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1 Minimum Spanning Trees

We start our course with one of the most basic and standard problems in graph algorithms: finding a
minimum spanning tree (MST) of weighted graphs. You have most likely seen this course in your
previous algorithms courses. We will provide a quick review in the following.

Let G = (V,E) be an undirected connected graph with positive weights w : E → R+ on its edges.
Recall that a spanning tree of a connected subgraph G is any subgraph of G which is a tree – a tree itself
is a connected subgraph which has no cycle. With a slight abuse of notation, for any tree T , we write
w(T ) :=

∑
e∈T w(e) to denote the sum of the weights of edges in T .

Problem 1 (Minimum Spanning Tree (MST)). The minimum spanning tree (MST) problem is
defined as follows: Given a graph G = (V,E) and positive edge-weights w : E → R+, find a spanning
tree T of G with minimum weight w(T ).
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Distinct-weights assumption: We can assume without loss of generality that the edge weights w(e) for
e ∈ E are distinct. This can be achieved for instance by using a consistent tie-breaking rule using the IDs of
the edges. A standard consequence of this assumption is that the MST of any given graph G with distinct
weights is unique.

Proposition 1. In any graph G = (V,E) with weights w : E → R+, if the weights are distinct, then the
MST of G is unique.

Proof. Proof by contradiction: suppose there are two different MSTs T1 and T2 for G. Let e1 be any edge
in T1 not in T2. Suppose we add e1 to T2. This will create a cycle C in T2 ∪ {e1}. We consider two cases:

• Case 1: There is at least one edge e2 6= e1 in C with w(e2) > w(e1): Remove e2 from T2 and instead
add e1. Let T := T2 ∪ {e1} \ {e2}. This is also a spanning tree of G but now w(T ) < w(T2) as we
removed a “heavy” edge and brought in a “lighter” one. This is a contradiction with T2 being a MST
so this case cannot happen.

• Case 2: Every edge in the cycle C has weight higher than e1. Remove e1 from T1 to create two
connected components S and V \ S. Because C was a cycle with e1, there is still a path in C from
the endpoints of e1 without using this edge and that path has at least one edge, say, f , between S
and V \ S. Let T := T1 \ {e1} ∪ {f}. This is also a spanning tree of G but now w(T ) < w(T1), a
contradiction with T1 being a MST, so this cannot happen either.

Given the edge-weights are distinct, the only possible cases are the above and we showed neither can happen,
hence proving the statement by contradiction.

Consequently, throughout this lecture, we assume the edge-weights are distinct and thus, by Proposition 1,
MST of the input graph is unique. In particular, we can refer to it as the MST of G (instead of a/some
MST of G) which makes the analysis (mostly its exposition) easier.

1.1 The Basics Rules of MSTs

There are two general rules that are used quite frequently in the design of essentially every MST algorithm.
You have most likely seen these rules before but perhaps not in this exact formulation. You may want to
refer to Figure 1 for a simple illustration of the proofs of these rules.

Cut Rule: In any graph G = (V,E), the minimum weight edge e in any cut S always belongs to the
MST of G. This rule allows us to determine which edges to include in the MST.

Proof. Suppose, by contradiction, that S ⊆ V is a cut in G such that its minimum weight edge e is not part
of the MST T . Add e to T which creates a cycle C and this cycle should have another edge f crossing the
cut S. Consider T ′ := T ∪{e}\{f}, which is still a spanning tree of G but has w(T ′) < w(T ) as w(e) < w(f)
since e is the minimum weight edge of the cut S. This is a contradiction with T being the MST of G.

Cycle Rule: In any graph G = (V,E), the maximum weight edge e in any cycle C never belongs to
the MST of G. This rule allows us to determine which edges to exclude from the MST.

Proof. Suppose, by contradiction, that C is a cycle in G such that its maximum weight edge e is part of the
MST T . Remove e from T to get two connected components, and find an edge f 6= e in C that connects back
these components. Consider T ′ := T \ {e} ∪ {f}, which is still a spanning tree of G. We have w(T ′) < w(T )
as w(f) < w(e) since e is the maximum weight edge of cycle C. This contradicts T being the MST.
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(a) Here, e is the minimum weight edge of the cut
shown by red dashed line and thus should replace f
in the MST. The cycle C is the thick (blue, green)
edges and the dashed line for e.

(b) Here, e is the maximum weight edge of the cycle
shown by the thick (blue, green, red) edges. Remov-
ing e from the MST creates two connected compo-
nents that should be connected by the edge f instead.

Figure 1: An illustration of the proofs of cut rule and cycle rule.

2 A Classical Algorithm for MSTs: Boruvka’s Algorithm

The three main classical algorithms for MSTs are Kruskal’s, Prim’s, and Boruvka’s algorithms. You most
likely have seen one of these algorithms in your prior courses (most likely the first two1). We will review
Boruvka’s algorithm in the following given that it will also play a rule as an important building block in
subsequent improved algorithms. You can safely skip this section and continue to the next one if you are
already familiar with this algorithm.

As far as I know, Boruvka’s algorithm is the oldest algorithm for MSTs (it was first described in 1926 by
Otakar Bor̊uvka) and in my opinion is also simplest as it does not require even any particular data structure.
It works by start having each vertex its own connected component and then proceeds in rounds. In each
round, the algorithm picks the minimum weight edge going out of each component, add them to the tree,
and merge those components to create larger connected components. Then, it goes to the next round and
continues this until the whole graph is a single connected component.

Algorithm 1 (Boruvka’s Algorithm).

(i) Start by creating a set S(v) = {v} for each vertex v ∈ V and an empty subgraph T = ∅ initially.

(ii) In each round:

(a) For each set S, find the minimum weight edge going out of S, i.e., min {w(u, v) | u ∈ S, v /∈ S}.
Let eS be the edge computed for the set S.

(b) Add every edge eS = (u, v) to the subgraph T and merge the sets of S(u) and S(v) into a
single set S.

(iii) Repeat the rounds until all vertices are merged into a single set and return T .

Proof of Correctness: We first argue that T is a tree. Given that the maintained sets in the algorithm
are connected components of T , the subgraph T is connected. Any edge added by the algorithm in a round
also connects two different connected components. The only concern is that what if the edges added in the
same round form a cycle? But, this cannot happen because the weight of the picked edges in any path should

1Sadly, Burovka’s algorithm seems to be missing from many standard textbooks on algorithms even though I think it is
actually simpler than both the other two alternatives!
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be strictly decreasing (as in, if u picks an edge to v, but v picks an edge to w instead, then w(u, v) > w(v, w))
and thus the edges cannot form a cycle. As such, T is indeed a tree.

To argue T is the MST of G, we apply the cut rule: any edge inserted by the algorithm is the minimum
weight edge going out of its connected component (hence the cut) and thus by the cut rule is in the MST.

Runtime Analysis: Each round of the algorithm takes O(m) time as it simply involves going over all
edges of the graph twice (once from each endpoint). The number of rounds is also O(log n) as we argue next.
In each round, each connected components gets merged with at least another one, and thus the number of
components decreases by, at least, a factor of two. Hence, after at most log n rounds, only one component
remains and the algorithm terminates. Hence, the total runtime is O(m log n).

3 Karger-Klein-Tarjan Algorithm for MST

We now present one of the most “modern” algorithms for MSTs due to Karger, Klein, and Tarjan [KKT95],
which runs in O(m) time2—which is asymptotically optimal—but it is randomized, i.e., its O(m) runtime is
in expectation (and with high probability).

Theorem 2 ([KKT95]). There is a randomized algorithm for the minimum spanning tree problem that runs
in O(m) time in expectation and with high probability3.

In this lecture, we only prove the runtime of the algorithm in expectation (although extending it to a
with high probability bound is quite simple also).

The general idea behind the Karger-Klein-Tarjan algorithm (henceforth, KKT algorithm) is to use the
cycle rule to get rid of most edges of the graph quickly, namely, sparsify the graph, and then solve the
problem recursively on this sparser graph. This algorithm also benefits from the use of several (in some
cases highly complicated) data structures to be able to implement this strategy quite fast. To present this
algorithm, we need some preliminaries first.

3.1 Preliminaries

The following definition is key to the design of KKT algorithm.

Definition 3. Fix any graph G = (V,E) and any subgraph forest F of G. We say that an edge
e ∈ E \ F is F -heavy if adding e to F results in a cycle and e is the maximum weight edge of that
cycle. We refer to any other edge (including edges in F ) as an F -light edge.

The following observation is a direct corollary of the cycle rule and the definition of F -heavy edges.

Observation 4. For any graph G, any subgraph forest F of G, and any F -heavy edge e, the MST of G− e
is the same as the MST of G.

How do we use Observation 4 in the algorithm? Suppose first that F is the MST of G; then every edge
e ∈ G \ F is F -heavy and thus can be neglected when computing the MST of G. Obviously however, this is
not helpful as we need to first compute the MST of G. But, what if we have some other forest F which is
easier to compute than the MST? Then, Observation 4 tells us that we can still neglect every F -heavy edges
without any worry. Thus, in order to find the MST of G, we can first try to quickly find “some approximate”
forest F , with the key property that most edges of the graph are F -heavy, and then recursively solve the
problem on the remaining few F -light edges. This is precisely what KKT algorithm does.

2Throughout this course, we always use n to denote the number of vertices and m for the number of edges.
3Throughout this course, we say an event happens with high probability to mean its probability is at least 1− 1/poly(m) for

some arbitrarily (large) polynomial in the size of the underlying problem.
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There is one more missing ingredient in the above approach. Given a graph G and a forest F , how quickly
can we find the set of F -heavy edges? It is easy to check if a single each is F -heavy or not in linear time.
But, doing this for every edge this way separately leads to a quadratic time algorithm which is way above
our budget. Nevertheless, a surprising result is the we can find all F -heavy edges in linear time as well!

Theorem 5 ([Kom85, DRT92, Kin97]). There is an algorithm that given any graph G and any subgraph
forest F of G, outputs the set of all F -heavy edges in O(m+ n) time.

We will cover this algorithm after showing how it can be used in the KKT algorithm.

3.2 The KKT Algorithm

We are now ready to present the KKT algorithm. We note that given the recursive nature of the algorithm
and since it can be called on not-necessarily connected graph, we use the term Minimum Spanning Forest
(MSF) throughout which refers to a collection of MSTs on each connected components of the graph.

Algorithm 2 (Karger-Klein-Tarjan Algorithm).

(i) Run 3 rounds of the Boruvka’s algorithm and let G′ be the contracted graph obtained from Ga.

(ii) Sample each edge of G′ independently with probability 1/2 to obtain a graph G1. Recursively
find the MSF of G1 and call it F .

(iii) Use the algorithm of Theorem 5 to find all F -heavy edges of G′ and let G2 be the graph obtained
from G′ after removing the F -heavy edges.

(iv) Recursively find the MSF of G2 and return it as the answer.

aThis is a simple preprocessing step to reduce the number of vertices slightly; we shall see its necessity in the analysis.

Proof of Correctness. The correctness of this algorithm is actually quite easy to proof. The first step is
correct due to the correctness of Boruvka’s algorithm established earlier. Regardless of the choice of G1 and
the resulting MSF F , we have by Observation 4 that none of the edges removed from G to obtain G2 can be
part of the MSF of G. Thus, finding the MSF of G2 is the same as the MSF of G to begin with, and thus
the algorithm returns the correct answer.

Runtime Analysis. The key to the analysis of the algorithm is to show that the graph G2 actually has
few edges. In other words, after picking the MSF F on (almost) half the edges, the set of F -heavy edges
more or less contains all but O(n) edges of the graph. This is a so-called “sparsification” result.

Lemma 6. The expected number of F -light edges in Algorithm 2 is at most 2 ·(n′−1) where n′ is the number
of vertices in G′.

Proof. Notice that even though we are computing MSF of G1 using a recursive call to the KKT algorithm,
given that MSF is unique (recall our assumption on distinct weights from the last lecture), for the purpose of
the analysis, we can assume F is instead computed using Kruskal’s algorithm. This is because the distribution
of F is identical in both cases.

Now, let us examine how Kruskal’s algorithm works. Suppose we sort all edges of G′ (and not only G1)
in increasing order of weight and call them e1, . . . , em′ . Consider the following process. We go over these
edges one by one. Let us the subgraph of F maintained so far when visiting the edge ei by Fi. We check if
adding ei to Fi creates a cycle or not. If it does, then whether or not ei is sampled in G1 we are not going
to pick this edge in the MSF F so we just ignore it. But, if it does not, it is only now that we check whether
ei belongs to G1 even or not. This means that only now we toss the coin to decide if ei joins G1 or not.
Notice that, despite all these seeming changes, we actually have not changed the distribution of F in anyway
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in this process (we can toss a coin for neglected edges and include them in G1 if we want just to make sure
the distribution of G1 remains identical, although this does not change the distribution of F in any way).

Finally, note that all the edges ignored in this process are certainly F -heavy because they created a cycle
even with a subgraph of F and are the heaviest weight edge of that cycle. Thus, the number of F -light edges
is at most equal to the number of edges that we did not ignore; in other words, the edges that we tossed a
coin for. At the same time, whenever we toss a coin, with probability half, we add the edge to the forest F .
Moreover, the forest F cannot have more than n′ − 1 edges. So, the expected number of coin tosses we can
have before collecting n′ − 1 edges in F is 2 · (n′ − 1), proving the lemma.

We are now ready to conclude the proof. Let A(G, r) denote the runtime of the algorithm on a graph G
when all the random bits we use is r (note that A(G, r) is deterministically fixed after choosing r). We have,

A(G, r) 6 c · (m+ n) +A(G1, r) +A(G2, r),

for some absolute constant c > 0 which is the hidden constant in O(m + n) time needed for Boruvka’s
algorithm in the first step, the use of Theorem 5, and general bookkeeping throughout the algorithm ignoring
the recursive calls. Thus, the expected runtime of the algorithm on a graph G is

E
r
[A(G, r)] 6 c · (m+ n) + E

r
[A(G1, r)] + E

r
[A(G2, r)]. (1)

Now, define T (m,n, r) as the worst-case runtime of the algorithm on a graph with m edges, n vertices, and
for the randomness r. We prove inductively that

E
r
[T (m,n, r)] 6 2c · (m+ n).

For any graph H, let m(H) and n(H), denote the number of edges and vertices in H, respectively. Let r1 be
the randomness used out of the recursive calls and r2 be the one for recursive calls. Given Eq (1), we have,

E
r
[T (m,n, r)] 6 c · (m+ n) + E

r
[T (m(G1), n(G1), r)] + E

r
[T (m(G2), n(G2), r)]

6 c · (m+ n) + E
r1

[
E
r2

[T (m(G1), n(G1), r2)]

]
+ E

r1

[
E
r2

[T (m(G2), n(G2), r2)]

]
(the recursive calls themselves only depend on r2 (after fixing their input based on r1))

6 c · (m+ n) + E
r1

[2c · (m(G1) + n/8)] + E
r1

[2c · (m(G2) + n/8)]

(by induction hypothesis and as 3 rounds of Boruvka’s algorithm reduces vertices by a factor of at least 8)

6 c · (m+ n) + 2c · (m/2 + n/8) + 2c · (2n/8 + n/8)
(as E[m(G1)] = m′/2 6 m/2 trivially and E[m(G2)] 6 2n′ 6 2n/8 by Lemma 6)

= 2c ·m+ c · (n+ n/4 + 3n/4) = 2c · (m+ n),

proving the induction step. Thus, the runtime of the algorithm is O(m+ n) in expectation.

This concludes the proof of Theorem 2 modulo the proof of Theorem 5 as one of its key subroutines.

Remark. The KKT algorithm provided the first linear time algorithm for MSTs but at the “cost”
of randomization. The current best deterministic algorithm is due to Chazelle [Cha00] with runtime
O(m · α(n)) where α(n) is a certain Inverse Ackerman function (this is an extremely slowly growing
algorithm and for any reasonable number—say, number of atoms in the universe—is bounded by 5;
however, it is not constant still). There is also the algorithm of Pettie and Ramachandran [PR02] that
is provably optimal (in a very strong sense) but its runtime is not known.

A major open question in the area of graph algorithms is to obtain a deterministic algorithm for
MSTs that also runs in O(m) time.
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3.3 Detour: Optimal Algorithms with Unknown Runtime

How can we have an algorithm that we can provably is optimal without even knowing its runtime (e.g., like
the one in [PR02] for MSTs)? Here, we show a simple solution to this problem from the computational
complexity literature due to Jones [Jon97].

Let P be any problem in mind. Suppose we have an algorithm that given an input x and a (supposed)
solution y, can verify if y is indeed a solution to x for the problem P . For an input of length n, let V er(n)
denote the worst-case runtime of this algorithm. Moreover, let Opt(n) denote the runtime of the optimal
algorithm for P on n-length inputs (which is unknown to us). Now, consider this algorithm A on input x:

1. List all computer programs (or Turing Machines) in some order C1, C2, . . ..

2. Run x on each of these programs in the following order: for every two steps of running x on Ci, run
one step on Ci+1 (so, a diagonalization-type approach).

3. If a program Ci terminates, run the verification algorithm to check its solution and terminate A if this
is a valid solution; however, we “wait” for Ci to accumulate at least V er(n) steps (in Line 2 above)
before we run the verification algorithm (by letting the program have “idle” steps after it is finished).

Let Co be the optimal program for the problem P . We thus know that A terminates for sure after it has run
Co for at most Opt(n) steps. During each of these steps, Co−1 has run two steps, Co−2 has run four steps,
all the way to C1 that has run 2o steps. Thus, the entire time spent on the programs C1, . . . , Co−1 is also
at most 2o ·Opt(n). The programs Co+1, . . . , also run Opt(n)/2 steps, Opt(n)/4 steps, and so on, hence the
total time spent over all programs is O(2o ·Opt(n)).

In addition, at most o+ logOpt(n) programs have run any steps and thus the total number of times we
could have run the verification algorithm is O(o+logOpt(n)) times. However, we also forced the algorithm to
only run the verification on programs that have already spent V er(n) steps themselves. If Opt(n) 6 V er(n)
(which is quite unlikely in general but not impossible if the answer is not unique), then it means that Co

will be the last program that runs the verification algorithm also and thus the total runtime of verification
steps also, by the same argument as above, is O(2o · V er(n)). If Opt(n) > V er(n), let v be such that
Opt(n) ≈ V er(n)/2v. Then, only programs Co+1, . . . , Cv will be running the verification algorithm (after
Co) and thus their total verification time is O(v · V er(n)) = O(v ·Opt(n)/2v) = O(Opt(n)).

All in all, the algorithm A takes O(2o · (Opt(n) + V er(n))) time. But now notice that no matter how
gigantic o can be, it is still only a constant with respect to the input size! Thus, the runtime of algorithm
A is O(Opt(n) + V er(n)), which is asymptotically optimal (modulo the extra verification time, which as we
said earlier, is very rarely more than the optimal algorithm time anyway).

It is worth examining this result a bit more: to some extent, it says that we already know how to design
an algorithm for every possible problem that is asymptotically as good as it gets. Of course, in reality, this
algorithm is never going to work for solving almost any problem given the astronomical hidden constants
that it creates4. So, in my humble opinion, this “algorithm”, more than anything, points to an inherent
flaw of asymptotic analysis and is a good reminder to not loose sight when designing algorithms by focusing
only on asymptotics of the algorithms, without other constraints such as simplicity, “elegance”, and most
importantly, a deeper understanding of the underlying problem – if we only care about asymptotic optimality,
we already know how to achieve that for any problem!

Before concluding this detour, we note that the result of [PR02] is quite stronger than the above generic
algorithm and does not suffer from astronomical constants; in fact, the runtime of their algorithm is propor-
tional to optimal number of comparisons, with a reasonable hidden constant, and not only optimal runtime.

4Suppose, very generously, that the optimal algorithm for a problem needs only 100 bits to write down. This means its
program is going to appear roughly in a position 2100 in the list of all programs. This in turn means that the hidden constant in

the above approach is something like 22
100

. Compare this number with the (crude) estimate of 10100 on the number of atoms
in the universe to see how astronomical the hidden constants of O-notation is...
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4 MST Verification and Proof (Overview) of Theorem 5

We now give an overview of the proof of Theorem 5 (but will not cover all the details as they will become
quite technical and for lack of a better word somewhat “messy”).

We note that Theorem 5 is usually stated in the following equivalent way and is named the MST
verification problem (since having such an algorithm allows us to detect if a given tree F is an MST or
not; the MST of the graph is the only one that makes all other edges F -heavy).

Theorem 7 (A reformulation of Theorem 5). Let T be a tree on n vertices V and Q := {(xi, yi) | xi, yi ∈ V }
be a given set of N query pairs. There is an algorithm that in O(n+N) time returns a list of size N such
that for every query pair (xi, yi) ∈ Q, the i-the value in the list, namely, the answer to the query pair, is the
weight of the maximum weight edge in the unique xi-yi path in T (denoted by wT (xi, yi)).

To see why this theorem is equivalent with Theorem 5, we can set Q to be the set of edges in G and for
each edge where the answer to the query pair has a lower weight than the weight of the edge, we know this
edge must be T -heavy and otherwise T -light. The runtime of O(n + m) in Theorem 5 also follows because
we will be applying Theorem 7 with N = m this way.

The proof of Theorem 7, requires multiple ingredients (due to several different researchers that have
simplified this algorithm or its key subroutines over the years):

• Boruvka trees due to [Kin97]: reducing the general problem to a special case of the choice of T (being
a fully branching tree to be defined later) and Q (only queries between the leaf-nodes);

• Lowest Common Ancestor (LCA) queries due to [BF00]: further reducing to a special case with
more structure on queries in Q (only queries from leaf-nodes to one of their ancestors);

• Komlos’s Comparison-based algorithm due to [Kom85]: solving the special types of queries above
with a small number of edge-weight comparisons but not necessarily a fast algorithm still;

• Fast implementation of Komlos’s algorithm via bit-packing and table-lookups due to [DRT92,
Kin97]: implementing Komlos’s algorithm in linear time and not just linear number of comparisons.

We now overview each of these ingredients in the following.

4.1 Step 1: Boruvka Trees

Consider the original tree T in Theorem 7 and create the following tree T ′ from it (see Figure 2 for an
illustration). At first, we let leaf-nodes of T ′ be all the vertices in V . Then, we run one round of Boruvka’s
algorithm and for each connected component C created in this round, we create a new node C in T ′; the
child-nodes of C are the vertices in C and the weight of the edge connecting C to its child-node is equal to
the weight of the edge used by the corresponding vertex when connecting to the component C. We then
run the second round of Boruvka’s algorithm and connect the connected components the same exact way as
above, and continue like this until we end up with the root that corresponds to final connected component
found by Boruvka’s algorithm. We refer to the tree T ′ obtained this way from T as the Boruvka tree of T .

Lemma 8. For any tree T on vertices V and its Boruvka tree T ′:

1. T ′ can be obtained from T in O(n) time;

2. T ′ is a fully branching tree meaning that all its leaf-nodes are at the same height and every internal
node has at least two child-nodes;

3. For every x, y ∈ V , wT (x, y) = wT ′(x, y) (i.e., the answer to a query pair (x, y) is the same over both
T and T ′ for the leaf-nodes of T ′).
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(a) The connected components in the first round of
the algorithm are marked with dashed (blue) edges,
and the connected component of the second round is
marked with long-dashed (red) edges.

(b) The corresponding Boruvka tree.

Figure 2: An illustration of running Boruvka’s algorithm on a tree (in part (a)) and the corresponding
Boruvka tree (part (b)).

Proof. We prove each part separately.

1. Recall that running Boruvka’s algorithm in an n-edge graph in general takes O(n log n) time, so we
cannot use the previous analysis directly. However, notice that on a tree, after running one step of
Boruvka’s algorithm, the graph obtained after contractions also is a tree. As such, since its number of
vertices is dropped by half, its number of edges should also drop by half. This means that the runtime
of Boruvka’s algorithm on a tree is actually

O(1) ·
(
n+

n

2
+
n

4
+ . . .

)
= O(n).

We note that this improved runtime is not limited to trees and also holds for planar graphs also (or
any other minor-closed family of graphs).

2. This follows from the fact that each round of Boruvka’s algorithm creates components of size two at
least, and that the height of every leaf-node in T ′ is equal to the number of rounds before Boruvka’s
algorithm finishes (which is the same for all leaf-nodes).

3. Firstly, we claim that wT (x, y) > wT ′(x, y). Consider any node C on the path from x to y in T ′, which
is not a common ancestor of x and y. The edge connecting this node to its parent is taken into account
in the computation of wT ′(x, y). Since C is not a common ancestor of x and y, it means that x and
y do not simultaneously belong to the connected component corresponding to C. As such, at least
one edge f of the x-y path in T is leaving this component; thus, when taking minimum weight edge
leaving C in Boruvka’s algorithm, the weight of the edge connecting C to its parent in T ′ will be at
most equal to w(f). Thus, any edge in the x-y path in T ′ has another edge in the x-y path in T with
the same or higher weight, proving the claim.

Secondly, we also claim that wT (x, y) 6 wT ′(x, y). Let f be the heaviest edge in the x-y path in T .
Consider the round in Boruvka’s algorithm wherein a connected component C picks the edge f as its
minimum weight outgoing edge (such a round should necessarily exist before x and y get connected to
each other in T ′). We claim that C should contain at least one of x or y: any other component C ′ that
contains a vertex from the x-y path but neither x nor y, has at least two edges leaving it and thus will
never pick f which is the heavier of the two. But this implies that C should be on the x-y path in T ′

and since it is connected to its parent-node with weight w(f), we have wT ′(x, y) > w(f) = wT (x, y),
concluding the proof.
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4.2 Step 2: Lowest Common Ancestor (LCA) Queries

Lemma 8 allows us to without loss of generality assume all queries Q in Theorem 7 are between leaf-nodes
of T . At the same time, a single query (x, y) of this type can be answered using two queries (x, LCA(x, y))
and (LCA(x, y), y) where LCA(x, y) is the lowest common ancestor of x and y in T :

wT (x, y) = max {wT (x, LCA(x, y)), wT (LCA(x, y), y)} .

Thus, we can instead change Q to Q′ which replaces each query (x, y) with the two corresponding LCA
queries, and still recover the answer to the original problem as well (we will see in the next subsection why
this will be helpful). The only catch is that we should also be able to find LCA(x, y) for any given x and y
quickly. This is handled by the following lemma.

Lemma 9. There is a data structure that given a tree T , spends O(n) time preprocessing T and after that
for any given pair of vertices x and y, returns LCA(x, y) in O(1) time.

To prove Lemma 9, we reduce it to another data structural question called the range minimum problem.
Suppose we run DFS on T and write down both the name of each vertex in an array A and its distance from
the root in an array D whenever we are at a vertex (not just the first time; in other words, write down an
Euler tour of T starting from the root). See Figure 3 for an illustration.

Figure 3: An illustration of the reduction from LCA to the range minimum problem.

We have the following important observation regarding these two arrays.

Observation 10. For any pairs of vertices x and y in the tree T , let index i and j be the indices of two
positions of x and y in the array A (and assume by symmetry i 6 j). Then, the node z with the minimum
value in D[i : j] is LCA(x, y).

The proof of this observation is simply by the correctness of DFS algorithm and we omit it here.

Since we can run the above DFS and compute the arrays A and D (with size 2n − 1), our task at this
point is reduced to the following: Given an array D[1 : n′] (for n′ = 2n − 1), preprocess D such that given
any two i < j, we can find the minimum value in D[i : j] in O(1) time. This is the range minimum
problem, which we solve next.

A naive solution. The most obvious algorithm for the range minimum problem is to spend O(n2) time
and create an M [n][n] where M [i][j] contains the answer to the query (i, j), namely,

M [i][j] = min
i6k6j

D[k].

Of course, this algorithm is too slow to be of any use for us.
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The sparse-table solution. A far better solution for this problem is called sparse-table. Suppose we
maintain the following array M [n][log n]: for every i ∈ [n] and k ∈ [log n], we have

M [i][k] = min
i6j6i+2k

D[i];

in other words, M [i][k] stores the minimum value in an interval of length 2k starting from i.

To answer a query (i, j) we find the largest k such that 2k 6 j − i < 2k+1 and return

min
(
M [i][k],M [j − 2k][k]

)
;

Notice that both intervals [i : i + 2k] considered in M [i][k] and [j − 2k : j] considered in M [j − 2k][k] are
inside the range [i : j] (since j − 2k > i). Moreover, we have i+ 2k > j − 2k because j − i 6 2k+1 and thus
these intervals cover the entire range [i : j]. This implies that the returned answer is correct.

Finally, how long does it take to create the array M in the first place? Notice that

M [i][k] = min
(
M [i][k − 1],M [i+ 2k−1][k − 1]

)
;

This allows us to use a dynamic programming approach (in increasing value of k for M [i][k]) and compute
each entry in O(1) time, which in turn leads to an O(n log n) time algorithm for computing all of M .

Thus, overall, the sparse-table solution gives us an algorithm with O(n log n) preprocessing time and
O(1) query time. While quite efficient, even this algorithm is not good enough for our purpose.

The optimal solution of Bender and Farach-Colton [BF00]. To improve sparse-tables, we can make
an important observation: the array D created in the context of LCAs has a special property: each entry of
D is ±1 of the previous entry! We are now going to use this extra information using two (closely related)
techniques: bit-packing and look-up tables. The solution is as follows:

• We first partition the array D into t = 2n/ log n consecutive blocks of (log n)/2 denoted by B1, . . . , Bt.

This step takes O(n) time.

• Inside each block Bi for i ∈ [t], we maintain prefix minimums and suffix minimums, i.e., for each
j ∈ Bi, we store

P [j] = min
k6j∈Bi

D[k] and S[j] = min
k>j∈Bi

D[k]

This step also takes O(n) time.

• We also create an array D′ of size t where D′[i] = minj∈Bi
D[j] and compute a sparse-table over D′.

This step takes O(n/ log n · log n) = O(n) time.

• Given any query i and j where i and j do not belong to the block B, we can answer the query using the
above information as follows. Let B1 denote the block of i and B2 denote the block of j. We compute
the minimum between B1 and B2 using the sparse-table for D′ and use suffix-minimum array of i in
B1 and prefix-minimum array of j in B2 to find the total minimum.

This takes O(1) time to answer the query.

• Thus, at this point, the only queries remain to answer are i and j inside the same block B. Notice that
in this case, the absolute value of the first entry of B does not matter and only the ±1 relative values
are important. Thus we can treat B as a single number of length (log n)/2 bits. There are in total√
n such numbers and for each number there are at most (log n)2/4 choices for i and j. Thus, we can

create a lookup table of size O(
√
n · log2 n) = o(n) which is indexed by the choices of these numbers for

B and i and j; the value there also points to a single index which is the answer to this query.

We can create each entry of this table in O(1) time since we can operate on a single number in the
RAM-model in O(1) time. Thus, creating the look-up table takes o(n) time and we can answer each
query in O(1) time subsequently.
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Overall, this solution gives an optimal O(n) preprocessing and O(1) query time algorithm.

Lemma 9 now follows from this algorithm and the reduction to range minimum problem (with ±1 entries)
described earlier.

4.3 Step 3: Komlos’ Comparison-Based Algorithm

Recall that by the previous two steps, the problem we need to solve is the following: given a fully branching
tree T and a set of leaf-to-ancestor queries Q, find the answer to each query over the tree T . We now design
an algorithm for this problem due to Komlos [Kom85] that is not necessarily fast enough, but only requires
a linear number of edge-comparisons.

Consider the tree T and for each node u ∈ T , define Tu as the sub-tree of u in T . For every node u ∈ T ,
we define the following two arrays (see Figure 4 for an illustration):

• Query array q[u] = (w1, w2, . . . , wk) be the name of ancestors of u (including u itself) such that for
each wi, there is some vertex v ∈ Tu with a query (v, wi) in Q (wi’s may have repetition). Moreover,
these vertices are ordered from the root toward u, meaning that w1 is closer to the root than w2, etc.

• Answer array a[u] = (a1, a2, . . . , ak) be the following values: for each i ∈ [k], the maximum weight
of an edge in T on the path from u to wi, i.e., ai = wT (u,wi). Notice that we have a1 > a2 > . . . > ak.

Figure 4: An illustration of the query array q[u] for a vertex u ∈ T . When updating v from u, there is a new
query to be added to the query array (for leaf-nodes of Tv that connect to v) and the queries that originate
from Tu \ Tv needs to be ignored.

By definition, if we know the answer array for every leaf-node, we will be done (as a[v] for a leaf-node is
the maximum weight edge from v to its ancestor that v has a query to). We thus start from the root and
calculate these values recursively as follows for a child-node v of a node u we already handled:

• q[v] is going to be a subset of (w1, . . . , wk), say, (wi1 , . . . , wik′ ) plus possibly vertex v appended to its
end (if a leaf-node in Tv queries v; this query was ignored in u as v is a descent of u not ancestor).

• a[v] is going to be
a[v] = (max(ai1 , θ),max(ai2 , θ), . . . ,max(aik′ , θ), θ)

where θ = w(u, v), namely, weight of the edge (u, v) (the last entry of a[v] is θ only if v is appended to
the end of of q[v]; otherwise, similar to q[v], length of a[v] will also be k′).
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The important observation is that since a[u] is sorted, to create a[v], we can simply do a binary search
on a[u] to figure out the entries larger than θ and use this information to create a[v] as well. This way, the
total number of comparisons needed to create a[v] from a[u] is only (log (1 + |a[u]|)).

In the following, we use the fact that T is a fully branching tree to bound the total number of comparisons.

Lemma 11. The total number of comparisons to answer N leaf-to-ancestor queries on a fully branching tree
T with n vertices using Komlos’ algorithm is O(N + n).

Proof. Let h be the height of the tree T , Ti be the set of vertices at height i of the tree T (where leaf-nodes
are at height 1) and ni = |Ti|. Also, let Qu denote the size of q[u] and a[u] for a vertex u ∈ T . We have,

# of comparisons =
∑
u∈T

(log (1 +Qu))

=

h∑
i=1

∑
u∈Ti

(log (1 +Qu)) (by partitioning the sum across different levels of the tree)

=
h∑

i=1

ni · E
u∼Ti

[log (1 +Qu)]

(by writing the sum as the expectation for u chosen uniformly over Ti)

6
h∑

i=1

ni · log (1 + E
u∼Ti

[Qu])

(by Jensen’s inequality E[f(X)] 6 f(E[X]) for a concave function f and f = log(1 + x) is concave)

6
h∑

i=1

ni · log (1 +
N

ni
)

(as each of N queries appears in at most one q[u] of a single vertex u ∈ Ti, since they originate from sub-tree Tu)

6
h∑

i=1

ni · log(
N + n

ni
)

=

h∑
i=1

ni · log
N + n

4n
+

h∑
i=1

ni · log
4n

ni
.

(as log N+n
ni

= log(N+n
4n ·

4n
ni

) = log (N+n
4n ) + log ( 4n

ni
))

We now bound each of these terms separately.

First term. Using 1 + x 6 ex, we have,

h∑
i=1

ni · log
N + n

4n
6

h∑
i=1

ni ·
N

n
· log e = N · log e = O(N),

since sum of ni’s is equal to n, the number of vertices in the tree.

Second term. Using the fact that ni 6 n/2i−1, since T is a fully branching tree, we have,

h∑
i=1

ni · log
4n

ni
6

h∑
i=1

n

2i−1
· log (2i−1) 6 n ·

∑
i>0

i

2i
= O(n),

where in the inequality, we use the fact that the function f(x) = x · log (1/x) is monotone for x > 4.

Combining the two terms above concludes the proof.
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4.4 Step 4: A Linear-Time Algorithm for MST Verification

The final step is to implement Komlos’ comparison-based algorithm in a way that each step can also be imple-
mented in O(1) time. We will not get into the entire details of this step as it involves delicate implementation
details (which are beyond the scope of this course) and instead give a high-level overview.

The idea is again to use a bit-packing plus a table-lookup argument quite similar to the algorithm for
LCAs we covered earlier. Recall that the entire height of the tree is at most log n bits. This means that a
single query array q[u] (if we ignore the repetitions in the queries) can be represented by a log n-bit number:
the i-th bit is 1 iff the i-th vertex on the path from root to node u has a query and is otherwise 0. Similarly,
although quite a lot trickier, we can also represent the answer array a[u] with a single log n-bit number: the
idea is to store the indices of the edges that correspond to this particular answer and use the fact that this
edges are monotically moving closer to u; we are going to omit this step entirely but you can read about it
in [DRT92] or [Kin97].

With such a bit-packing approach, implementing one step of Komlos’ algorithm to go from q[u], a[u] of
a parent-node u to q[v], a[v] of one of its child-nodes v, we can “load” the arrays q and a in O(1) time
into the memory, and spend O(1) time to make any necessary manipulations (here, one can either assume
any arbitrary operation on log n-bit numbers can be done in O(1) time, or perhaps more realistically, first
create a look-up table for the types of operations needed and answer based on that; notice such an approach
requires one to use (log n)/2 or small array sizes which in turn needs splitting the arrays q and a into O(1)
chunks; this can also be made to work). There is of course also the binary search step of Komlos’ algorithm
but each step of that can also be done in O(1) time using these representations.

All in all, with all these tricks, one can implement Komlos’ comparison-based algorithm in O(N + n)
time also. This finalizes the proof (overview) of Theorem 7.

We conclude these notes with another important open problem: is there a “simple” algorithm for MST
verification that runs in linear time, say, even with randomization? In particular, can we achieve such a
runtime without any “bit-tricks” (more formally, in the pointer machine model instead of RAM model that
does not allow for these types of arbitrary arithmetic computations)?

References

[BF00] Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H. Gonnet,
Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics, 4th Latin Amer-
ican Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings, volume 1776 of Lecture
Notes in Computer Science, pages 88–94. Springer, 2000. 8, 11

[Cha00] Bernard Chazelle. A minimum spanning tree algorithm with inverse-ackermann type complexity.
J. ACM, 47(6):1028–1047, 2000. 6

[DRT92] Brandon Dixon, Monika Rauch, and Robert Endre Tarjan. Verification and sensitivity analysis of
minimum spanning trees in linear time. SIAM J. Comput., 21(6):1184–1192, 1992. 5, 8, 14

[Jon97] Neil D. Jones. Computability and complexity - from a programming perspective. Foundations of
computing series. MIT Press, 1997. 7

[Kin97] Valerie King. A simpler minimum spanning tree verification algorithm. Algorithmica, 18(2):263–
270, 1997. 5, 8, 14

[KKT95] David R. Karger, Philip N. Klein, and Robert Endre Tarjan. A randomized linear-time algorithm
to find minimum spanning trees. J. ACM, 42(2):321–328, 1995. 4

[Kom85] János Komlós. Linear verification for spanning trees. Comb., 5(1):57–65, 1985. 5, 8, 12

[PR02] Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning tree algorithm. J. ACM,
49(1):16–34, 2002. 6, 7

14


	1 Minimum Spanning Trees
	1.1 The Basics Rules of MSTs

	2 A Classical Algorithm for MSTs: Boruvka's Algorithm
	3 Karger-Klein-Tarjan Algorithm for MST
	3.1 Preliminaries
	3.2 The KKT Algorithm
	3.3 Detour: Optimal Algorithms with Unknown Runtime

	4 MST Verification and Proof (Overview) of thm:heavy
	4.1 Step 1: Boruvka Trees
	4.2 Step 2: Lowest Common Ancestor (LCA) Queries
	4.3 Step 3: Komlos' Comparison-Based Algorithm
	4.4 Step 4: A Linear-Time Algorithm for MST Verification


