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1 Maximum Matchings

In the last lecture, we examined the minimum spanning tree problem and saw a randomized linear (expected)
time algorithm for it. We now switch to studying another fundamental combinatorial optimization problem:
the maximum matching problem. As before, you have most likely seen this problem in your previous
algorithms courses. We will provide a quick review in the following.

Let G = (V,E) be an undirected graph. A matching M in G is any collection of vertex-disjoint edges,
namely, a subgraph of G with maximum degree at most one.

Problem 1 (Maximum Matching). The maximum matching problem is defined as follows: Given a
graph G = (V,E), find a matching M of G with maximum number of edges.

We note that in many applications of the maximum matching problem, we can additionally assume the
input graph is bipartite, i.e., its vertices can be partitioned into two independent sets. We refer to this
special case as the bipartite matching problem. In general, the bipartite matching problem tends to be an
“algorithmically simpler” version of the problem compared to the general case, in that bipartite matching
algorithms, for the most part, are considerably simpler than the algorithms for the general case1.

1Although interestingly, from a “complexity point of view”, the two problems are typically equivalent to each other, as in,
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1.1 Basics of Maximum Matching Algorithms

We start by reviewing some basic background on maximum matching algorithms. A key concept when
studying matching algorithms is that of augmenting paths (quite similar to the same notion for maximum
flow algorithms).

Definition 1. For any matching M in a graph G = (V,E), an augmenting path P is any path in
G starting from a vertex unmatched by M , alternatively taking edges in E \M followed by M and
continuing like this until ending in another unmatched vertex of M .

A basic fact about augmenting paths is that we can always increase size of a matching M if we have an
augmenting path P for it (see Figure 1 for an illustration).

Fact 2. Let M be any matching in G and P be an augmenting path for M . Then, the set M4P , namely,
the symmetric difference of M and P , is a matching of size one larger than M .

Figure 1: An illustration of the augmenting paths. The gray vertices are unmatched, the green edges are
not-matching edges and the red ones are matching edges. By switching red edges to green edges in our
matching, we can increase its size by one.

We can also show that as long as M is not a maximum matching, it always admits an augmenting path.

Proposition 3. Let M be any matching in G which is not a maximum matching. Then, there exists some
augmenting path P for M in G.

Proof. Let M∗ be a maximum matching in G. Consider the subgraph H of G on edges M ∪M∗. Every
vertex in H has maximum degree at most two and thus H is a vertex-disjoint union of paths and cycles.
Moreover, since H is a union of two matchings, all cycles in H should be of even length (because H is 2-
edge-colorable). Any even-cycle in H has the same number of edges in M and M∗. Thus, since |M∗| > |M |
by our assumption, there should be at least one path in H that has more edges from M∗ compared to M .
Such a path is now an augmenting path for M (in G), concluding the proof.

2 Augmenting Path Algorithms for Maximum Matching

Fact 2 and Proposition 3 gives us a simple recipe for designing maximum matching algorithms:

the results in the bipartite case can often be extended to the general case with “considerable additional work” (although there
are notable exceptions as well).
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Algorithm 1.

1. Start with an empty matching M = ∅;

2. While M is not a maximum matching:

(a) Find an augmenting path P for M which always exist by Proposition 3;

(b) Use Fact 2 to increase the size of M using P by updating M ←M4P .

We now show how to implement this strategy for bipartite and general graphs separately.

2.1 Bipartite Graphs

Implementing Algorithm 1 for bipartite graphs is quite easy. Suppose G = (L,R,E) is a bipartite graph
with bi-partition L,R of vertices and M is some matching in G. We create the following directed graph
(digraph) D from G and M . Orient all edges of M from R to L and all other edges from L to R. Add two
more vertices s and t to D where s is connected to all unmatched vertices in L and t has an edge from all
unmatched vertices in R. See Figure 2 for an illustration.

(a) A bipartite graph G and a matching M . (b) The corresponding digraph D of G and M

Figure 2: An illustration of the digraph created for finding augmenting paths in bipartite graphs.

Proposition 4. Let G be a bipartite graph and D be the digraph obtained from it as described above. Suppose
M has an augmenting path in G. Then, there is a path from s to t in D. Conversely, any path from s to t
in D contains an augmenting path for M in G.

Proof. The proof of both statements is straightforward. Let P = (u1, u2, . . . , uk) be an augmenting path
for M in G. Then, the path (s, u1, u2, . . . , uk, t) is a path in D since for i > 1, (u2i−1, u2i) is connected via
E \M in P (and thus the corresponding directed edge exists in D) and (u2i, u2i+1) is connected via M in P
(and thus, again, the corresponding directed edge exists in D).

For the other direction, any s-t path in D (ignoring the edges out of s and coming to t) alternates between
using edges from E \M and M and thus is an augmenting path for M in G.

Proposition 4 suggests that finding an augmenting path P for a matching M in a bipartite graph G
can be simply done using a DFS/BFS (or any other standard graph search algorithm). In particular, this
means that we can implement each iteration of Algorithm 1 in O(m) time. As we can also find at most n
augmenting paths, this results in a simple O(m · n) time algorithm for bipartite matching.
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2.2 General (Non-Bipartite) Graphs

Finding augmenting paths in general graphs however is considerably more tricky. This is, intuitively speaking,
because of the following: to find an augmenting path in bipartite graphs, we always know which direction to
traverse a matching edge (which is dictated by the bipartition of the input graph); this is no longer true in
general graphs – an augmenting path may only exist if we traverse matching edges with a particular direction
but we simply do not know these directions and cannot simply “guess” them2.

A simple “fix” given that we do not know which direction to traverse matching edges is to include both
directions when finding augmenting paths. Suppose G = (V,E) is an arbitrary (not necessarily bipartite)
graph and M is some matching in G. We create the following directed graph (digraph) D from G and M .
We create two copies of all vertices in two sets VL and VR. We use vL and vR to refer to the copy of v in
VL and VR, respectively. Then, for any edge (u, v) ∈ E, we add two edges (uL, vR) and (uR, vL) to D (the
graph created so far is called the bipartite double cover of G). We then orient both copies of each edge
of M from VR to VL and all the remaining edges from VL to VR. Finally, we add two new vertices s and t
and connect s to all unmatched vertices in VL and connect all unmatched in VR to t. See Figure 3.

(a) A general graph G and a matching M . (b) The corresponding digraph D of G and M

Figure 3: An illustration of the digraph created for finding augmenting paths in bipartite graphs. Notice
that even though there is a path from s to t in D, this does not mean M admits an augmenting path in G.

It is easy to see—using exactly the same analysis as in Proposition 4—that having an augmenting path
for M in G implies that s can reach t in D as well. However, the converse is no longer true here: not every
s-t path in D can be turned into an augmenting path for M in G (see Figure 3 for an example).

A brilliant fix to this problem was discovered by Edmonds in his famous paper “Paths, trees, and
flowers” [Edm65]. We will go over this algorithm—called Edmonds’ Blossom algorithm—after a quick detour.

Remark. Edmonds paper [Edm65] put forward the notion of polynomial-time algorithms (and the
complexity class P) as the “most natural” notion of efficiency for algorithms and the rest is history. You
are strongly encouraged to check Section 2 of this paper for a detailed account of Edmonds’ opinion on
polynomial-time algorithms as a measure of practicality. The following quote from this paper is also
quite relevant (although somewhat overlooked):

“It would be unfortunate for any rigid criterion to inhibit the practical development of
algorithms which are either not known or known not to conform nicely to the criterion.
Many of the best algorithmic ideas known today would suffer by such theoretical pedantry.”

Flowers and Blossoms. We now get to describe Edmond’s fix. Consider a path (s, u1, u2, . . . , uk, t) in
D. If all of u1, . . . , uk correspond to distinct vertices in G, then, exactly as in Proposition 4, we also obtain

2That being said, a beautiful algorithm due to McGregor [McG05] for (1 − ε)-approximation of maximum matchings in
(1/ε)O(1/ε) ·O(m) time precisely achieves this using randomization; but, this runtime is too slow in terms of dependence on ε.
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an augmenting path for M in G. However, it is possible that these vertices are not all distinct. In that case,
let uj be the first repeated vertex and let ui for i < j be the copy of this vertex visited previously. Consider
the sequence of vertices u1, u2, . . . , ui, . . . , uj(= ui) in G (here, with a slight abuse of notation, we “reverted
back” the vertices in D to their copies in G). This sequence forms what Edmonds called an M-flower as
defined below. See Figure 4 for an example.

Definition 5. Let G = (V,E) be any graph and M be a matching in G. An M-flower in G (with
respect to M) is a sequence of vertices (u1, u2, . . . , uk) with the following properties:

1. For any i > 1, (u2i−1, u2i) is an edge in E \M and (u2i, u2i+1) is an edge in M .

2. k is even and the vertex uk is the same as u2i∗+1 for some i∗ > 0.

The path (u1, . . . , u2i∗+1) (which might be empty) is called the stem of the M -flower and the odd-cycle
(u2i∗+1, . . . , uk) (which is never empty) is called the blossom of the M -flower. The vertex u2i∗+1 is
also called the base of the blossom.

Figure 4: An illustration of an M -flower with its stem and blossom. Here, the thick (red) edges are in the
matching M and remaining edges are in E \M .

Proposition 6. Let G be an arbitrary (not necessarily bipartite) graph and D be the digraph obtained from
it as described above. Suppose M has an augmenting path in G. Then, there is a path from s to t in D. On
the other hand, any path from s to t in D contains either an augmenting path for M or an M -flower in G.

Proof. The proof is identical to that of Proposition 4 for bipartite graphs except for the following case: the
path (s, u1, u2, . . . , uk, t) in D contains two copies of the same vertex in G.

In that case, we consider the sequence of vertices (u1, . . . , uk) in D (and, with a slight abuse of notation
in G as well) where uk is the first duplicated vertex. Notice that by the construction of D, the edges of
(u1, . . . , uk) are alternating between E \M and M . Moreover, k needs to be an even number because u2i+1

for every i > 1 corresponds to M(u2i); so, if u2i+1 is duplicated, we already have u2i also duplicated and
thus the first index k is always an even number. Finally, because we started with a path in D, the edge
(uk, uk+1) in the path in D should go in the “opposite” direction of the matching edge compared to the last
time we saw this edge (otherwise, we are hitting the same vertex of D twice in a path that cannot happen);
thus, (uk, uk+1) should be an odd- to even-index matching edge, which means uk = u2i∗+1 for some i∗ > 0.

All in all, these mean that (u1, . . . , uk) form an M -flower (Definition 5) in G, concluding the proof.

Contracting Blossoms. Notice that a blossom is an odd-cycle and thus cannot contain a perfect matching
(namely, a matching that matches all vertices). But, it also has this additional property: for any vertex v
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in the blossom, we can find a matching that only leaves v unmatched (such a (sub)graph is called factor-
critical in graph theory). This allows us to contract the blossom for now to continue our search for an
augmenting path and once we found the path, we can expand the blossom to find an augmenting path for
the entire graph also. This is the content of the following main lemma.

Lemma 7. Let G be any arbitrary graph, M be a matching in G, and B be a blossom for M . Let G/B be
the graph obtained from G by contracting vertices of B into a single vertex b (and removing self-loops but
keeping parallel edges). Define M/B similarly for the matching M . Then:

1. If M/B is a maximum matching of G/B, then, M is also a maximum matching of G.

2. Conversely, if M/B admits an augmenting path P in G/B, then, there is also an augmenting path Q
for M in G that can be obtained from P by expanding vertices of G.

Proof. We prove each part separately.

1. Suppose M is not a maximum matching of G. Consider the matching M ′ obtained by taking the
symmetric difference of M with the edges in the stem of the M -flower with blossom B. See Figure 5
that corresponds to applying this step to the M -flower in Figure 4.

Figure 5: An illustration of the matching M ′ obtained by applying the alternating path in the step of the
M -flower with blossom B (to the M -flower of Figure 4).

Notice that M ′ has the same size as M and is thus also not a maximum matching. Moreover, M ′

leaves the base of the M -blossom B unmatched. Now by Proposition 3, there is an augmenting path
P for M ′ in G. Let (u1, . . . , uk) be the vertices of P . If none of these vertices are in B, then P is also
an augmenting path for M ′/B in G/B. But, M ′/B has the same size as M/B which is a maximum
matching, thus a contradiction. Otherwise, let uj be the first vertex in P that belongs to B. Then,
the path (u1, . . . , uj−1, b) is an augmenting path for M ′/B in G/B (since b is unmatched by M ′/B)
and thus again a contradiction. This means that M is also a maximum matching.

2. Let P be an augmenting path for M/B in G/B and let u ∈ B be the vertex in B which is incident on
the edge leaving b in P (if no such vertex exist, P is already an augmenting path for M in G). Then,
if u is an odd-indexed vertex in B, then we can create Q by following the same direction as that of
vertices in B and taking the edge out of u from B. Otherwise, if u is an even-indexed vertex in B,
we “rotate” the blossom and follow the opposite direction of B until we take the edge out of u from
B. See Figure 6 for an illustration. In both cases, this leads to an augmenting path Q for M in G,
concluding the proof.

This concludes the proof of the lemma.
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(a) The edge out of B here respects the ordering of
the blossom and we can find the augmenting path
with the same order.

(b) The edge out of B here is the opposite of the ordering
of the blossom and we can find the augmenting path by
following the blossom from the other direction.

Figure 6: An illustration of finding an augmenting path for M in G from an augmenting path for M/B in
G/B. The blossom corresponds to the one in Figure 4.

The Blossom Algorithm. Equipped with Lemma 7 we can now finally implement Algorithm 1 in general
graphs as well.

At each step of finding the augmenting path for a matching M , we create the digraph D as described
earlier and find an s-t path in D. By Proposition 6, we either find an augmenting path and we will be
done for this iteration or we find a M -flower and thus we can contract the blossom B and recurse on the
matching M/B and G/B instead. Eventually, we either contract the entire graph to a single vertex and find
no augmenting path, which, by Lemma 7 means there is no augmenting path for M in G also (inductively).
Or, we find an augmenting path and we can expand the blossoms to find an augmenting path in G as well.

Each graph search on D takes O(m) time and each blossom contraction reduces the number of vertices
by one at least, so we can only have O(n) blossom contraction steps in each iteration before finding an
augmenting path. This takes O(mn) time for finding a single augmenting path and thus O(mn2) time for
computing a maximum matching.

In conclusion, Edmond’s Blossom algorithm finds a maximum matching in O(mn2) time in any arbitrary
(not necessarily bipartite) graphs.

Remark. The running time of Edmond’s blossom algorithm has been improved considerably over the
years. Firstly, a relatively easy modification allows us to only spend O(m + n2) time for finding each
single augmenting path by not redoing the entire search from scratch each time. This runtime was
further improved to O(m) time by Gabow and Tarjan [GT91]. This line of work leads to an algorithm
for general matching with O(mn) time.

The fastest algorithm for general matching is due to Micali and Vazirani [MV80] and achieves
O(m

√
n) time (see also [GT91]). You can read more about the history of matching algorithms in [DP14].

3 A Primal-Dual Algorithm for Bipartite Matching

We now examine a different way of obtaining an algorithm for bipartite matchings that does not involve
directly computing augmenting paths (although, to some extent, it still does it implicitly). This is obtained
via an application of linear programming (LP) for approximating combinatorial optimization problems. This
lecture is self-contained and you do not need to know any background on LPs for the rest of this lecture
(although such background can further demystify certain aspects of this algorithm).
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3.1 Bipartite Matching as an LP

Let G = (L,R,E) be a bipartite graph with the bipartition L and R of vertices. Consider the following
integer linear program (ILP) that models the maximum matching problem:

max
x

∑
e∈E

xe

subject to ∀u ∈ L :
∑
e3u

xe 6 1

∀v ∈ R :
∑
e3v

xe 6 1

∀e ∈ E : xe ∈ {0, 1} .

In words, we assign each edge e a value xe ∈ {0, 1} such that no vertex has more than one incident edge with
value xe = 1, thus, the set {e | xe = 1} is always a matching. By maximizing

∑
e xe also, we are maximizing

the size of the matching picked. Thus, the maximum bipartite matching problem is equivalent to solving
the above ILP. Now, to obtain an LP, we simply relax the constraint that xe needs to be an integer and let
it be any value xe > 0 (namely, allow for picking edges fractionally in the matching). This way, we obtain
the following LP for bipartite matching.

max
x

∑
e∈E

xe

subject to ∀u ∈ L :
∑
e3u

xe 6 1

∀v ∈ R :
∑
e3v

xe 6 1

∀e ∈ E : xe > 0.

Now, we will take a quick detour to do a basic “duality” step. Suppose our goal is to simply find an upper
bound on the value of this LP. Let us define variables yu for u ∈ L and zv for v ∈ R such that yu, zv > 0 for
all u ∈ L, v ∈ R. By multiplying these variables to their corresponding constraints in the matching LP and
summing them up, we obtain,∑

u∈L
yu ·

∑
e3u

xe +
∑
v∈R

zv ·
∑
e3v

xe 6
∑
u∈L

yu +
∑
v∈R

zv,

because yu’s and zv’s are non-negative and thus the multiplication preserves the order of the inequalities in
the matching LP. But, we can re-write the LHS as:∑

u∈L
yu ·

∑
e3u

xe +
∑
v∈R

zv ·
∑
e3v

xe =
∑

e=(u,v)∈E

(yu + zv) · xe,

by re-ordering the terms for each edge. Thus, we obtain the following inequality:∑
e=(u,v)∈E

(yu + zv) · xe 6
∑
u∈L

yu +
∑
v∈R

zv.

Finally, suppose we add the additional constraints that for every edge (u, v) ∈ E, we need yu +zv > 1. Then,
the LHS of the above satisfies ∑

e=(u,v)∈E

(yu + zv) · xe >
∑

e=(u,v)∈E

xe.

Thus, if we find any set of variables yu’s and zv’s such that they are non-negative and for every edge
(u, v) ∈ E, they satisfy yu + zv > 1, we obtain that for any feasible solution x to the matching LP,∑

e∈E
xe 6

∑
u∈L

yu +
∑
v∈R

zv.
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This means that we can write the task of upper bounding the matching LP as the following LP itself (it
becomes a minimization because we want to find the best upper bound):

min
y,z∈RL×RR

∑
u∈L

yu +
∑
v∈R

zv

subject to yu + zv > 1 ∀ (u, v) ∈ E,

yu, zv > 0 ∀ u ∈ L, v ∈ R.

This LP is called the dual of the matching LP (and we refer to the matching LP in this context as the
primal LP).

Finally, suppose we further change this LP to an ILP by requiring each yu ∈ {0, 1} and zv ∈ {0, 1}; then,
we are trying to find the minimum number of vertices in a bipartite graph such that each edge is incident
on at least one of these vertices. This corresponds to the following problem.

Problem 2 (Minimum Bipartite Vertex Cover). The minimum bipartite vertex cover problem is
defined as follows: Given a bipartite graph G = (L,R,E), find a smallest set of vertices that cover all
edges of the graph.

Let optP denote the optimal value of the matching LP (the primal LP) and optD for the vertex cover
LP (the dual LP). Then, the following fact is immediate from the above calculations (and by noticing that
relaxing an ILP to an LP can only improve the optimal value).

Fact 8. In any bipartite graph G = (L,R,E),

maximum matching size 6 optP 6 optD 6 minimum vertex cover size.

We shall only use Fact 8 to design our algorithm.

3.2 A Primal-Dual (1− ε)-Approximation Algorithm

We are going to design an algorithm that for every given ε > 0, outputs a (1−ε)-approximation to maximum
bipartite matching. We will then see how to use this algorithm to obtain a faster algorithm for finding
maximum matchings as well.

The general strategy of primal-dual algorithms (with some abuse of their precise definitions in other
texts) is as follows. The algorithm starts with a feasible primal solution (here, a matching) and an infeasible
dual solution (here, a fractional vertex cover which is infeasible) – throughout the algorithm, we maintain
the invariant that the value of the primal is always equal to the value of this infeasible dual solution.
Then, we gradually increase the primal value and the corresponding dual solution by focusing on the most
violated constraints of the dual (here, the edges that are least covered). Eventually, we show that the dual
becomes (approximately) feasible and in that point we can say that the primal-dual pair we maintained are
approximately optimal for their respective problems (by applying Fact 8).

The algorithm is formally as follows (see Figure 7 for an illustration of the ‘update rule’ of the algorithm).
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Algorithm 2. A (1− ε)-approximation algorithm for bipartite matching.

1. Let yu = 0 for all u ∈ L, zv = 0 for all v ∈ R, and M = ∅ initially.

2. Let U = L be the set containing all unmatched vertices in L initiallya.

3. While U 6= ∅:

(a) Pick any vertex u from U and remove it from U .

(b) Find any vertex v ∈ arg minw∈N(u) zw.

(c) If zv = 1, skip to the next iteration of the while-loop; otherwise, let w be the matched
neighbor of v in M (which potentially may not even exist).

(d) Change the matching M such that u is matched to v instead and w is now unmatched; insert
w to the set U .

(e) Update zv ← zv + ε and yu = 1− zv and yw = 0.

4. Output M as the final matching.

aAlthough some unmatched vertices later will be removed from U , so U may not contain all unmatched vertices.

Figure 7: An illustration of the ‘update rule’ of the algorithm. The neighborhood of u is denoted by the
shaded (gray) region. Vertex v has the minimum value zv in the neighborhood of u. Moreover, v may have
been matched to some vertex w (dashed line) but the matching is now updated to include the edge (u, v)
(solid line) instead.

Before getting to the analysis of this algorithm, let us provide a quick remark.

Remark. This primal-dual algorithm can also be cast as an auction algorithm (cf. [Ber88]). Think
of each vertex u ∈ L as a buyer and each v ∈ R as an item. Each buyer has a value of 1 for any of the
items in its neighborhood but is unit-demand, i.e., only wants one item. Then, the above algorithm can
be seen as an auction. At each step, M shows a tentative assignment, zv is the price of the item v, and
yu is the utility or happiness of the buyer u (which is equal to 1 (the valuation of the buyer) minus the
price it has to pay (zv)). Thus, at each step, the algorithm finds an unmatched/unhappy buyer, and
allows to “trade” for the lowest price item in its neighborhood by increasing the price of that item by ε.

We can indeed analyze the algorithm purely with this point of view (see, e.g., [Ber88]) but for our
purpose, it will be easier to stick with the primal-dual interpretation directly. That being said, still
seeing y-values as ‘happiness’ and z-values as ‘prices’ may provide some more intuition.
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The analysis. Let us now start the analysis of the algorithm. A key to the analysis of the algorithm is
the following invariants that hold throughout the algorithm.

Invariant 9. For any vertex u ∈ L:

• If u is matched by M , then yu = 1− zM(u) where M(u) ∈ R is the matched neighbor of u.

• If u is unmatched by M , then yu = 0.

Proof. This follows directly from the update rule in Line (3e) of the algorithm.

Invariant 10. For any vertex v ∈ R, zv > 0 iff v is matched by M .

Proof. This follows because when we match v for the first time, we increase zv from zero, and that a matched
vertex v ∈ R always remain matched by the algorithm, although its matched pair in L may change.

Combining these invariants allows us to prove a key property of the algorithm as a primal-dual algorithm,
namely, that M and (y, z) always have the same value.

Claim 11. At every step of the algorithm,

|M | =
∑
u∈L

yu +
∑
v∈R

zv.

Proof. We have, ∑
u∈L

yu +
∑
v∈R

zv =
∑

(u,v)∈M

yu + zv +
∑

u∈L\V (M)

yu +
∑

v∈R\V (M)

zv

(by pairing up the vertices u ∈ L and v ∈ R that are matched together by M)

=
∑

(u,v)∈M

yu + zv

(the second sum is zero by Invariant 9 and the third sum is zero by Invariant 10)

=
∑

(u,v)∈M

1 (as yu = 1− zv by Invariant 9)

= |M |,

as desired.

The other next key step is to show that once the algorithm finishes, (y, z) becomes an approximately
feasible dual solution.

Claim 12. At the end of the algorithm, the vectors ( y
1−ε ,

z
1−ε ) form a feasible dual solution.

Proof. To prove the feasibility for the dual LP, given that all y, z > 0 at all times, we only need to show that
for every edge (u, v) ∈ E, we have,

yu
1− ε

+
zv

1− ε
> 1 ≡ yu + zv > 1− ε.

Let us consider the following cases:

• u is unmatched by M : the only way this can happen is if we remove u from U at some point and do
not consider it further. But then it means that for every neighbor w ∈ N(u), we have zw = 1 by the
criteria in Line (3c). Thus, for v ∈ N(u), we have zv = 1 and thus yu + zv > 1 in this case.

11



• u is matched by M to v: by Invariant 9, we have yu = 1− zv and thus yu + zv = 1 in this case.

• u is matched by M to some other vertex w 6= v: At the time that u was matched to w, we had zw 6
zv + ε (because w had the minimum z-value in the neighborhood of u and we only increased it by ε
after matching it to u). The value of zw does not change after its last time being matched to u by the
construction of the algorithm, and zv can only increase further (because z-values are increasing in the
algorithm). Thus, at the end of the algorithm also, we have zw 6 zv + ε. But, by Invariant 9, we have
yu + zw = 1 and thus we also have yu + zv > 1− ε.

This concludes the proof.

We can now conclude the analysis as follows.

Lemma 13. Algorithm 2 outputs a (1− ε)-approximate matching M .

Proof. We have,

optD > maximum matching size > |M | =
∑
u∈L

yu +
∑
v∈R

zv > (1−ε) ·optD > (1−ε) ·maximum matching size,

where the first two inequalities are by Fact 8, the next is because M is a feasible matching, the next equality
is by Claim 11, the next inequality is by Claim 12 since ( y

1−ε ,
z

1−ε ) is a feasible dual solution, and the last
is again by Fact 8.

Runtime. Let us also analyze the runtime of Algorithm 2.

Firstly, see that in each iteration of the while-loop, the z-value of some vertex in R increases by ε, but
in total, there can only be O(n/ε) increments to z-values before they all become 1 and thus the algorithm
terminates. This means that the number of iterations is at most O(n/ε).

Secondly, it is easy to see that we can implement U via a list which allows us to insert and delete to it in
O(1) time. Thus, the only step of the while-loop that takes more than O(1) time is Line (3b) for iterating
over the neighbors of u. However, this step also takes at most O(deg(u)) = O(n) time each time.

Putting the above two steps together implies that the algorithm takes O(n2/ε) time. However, we are
going to make a slightly more careful analysis and implementation of the algorithm to reduce the runtime
to O(m/ε) time.

Faster implementation of Algorithm 2. The faster implementation is as follows. For every vertex
u ∈ L, maintain a list D(u) called the demand list of u and a value d(u) called the demand value of u.

At the beginning of the algorithm, we go over all neighbors of u and place them in D(u) and set d(u) = 0.
Then, whenever we need to find v ∈ arg minw∈N(u) zv in Line (3b) we simply iterate over the list D(u) and
for each w ∈ D(u), if zw > d(u), we remove w from D(u) and if zw = d(u), we return w as a choice of v.
Once the list D(u) becomes empty, we increase d(u) by ε and again insert all neighbors of u back to D(u).

Inductively, and since z-values are only increasing in the algorithm, we have that each vertex returned
from D(u) indeed has the minimum price in the neighborhood of u and thus is a valid choice for returning
as v. This means that this is a correct implementation of the algorithm still.

Finally, in terms of runtime, we will iterate O(1/ε) time in total over D(u) as once d(u) becomes 1,
we will stop considering u anymore in the algorithm by Line (3c). This means that the total time spent
for vertex u throughout the entire algorithm is O(deg(u)/ε). Thus, the total runtime of the algorithm is
proportional to

∑
u∈L deg(u)/ε = m/ε, hence, the algorithm takes O(m/ε) time in total.
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Remark. A purely graph theoretic implication of Algorithm 2 is the following. By setting ε→ 0 (say,
ε < 1/n2 certainly suffices), we obtain a pair of matchings and fractional vertex covers which have the
same value which actually implies a stronger version of Fact 8:

maximum bipartite matching size = optP = optD = minimum bipartite vertex cover size.

Here, the middle equality about the value of primal and dual is always true for all LPs and their duals
(this is called the strong duality as opposed to the weak duality that upper bounds the primal
via dual), and the equality of maximum bipartite matching and minimum bipartite matching size is
Konig’s theorem. Finally, this result also shows that there is no gap between the LP relaxation of
bipartite matching and its ILP and the same holds for bipartite vertex cover (you are encouraged to
prove these directly also, which have pretty simple proofs).

3.3 A Faster Exact Algorithm for Bipartite Matching

Let us conclude this section by showing how to also obtain an exact algorithm for the bipartite matching
problem. There are already two easy ways of doing this.

Strategy 1: Run Algorithm 2 with parameter ε = 1/(n + 1), which gives a matching of size at least
maximum matching size minus n/(n + 1) since max-matching size is at most n. But, since matching sizes
are always integral, this means that this is a matching of size as large as the maximum matching itself.

The runtime of this algorithm is O(mn) time.

Strategy 2: We can simply run the augmenting path algorithm described earlier.

The runtime of this algorithm is also O(mn) time.

Strategy 3: Interestingly, even though both strategies above have O(mn) time in the worst-case, we can
combine them in a simple way to obtain a faster algorithm!

Set ε = 1/
√
n and run Algorithm 2 first. This takes O(m

√
n) time and at the end of it, we find a

matching M of size
(1− 1/

√
n) · optP > optP −

√
n,

as optP 6 n always. This means that at this point we have at most
√
n unmatched vertices. Switch to

running the augmenting path algorithm from now on. As we can only find O(
√
n) augmenting paths (before

matching all vertices), this step also takes another O(m
√
n) time.

As a result, the runtime of this combined algorithm is O(m
√
n) time.

Remark. The O(m
√
n) time obtained via the algorithm outlined above matches the runtime of the cel-

ebrated Hopcroft-Karp Algorithm for bipartite matching [HK73] from 1973, but via a simpler algorithm
and analysis.

It is also worth mentioning that while the O(m
√
n) time for bipartite matching was improved over

the years for various ranges of parameters, only the very recent breakthroughs on almost-linear time
algorithms for maximum flow resulted in completely improving this bound for all ranges of parameters.
Discussing this line of work is beyond the scope of our course, and you are referred to [vdBLN+20,
CKL+22, vdBCK+23] to learn more about these exciting developments.
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Jansen, José D. P. Rolim, and Luca Trevisan, editors, Approximation, Randomization and
Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop on Ap-
proximation Algorithms for Combinatorial Optimization Problems, APPROX 2005 and 9th
InternationalWorkshop on Randomization and Computation, RANDOM 2005, Berkeley, CA,
USA, August 22-24, 2005, Proceedings, volume 3624 of Lecture Notes in Computer Science,
pages 170–181. Springer, 2005. 4

[MV80] Silvio Micali and Vijay V. Vazirani. An O(
√
|V | · |E|) algorithm for finding maximum matching

in general graphs. In 21st Annual Symposium on Foundations of Computer Science, Syracuse,
New York, USA, 13-15 October 1980, pages 17–27. IEEE Computer Society, 1980. 7

[vdBCK+23] Jan van den Brand, Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst
Gutenberg, Sushant Sachdeva, and Aaron Sidford. A deterministic almost-linear time algorithm
for minimum-cost flow. CoRR, abs/2309.16629, 2023. 13

[vdBLN+20] Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak,
Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-linear time on moder-
ately dense graphs. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 919–930.
IEEE, 2020. 13

14


	1 Maximum Matchings
	1.1 Basics of Maximum Matching Algorithms

	2 Augmenting Path Algorithms for Maximum Matching
	2.1 Bipartite Graphs
	2.2 General (Non-Bipartite) Graphs

	3 A Primal-Dual Algorithm for Bipartite Matching
	3.1 Bipartite Matching as an LP
	3.2 A Primal-Dual (1-)-Approximation Algorithm
	3.3 A Faster Exact Algorithm for Bipartite Matching


