CS 860: Modern Topics in Graph Algorithms University of Waterloo: Winter 2024
 Homework 2

Due: Monday, April 8, 2024

Problem 1. Recall the notion of expander decompositions from Lecture 6. In this question, we consider expander decompositions for another notion of expansion. For any $\varphi>0$, we say that a graph $G=(V, E)$ is a φ-edge-expander iff

$$
\min _{0<|S| \leqslant n / 2} \frac{|E(S, \bar{S})|}{|S|} \geqslant \varphi
$$

Notice that φ can be as large as $\Theta(n)$ unlike the expansion measure (conductance) we studied in the class.
Prove that given any $\varphi>0$, vertices of any graph $G=(V, E)$ can be partitioned into $V=V_{1} \sqcup V_{2} \sqcup \ldots \sqcup V_{k}$ such that:

1. For all $i \in[k], G\left[V_{i}\right]$ is a φ-edge-expander.
2. $\sum_{i=1}^{k}\left|E\left(V_{i}, \overline{V_{i}}\right)\right|=O(\varphi \cdot n \log n)$.

Notice that unlike in the class, we are bounding the edges by $O(n \log n)$ and not $O(m \log m)$. ($\mathbf{2 0}$ points)

Problem 2. In Lecture 8, we showed that any (β, ε)-EDCS of a bipartite graph $G=(V, E)$ contains a $(2 / 3-2 \varepsilon)$-approximate matching of G as long as $\beta>4 / \varepsilon$. In this problem, we extend this result to general (not necessarily bipartite) graphs although with some loss in the parameters.
(a) Let $G=(V, E)$ be any arbitrary graph and H be a (β, ε)-EDCS of G for $\beta \geqslant 1000 \cdot \log n / \varepsilon^{2}$ (feel free to increase the leading constant if needed in your arguments). Let M^{*} be a maximum matching of G. We create the following partition L, R of V randomly: for every edge $(u, v) \in M^{*}$ independently, place $u \in L$ and $v \in R$ with probability half and with the remaining probability, place $u \in R$ and $v \in L$. For any vertex not matched by M^{*}, place it in L or R chosen uniformly at random. Now, let G^{\prime} be the bipartite subgraph of G between vertices L and R and $H^{\prime}=G^{\prime} \cap H$.
Prove that with high probability, H^{\prime} is a $\left(\beta^{\prime}, \varepsilon^{\prime}\right)$-EDCS of G^{\prime} with $\beta^{\prime}=(1+O(\varepsilon)) \cdot \beta$ and $\varepsilon^{\prime}=O(\varepsilon)$ (for an appropriate choice of constant that you decide). Conclude that H has a $(2 / 3-O(\varepsilon))$-approximate maximum matching of G, using the result we proved for bipartite EDCS in the class. (20 points)
(b) Use the same randomized process as above but when $\beta \geqslant 1000 \cdot \log (1 / \varepsilon) / \varepsilon^{2}$ (so, we are replacing $\log n$ with $\log (1 / \varepsilon)$ only). Use Lovasz Local Lemma to prove that with a non-zero probability, H^{\prime} is a $\left(\beta^{\prime}, \varepsilon^{\prime}\right)$-EDCS of G^{\prime} with parameters $\beta^{\prime}=(1+O(\varepsilon)) \cdot \beta$ and $\varepsilon^{\prime}=O(\varepsilon)$ (for an appropriate choice of constant that you will decide). Use this to conclude that even in this case (i.e., for a smaller value of β), H has a $(2 / 3-O(\varepsilon))$-approximate maximum matching of G.
(20 points)

Problem 3. Recall the definition of (r, t)-RS bipartite graphs from Lecture 8. In the class, we saw a construction with parameters $r=n / 3-o(n)$ and $t=n^{\Omega(1 / \log \log n)}$. In this question, we extend the construction to handle larger induced matchings of size $r=n / 2-o(n)$.

Similar to Lecture 8, we create the vertices of the graph as vectors in $[p]^{d}$ for $p=d^{2}$ on each side of the bipartition. Let $\delta<1 / 10$ be a parameter.
(a) Prove that there exist $t:=2^{\Omega_{\delta}(d)}$ sets S_{1}, \ldots, S_{t} in $[d]$ such that for every $i \neq j \in[t],\left|S_{i}\right|=\delta \cdot d$ and $\left|S_{i} \cap S_{j}\right| \leqslant 10 \delta^{2} \cdot d$.
(10 points)
(b) Create an induced matching M_{S} for each set S of Part (a) similar to the lecture by classifying the vertices in $x \in[p]^{d}$ based on their "weight" $w_{S}(x):=\sum_{i \in S} x_{i}$. However, change the definition of the "bands" such that each white band only consists of $|S|$ different classes, while each red or blue band is considerably larger and consists of $|S| / \delta$ consecutive classes (this part is left vague on purpose for you to figure out exactly how to do this).

Prove that $\left|M_{S}\right| \geqslant n / 2-\delta \cdot n-o(n)$ and all these matchings are induced.
(20 points)
(c) Conclude that for every $\delta \in(0,1 / 10)$, there exists an (r, t)-RS graph with $t:=n^{\Omega_{\delta}(1 / \log \log n)}$ induced matchings of size $r:=(1-\delta) \cdot n / 2$ each.
(10 points)

Problem 4 (Extra Credit). Let $G=(V, E)$ be an (r, t)-RS bipartite graph with n vertices on each side of the bipartition. Prove that if $r=n / 2$, then t can only be $O(\log n)$.
(+20 points)
You receive half the credit even for proving a similar statement when $r=(1+\epsilon) \cdot n / 2$ for any arbitrarily small constant $\varepsilon>0$.

Problem 5 (Extra Credit). Design an $\widetilde{O}(m)$ time algorithm for finding a (β, ε)-EDCS of any given graph for any constant choices of β and ε.
(+20 points)

Problem 6 (Extra Credit). Design an $\widetilde{O}(m \cdot \operatorname{poly}(1 / \varepsilon))$ time algorithm for finding a (β, ε)-EDCS of any given graph for any choice of β, say, $\beta=n^{1 / 4}$ and $\varepsilon>0$. ${ }^{1}$
(+20 points)

[^0]
[^0]: ${ }^{1}$ This question might be too challenging; I certainly do not know the answer to it myself, unless one relaxes the requirements of the EDCS.

