for this problem:

Algorithm 1. Eval(node v): (returns the value v, of v)

1. If v is a leaf-node, return val,;

2. If v is an internal node, recursive let val,o = Eval(v0) and val,; = Eval(vl) and return f,(vo, v1).

Let S(d,t) denote the space complexity of Eval on a depth-d tree with labels in {0, 1}t. We claim that
S(d,t) < S(d—1,t) + O(1),

because the space the algorithm needs is to compute Eval(v0) which is S(d — 1,¢), then store the answer
in O(¢) bits, then reuse the space of Eval(v0) to now compute Eval(vl) (while hanging on to the O(t)-bit
answer of Eval(v0)) and finally use the two answers to look up the value of f,, and return the answer. Solving
the above recursion implies that the space complexity of the algorithm is

S(d,t) =0(d-t).
Thus, the naive solution for this problem uses O(d-t) space. Our goal is now to present a much more efficient

algorithm for this problem that uses close to—but not entirely—O(d + t) space.

1.1 Warm-Up: Linear Functions

Let us start with a warm-up example when the functions {f,} on the internal-nodes of the tree are linear
functions, meaning that for z,y,2’,y’ € {0, 1}t and all internal-node v,

fv(x D x/ay D y/) = fv(xay) D fv(xlvy,)v

where @ is the bit-wise XOR operation. The solution in this case is going to be quite similar to the Magic
algorithm we saw in Lecture 1 (for Boolean circuit evaluation).

Let Ry, Ro, R3 be three global registers holding values in {0, 1}t. We define a function LinearEval that
given a node v of the tree and an integer i € [3], has the following effect on these global registers:
e LinearEval(node v, integer i € [3]): assuming the original values of the registers is (r1,72,73), after
running this function, we will have
R; < r; ®val, and Rj < r; for j #1i. (1)

Equipped with this function, we can simply start with the assignment (0%, 0%, 0%) to the registers, call
LinearEval(root, 1) and return the content of Ry as the answer. It remains to implement LinearEval.

Algorithm 2. LinearEval(node v, integer i € [3]): (implements the transition stated in Eq (1))

1. If v is a leaf-node, update R; < 7; @ val,.

2. From hereon, for simplicity, we assume i = 1; the other two cases can be handled analogously.
Run LinearEval(v0,2) and LinearEval(vl, 3).

Update Ry < Ry & f,(R2, R3).

)

(

Run LinearEval(v0,2) and LinearEval(vl,3).

A

K Update Rl — R1 D fu RQ, Rg)

We now analyze the correctness and space complexity of LinearEval.

Correctness. The correctness of the base case of the algorithm is immediate. We prove the rest inductively
and again focus on the i = 1 case. We simply need to keep track of the values of registers (Ry, R2, R3):

e Initially:
(Tl , T2, T3)
o After Line (3):
(71, r2@waly , T3 ©valy),

by the induction hypothesis and the guarantees dictated by Eq (1).

o After Line (4):
(71 ® fo(re ®valyo, 3 D valyy) , r2 @ valyy , 73 B valy).
o After Line (5):
(71 ® folre ®valyo,r3 Dvalyy) , T2, T3),

by the induction hypothesis and the guarantees dictated by Eq (1), and since taking & again cancels
its first application.

e After Line (6):
(71 @ folra ®valyo,r3 ©valyy) © fo(ri,m2) , T2, 73),
which, by the linearity of f,, can be simplified to

(71 @ fo(valyo,valyr) , 72, 73),

which in turn is
(r1®valy, , r2, 13),

as desired.

Space complexity. Let S(d,t) denote the space complexity of LinearEval except for the three global
variables R1, Ro, R3 it uses. We also assume that there is one other global register temp that the algorithm
each time uses to compute f,(R1, R2) in Lines (4) and (6), but does not need to maintain any particular
invariant on its value (unlike Ry, Ro, R3 as dictated by Eq (1))*. Thus, the space complexity of LinearEval
is 4t + S(d, t). Finally, in the language of the last lecture, S(d,t) practically only measures the space needed
to “follow the code” in LinearEval. We have,

S(d,t) = S(d — 1,£) + O(1),

because we only need to remember which line of LinearEval we are currently on and the name of the next
node in the recursive call (which is obtained by concatenating a single bit to the name of the current node).
Thus, we have S(d,t) = O(d) implying that the total space complexity of the algorithm is O(d + t) bits.

This concludes an algorithm with space complexity O(d + t) for Tree Evaluation in the special case of
all internal-node functions being linear. Of course, for the general problem, there is no such guarantee and
more needs to be done to achieve done. We do so in the next section.

2 The Main Algorithm for Tree Evaluation

We have the following theorem due to the breakthrough work of [CM24], and subsequent simplifications
presented in [Gol24].

Theorem 1 ([CM24]). There is an algorithm for the Tree Evaluation problem of depth d and t-bit values,
with arbitrary input functions, that uses O((d 4 t)logt) bits of space.

The proof of Theorem 1 is based on a quite clever use of algebraization techniques (using elementary
properties of bounded-degree polynomials on finite fields). We first review the background on polynomial
tools we need and then present the algorithm.

1We note that the use of this temp register is not necessary and the algorithm can simply update R; on the fly; we thus
only use temp here for convenience of the analysis.

2.1 Background: Multi-linear Extensions and Polynomial Interpolation

Multi-linear extensions. Our goal is to, for a Boolean function f : {0,1}" — {0, 1}, assign a polynomial
in n variables, from a larger domain of elements, that agree with this function on Boolean inputs. Specifically,
let F be some integer fields (wherein calculations are done modulo some fixed prime p). We define a
polynomial F': F* — F which has degree one on each of its variables and agrees with f on {0,1}", namely,

F(z) = f(z) for all z € {0,1}". (2)
The polynomial can be defined as follows

F(zq,...,xq) = Z Iag =z1 ANag =22 A+ ANap =xy) - flar,...,an),

where I(B) for a Boolean predicate B returns 1 if the predicate is true and 0 otherwise. It is immediate to
see that F' this way satisfies Eq (2). We are not done yet though as I(-) is still not a polynomial. However,
that can be easily fixed since

n

]I(alle/\ag:xg/\~~~/\an:xn):H]I(ai:xi):H(aiomi+(1fai)~(1fxi)),

i=1 i=1

where we obtained the last term by considering the truth table of the equality function on two bits. Thus,
the entire polynomial F' can now be written as

n
F(zy,...,x,) = Z f(al""’a")'H(ai'l‘z‘—F(l—ai)'(l—xi)). (3)
(a1,...,an)€{0,1}" i=1
It is easy to see that F' is linear in each individual variable z; for i € [n].

Finally, we note that F' is called the multi-linear extension of f and in fact is the unique polynomial
satisfying the above properties (although we do not need the latter property in this lecture).

Polynomial interpolation. Suppose F is again some integer field and P : F — F is a single-variable
polynomial with degree n less than |F|. Thus, we have,

for n + 1 coeflicients (cg,...,cp,) in F.

Recall that specifying any n + 1 points of a degree n polynomial fixes the polynomial. We can write this

for points ay, . .., a, as the following matrix equation:
1 ay a2 -+ af Co P(ap)
1 a a2 -+ af 1 P(aq)
1 a, a®> - a Cn P(ay)
The matrix on the left is called the Vandermonde matrix and is reversible as long as ag,...,a, are

distinct. This implies that we can recover the coefficients of the polynomial as:

—1

co 1 ay a2 -+ af P(ap)
a1 1 a a2 - af P(aq)
Cn 1 a, a2 an. P(ay,)

Finally, if our goal is to evaluate the polynomial on some point b € F, we have

co 1 a a2 - a1 " [P(ao)

c1 1 a a® -+ a? P(ay)
Ph)=[1 b > ... b"]-|.|=[1 b b* ... b"]: o S S e B

Cn 1 a, a®2 -+ ao. P(ay)

This allows us to compute the value of the polynomial P on any point b as a linear combination of its values
on P(ag),...,P(ay,) using the above formula. In other words, we can interpolate P(b) linearly from P on
any n + 1 points.

We also state, without proof, the following fact about matrix inversion in bounded space.
Fact 2. Fiz any integer n > 1 and any field F with |F| > n. For any invertible matriz A € F**™ and any
i,j € [n], we can calculate (A™"); ; in poly(log |F|) space.

A quick note about Fact 2 is that “linear algebra is in NC” which by that we mean computing determinant,
matrix inversion, and matrix multiplication on N-bit inputs admits circuits of size poly(N) and depth
poly(log N). Fact 2 follows from this and the circuit evaluation we saw in the previous lecture that simulates
a depth-d circuit in O(d) space.

A corollary of Fact 2 and Eq (4) is that we can compute a value of degree n polynomial on any point,
given input access to n + 1 points of the polynomial, in poly(log |F|) space

2.2 The Algorithm

We are now ready to present the algorithm TreeEval. Throughout, let F be an integer field modulo a fixed
prime in (2¢ + 1,4t + 2), whose existence is guaranteed by Bertrand’s postulate (aka Chebyshev’s theorem).
Yet again, the algorithm uses three global registers Ry, Re, R3, but now holding values in F!. Given a node v
of the tree, an integer i € [3], and an operator o € {4, —}, running the TreeEval function has the following
effect on the registers:

e TreeEval(node v, integer i € [3], o € {+, —}): assuming the original values of the registers is (ry, r2, 73),
after running this function, we will have

R; < riowal, and Rj < r; for j #1i. (5)
We go over the definitions and high level ideas of the algorithm first and then proceed to formalize it.

Definitions and High Level Ideas

We follow a similar strategy as in LinearEval by “linearizing” the functions f, : {0,1}" x {0,1}* — {0,1}",
one output bit at a time, using multi-linear extensions and polynomial interpolation introduced earlier.
Firstly, define, for any j € [¢],

fv; {0, 1M 5 {0,1} where fuj(xy) returns the j-th bit of f,(x,y).
Consider the multi-linear extension of f, ; over F denoted by
F,; :F" - F (the multi-linear extension of f, ;).

Moreover, there are (at least) three operations we can do on the registers that allows us to later on bring
back their state to their original form:

e R; <+ z-R; for any z # 0 because we can simply run R; < 27! - R; to reverse this, given any z # 0
has a unique inverse in the field F.

e R; < Rj £wvaly or Rj + R; £wval, by recursively running TreeEval to obtain this and running it
again with the other operator to reverse it.

e Rj « Rj + o F,;(Ry, Ry) for distinct values of j, ¢,k € [3], i € [t], and o € F, by calculating F, ;

using the formula of the multi-linear extension and input access to f, ;.

Our goal is thus to add val, to, say, Rj, using a combination of these operations. To proceed, we need one
more definition. Let (ry, 72, 73) be the initial values of the registers (R, Re, R3). For a fixed j € [t], consider
the single-variate polynomial

gj :F—TF suchthat g;(z):=F,;(z®rs+valy,z®rs+val,),
where ® : F x F* — F* multiplies z to each of the t-indices of ry, 73 separately, i.e.,
2O (ron, o yrae) = (1212, 00, T2002).

Now, notice two things:

e All we want is to compute Ry < R + 22:1 27=1.4,(0) to place fy, j(valyo,val,1) in the j-th bit of Ry.

e But, computing g,(0) directly involves computing Ry < z - R + val,o (and similarly for R3) for z =0
which is not a reversible operation. Nevertheless, we can compute any other g;(z) for z # 0 in a similar
manner (we will see this formally soon).

Here is where polynomial interpolation comes to our rescue. By Eq (4), we know that

deg(g;)+1

gi(0)= > g2 (6)

z=1

where deg(g;) is the degree of the polynomial g; and we simply picked the points [deg(g;) + 1] as the
interpolation points (the choice of the points is completely arbitrary and can be anything non-zero), and
C1,- -+, Cdeg(g;)+1 are only functions of the points {0}U[deg(g;)+1] all of which are fixed and input-independent
once we bound deg(g;). But bounding the degree is also pretty easy since

9j(2) = Fy j(z © 12 +valyo, 2 © rg + valyr)
2t

= > flar,..vaze) - [[(@i (2 i+ (valo)s) + (1= a;) - (1 = (2 7w + (valys)s)) -
(a1,...,a2¢)€{0,1}%* 1=1
(by the definition of F), ; Eq (3) where * = 2 for i < ¢ and * = 3 for t < ¢ < 2t)

Specifically, this means that the largest power of z in g;(z) is 2t and thus deg(g;) = 2t as well.

We now have all the tools needed to formalize the algorithm.
Formalization and the Analysis

The algorithm is formally as follows. We again let (r1,7r2,73) be the initial values of registers (R1, Ra, R3).
This definition fixes the definition of the polynomial g;(-) for any j € [t] also (as defined earlier).

-

Algorithm 3. TreeEval(node v, integer i € [3], o € {+, —}): (implements the transition in Eq (5))

1. If v is a leaf-node, update R; < r; o val,.
2. From hereon, for simplicity, we assume i = 1; other cases can be handled analogously.
3. Forj=1totand z=1to 2t + 1:

(a) Update Ry < 2z ® Ry and Rs < z ® Rs.
(b) Run TreeEval(v0,2,+) and TreeEval(vl,3,+).
(c) Update Ry < Ry 02771 - ¢, - F, ;j(Ra, R3) where c, is the coefficient of g;(z) in Eq (6).
(d) Run TreeEval(v0,2,—) and TreeEval(vl,3,—).
)

_ (e) Update Ry + 271 ©® Ry and R3 + 271 ® R3.)

It is immediate to verify that after each iteration of the inner for-loop, values of Ry and R3 are reverted
back to ro and r3, respectively. So, the main part is to figure out what happens to r;. The following lemma
is the key part of the proof.

Lemma 3. For any j € [t], let r1(j) denote the initial value of register Ry at the beginning of the iteration
7 of the for-loop. Then, at the end of the iteration, we have

Ry =7r1(j) + 2771 f, j(valyo, valyy).

Before proving this lemma, let us see how it finalizes the proof. For the final value of Ry, we have,

t
Ri=rit+1)=r+ Z2j71 - fo,j(valyo, valy)
j=1
(by writing the sum as a telescoping value and using Lemma 3)

=11 + fy(valyo,valy) _
(since f, ;j(valyo,valy) is in {0,1} and multiplying it by 27! puts it in the j-th digit in {0, 1}t)

=r1 +val,,

which is the desired value. Thus, it remains to prove Lemma 3.

Proof of Lemma 3. We have

241 2041
fuj(valy, valy) = Fy j(0-ravalyg, 0-r3tval,1) = g;(0) = Z c.g;(z) = Z ¢z Fy j(20r9+valyg, 20r3+valy);
z=1 z=1

here, the first equation holds because F), ; is a multi-linear extension of f, ; and valyg,val,; are Boolean
value; the second holds by the definition of g;, the third holds by Eq (6) using polynomial interpolation of
g;(0) using the polynomial’s values in [2¢t + 1] , and the last one is again by the definition of g;(z).

By induction (on the depth of the tree when running TreeEval), in iteration z of the inner for-loop, when
running the update on Ry, values of Ry, R3 are z ® ro + val,o and z ® r3 + val,1, implying that in iteration
z, the algorithm adds 297! - ¢, - F, j(z ® 1o +valyo, 2 ® 13 + valy) to Ry. Summing up over all choices of z
concludes the proof. O

Finally, we also need to analyze the space complexity of the algorithm.

Lemma 4. TreeEval on a tree of depth d with t-bit values can be implemented in O((d +t) - logt) space.

Proof. Firstly, the algorithm uses 3 registers with entries in F* and thus each requiring O(t log t) bits. Besides
this, we need to evaluate the space needed for its recursion.

Two non-trivial steps in the algorithm are computing the coefficients ¢, for computing the multi-linear
extension F), ;(Ra, R3).

For the former case, as stated in Eq (4), these coefficients are only functions of the numbers {0} U [2¢ + 1]
and are input independent. By Fact 2, since the total bit complexity of the matrix involving these coefficients
is tlogt, we can calculate each bit of ¢, in polylogt = o(t) space and subsequently compute and store all of
¢, in another O(logt) space. Note that the space we need for calculating ¢, is “local” to this step and for
that we can for instance use a temporary global register once across all recursive calls.

For the latter, computing the multi-linear extension using Eq (3) involves going over all the 22 Boolean
values in the sum using O(t) bits of space and for each one additionally using O(logt) bits to calculate the
entire multiplicative term, so overall this step can be implemented in O(t) bits as well. Again, this space is
“local” and can be done using a temporary global register.

Finally, to implement the recursive calls, we also need to know which line of code the algorithm currently
is which can be specified by writing down j and z in O(logt) space plus another O(1) step for the inner
instruction. This means that at each level of the recursion, we need to store O(logt) bits and since the depth
of the recursion is d, we need O(dlogt) space in this case.

Overall, the algorithm can be implemented in O((d + t) logt) space. O

This concludes the proof of Theorem 1.

Remark. The tree evaluation problem was first introduced by [CMW *12] as a candidate for of separat-
ing logspace from polytime complexity classes, i.e., proving that L # P. Letting n denote the input size
in the tree evaluation and setting ¢t = d, we get that both ¢,d = O(logn). It is easy to see that we can
immediately solve tree evaluation in poly(n) time but the obvious algorithm for this problem requires
O(log® n) space. Based on this (and some lower bounds in weaker models of computation), [CMW*12]
conjectured that tree evaluation cannot be solved in o(log2 n) space, proving which separated L from P.
which constitute an amazing milestone in complexity theory. The breakthrough work of [CM24] refutes
this conjecture in a very strong sense, showing that tree evaluation can be solved in O(logn - loglogn)
space. It remains an interesting open question to fully close this gap and achieve an O(logn) space
algorithm for this problem (or of course prove that is not possible although that seems a lot less likely
now than what was thought at the time of the conjecture of [CMW T 12]).

3 Simulating Time with Space on Multi-Tape Turing Machines

We now briefly sketch an interesting application of Theorem 1 due to [Wil25] for simulating ¢-time algorithms
in nearly v/t space (recall that it is trivial to simulate a ¢-time algorithm in O(t)-space since in that much
time, the algorithm cannot touch more than ¢ cells in the memory).

An important caveat is that for this result to hold, we need to work with notions of time and space on
a more restricted computational model than the RAM model we introduced in the last lecture (and solely
focus on in this course, beside this section, when talking about uniform computation).

Multi-tape Turing Machines. We will be working with two-tape Turing Machines instead of RAM
machines for the rest of this lecture (for our purpose, power of two tape vs constant tape machines are
equivalent). Roughly speaking, in this model, we have two tapes, where one of them holds the input initially.
There are also two heads of the machine one on each tape. In each time step, the machine can read/write
from the position of its current head and move each of the heads to left or right for one cell. The moves
of the machine are dictated by a constant size state-space among which are start state, accept state, and

reject state. Note that the main difference between this model and RAM machines we formally defined in
the last lecture is that the heads of this machine can only move sequentially; for instance, if the first head
is in position and wants to read position k next, it is going to take the machine O(k) time steps to do so,
unlike on RAM machines which this can be done in O(1) time.

The time complexity and space complexity of the algorithm can be defined similarly to RAM machines
using the number of moves in an execution (for time) and the largest index of the cell touched on either of
the tapes (for space). For any functions ¢(n) : N — ||N and s(n) : N = N, we define

e Time*(t(n)) : set of all languages in {0,1}" decidable by a two-tape Turing Machine with time com-
plexity t(n) on inputs of length n;

e Space®(s(n)) : set of all languages in {0,1}" decidable by a two-tape Turing Machine with space
complexity s(n) on inputs of length n;

(We use the in these definitions to distinguish them with our standard definitions in the last lecture).
The following is a slightly weaker (by polylogarithmic factors?) version of the main result of [Wil25].

Theorem 5. For every function t(n) > n:

Time*(t(n)) C Space*(O(\/t(n))).

The idea behind the proof is to start with a two-tape machine M, write its execution in T steps as an
instance of tree evaluation with O(v/T)-depth and O(v/T)-bit values, and then apply Theorem 1 to this tree
to compute the answer in only O(v/T) space.

The first step to do this is to use a classical result for turning multi-tape Turing machines oblivious: this
means that on every input z of length n, the head movements of the Turing machines are only a function of
n and not x (e.g., think of the heads always going from left to right and then looping back again and again).

Proposition 6 (cf. [IS66]). For every t(n)-time two-tape Turing Machine, there exists an equivalent obliv-
ious two-tape Turing machine with time complexity t'(n) = O(t(n)log (t(n))). Moreover given n and any
1 € [t'(n)], the position of the heads of M’ at time i can be computed in polylog (t'(n)) time.

Equipped with Proposition 6, we can focus on proving Theorem 5 for the oblivious two-tape Turing
machines prescribed in Proposition 6. To continue, we need one more definition.

Definition 7. For an oblivious two-tape Turing Machine M and input length n running in ¢(n) time,
we define the following computation DAG G:

1. There are t(n) vertices in the DAG corresponding to the ¢(n) time steps taken by the algorithm.

2. The edges of the DAG can only go from a vertex u to v, if u < v (i.e., u corresponds to an earlier
time step than v). Hence, G is a DAG.

3. There is an edge (u,v) in G iff: (1) the position of heads of M at time w and time v intersect, and
(2) v is the smallest index for which this is true (i.e., for any w : u < w < v, the heads of M at
time u and w are disjoint).

Note that since M is oblivious, the computation DAG is only a function of the input length and not the
input. Moreover, given vertices/indices u,v € [t(n)], we can determine if (u,v) is an edge in this DAG in

2We use the standard notation that O(f) := O(f - poly log (f)) when stating the result.

O(t(n)) time since the position of heads of the machine can be computed in |v — u| - polylog (£(n)) time by
the guarantees of Proposition 6.

We are now ready to prove Theorem 5.

Proof of Theorem 5. Let M be an oblivious two-tape Turing Machine of the type in Proposition 6 running
in t(n) time on inputs of length n. Let G be the computation DAG of M on n-size inputs. Partition the
cells in the two tapes of M into consecutive blocks of length B for some parameter B to be determined
later. Similarly, partition the time steps/vertices of G into consecutive phases of the same length B. We
have the following simple observation.

Observation 8. When running M on any input of length n, during o fixed phase (of time), at most four
blocks (of the tapes) are visited by the heads of the machine M.

Proof. During a phase, the head of the machine on each tape can move at most B cells in each direction
and thus cannot move beyond a single block on each tape, meaning at most two blocks are visited on each
tape and at most four overall. O

Observation 8 is the main place where restriction of multi-tape Turing Machines (compared to RAM
machines) are being exploited®. Moreover, notice that to compute the updated content of the at most four
visited blocks in a single phase of the algorithm, we only need to know the content of blocks also (we can
just simply simulate M on these blocks as it never reads/write to any block outside here).

For any phase p and any of the four (tape) blocks b in this phase, define a function:
fon {0,137 % {0,137 x {0,1}7 x {0,1}" = {0,1}7,

which takes as input the content of the four tape blocks involved in phase p and outputs the content of the
tape block p at the end of phase p. Note that we can evaluate f,; using O(B) space and O(B) time by
simulating M on the input content of these blocks during the phase.

Additionally, the computation DAG tells us exactly where the input of f,,;, comes from the output of
which fp/ 4, whenever there is an edge (p,p’) in the DAG. We can thus “unfold” this DAG into a tree T
with root corresponding to the last phase and having multiple vertices for each phase of the algorithm to
avoid creating cycles. See Figure 1 for an illustration of unfolding a DAG into a tree.

Note that since M is oblivious and the computation DAG is fixed, this tree is input independent and can
be created implicitly by determining the child nodes of any node in the tree in polylog (t(n)) space.

The problem at this point is that we have a tree with:

e fan-in at most four;
e B-bit values and functions at each level of the tree that can be computed in O(B) space and time;

e depth at most t(n)/B (as each level of the tree goes down at least one phase in the computation).

This is almost an instance of the tree evaluation problem with two minor differences: the degree of vertices
is at most 4 instead of exactly 2, and that child-nodes of a node may appear at different levels in the tree.
Despite this, it is immediate to verify that the proof of Theorem 1 works verbatim for this problem as well.
Thus, we can solve this tree evaluation problem also in O((d +t) logt) where d := t(n)/B is the depth of the
tree and ¢ := B is the size of each value in the tree. Thus, we can simulate the multi-tape Turing Machine M

3While an analogue of Proposition 6 is not known for RAM machines, it turns out obliviousness is not that crucial for
the proof and can be circuimvanted using an “instance-wise obliviousness” by simply running the algorithm for all choices of
computation DAG until we find the right one for the specific input; see [Wil25].

10

(a) An original DAG. (b) The unfolded tree corresponding to the DAG.

Figure 1: An illustration of unfolding a DAG into a tree.

using O((t(n)/B+ B) log B) space®. Setting B = 1/t(n), we get an algorithm that runs in O(y/t(n)-logt(n))
space.

Finally, since we also only lost a logarithmic factor in Proposition 6, we can conclude that

Time*(t(n)) € Space”™(O(v/t(n))),

as desired. O]

References

[CM24] James Cook and Ian Mertz. Tree evaluation is in space O(logn - loglogn). In Bojan Mohar,
Igor Shinkar, and Ryan O’Donnell, editors, Proceedings of the 56th Annual ACM Symposium
on Theory of Computing, STOC 2024, Vancouwver, BC, Canada, June 24-28, 2024, pages 1268—
1278. ACM, 2024. 1, 3, 8

[CMWT12] Stephen A. Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and Rahul Santhanam.
Pebbles and branching programs for tree evaluation. ACM Trans. Comput. Theory, 3(2):4:1—
4:43, 2012. 1, 8

[Gol24] Oded Goldreich. On the cook-mertz tree evaluation procedure. Electron. Colloquium Comput.
Complez., TR24-109, 2024. 3

[HS66] F. C. Hennie and Richard Edwin Stearns. Two-tape simulation of multitape turing machines.
J. ACM, 13(4):533-546, 1966. 9

[Vio25] Emanuel Viola. Mathematics of the impossible: The complexity of computation. 2023-2025
Emanuel Viola, to be published by Cambridge University Press, 2025. 1

[Wil25] R. Ryan Williams. Simulating time with square-root space. In Michal Koucky and Nikhil Bansal,
editors, Proceedings of the 57th Annual ACM Symposium on Theory of Computing, STOC 2025,
Prague, Czechia, June 23-27, 2025, pages 13-23. ACM, 2025. 1, 8, 9, 10

41t is worth pointing out that the solution to tree evaluation we presented was in the RAM model and not multi-tape Turing
Machines. However, when talking about space and not time, the distinction between the two models is entirely inconsequential
one can simulate one model in another using the same space complexity.

11

	1 The Tree Evaluation Problem
	1.1 Warm-Up: Linear Functions

	2 The Main Algorithm for Tree Evaluation
	2.1 Background: Multi-linear Extensions and Polynomial Interpolation
	2.2 The Algorithm

	3 Simulating Time with Space on Multi-Tape Turing Machines

