
CS 860: Modern Topics in Graph Algorithms University of Waterloo: Winter 2024

Homework 1
Due: Monday, March 4, 2024

Problem 1. Design an O(m log log n) time deterministic algorithm for computing a minimum spanning
tree of a given weighted undirected graph G = (V,E). (25 points)

Hint: Recall that Prim’s algorithm can be implemented in O(m + n log n) time using Fibonacci heaps.

Problem 2. Consider the following modification to the primal-dual algorithm for (1− ε)-approximation of
the bipartite matching problem in Lecture 2:

Algorithm 1. An algorithm for matching on a bipartite graph G = (L,R,E).

1. Let yu = 0 for all u ∈ L, zv = 0 for all v ∈ R, and M = ∅ initially.

2. Let U = L be the set containing all unmatched vertices in L initiallya.

3. For t = 1 to (100/ε2) iterations:

(a) Create a graph H between U and R by connecting u ∈ U to any vertex v ∈ R that belongs to
arg minw∈N(u) zw (i.e., the minimum z-value neighbors of u).

(b) Compute a maximal matching MH in H greedily (i.e., iterate over edges of H and if both
endpoints are unmatched, add it to MH).

(c) For any edge (u, v) ∈MH :

i. Remove u from U ; if zv = 1 skip this edge, otherwise, let w be the matched neighbor of
v in M (which potentially may not even exist).

ii. Change the matching M such that u is matched to v instead and w is now unmatched;
insert w to the set U ,

iii. Update zv ← zv + ε and yu = 1− zv and yw = 0.

4. Output M as the final matching.

aAlthough some unmatched vertices later will be removed from U , so U may not contain all unmatched vertices.

Prove that this algorithm outputs a (1−ε)-approximate maximum matching of any input bipartite graph
and analyze its runtime. (25 points)

Hint: Notice that this algorithm makes substantial “progress” as long as the number of unmatched vertices
is > ε fraction of maximum matching size – you just need to find the right measure of “progress”.

Problem 3. Consider the Palette Sparsification Theorem from Lecture 3. In this problem, we prove a
different variant of this theorem.

An undirected graph G = (V,E) is called k-degenerate if k is the smallest integer such that we can
order vertices of V in a way that each vertex has at most k edges to vertices before it in this ordering. Prove
the following statement for every k > 1, k-degenerate graphs G = (V,E), and a given parameter ε > 0:
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Suppose for every vertex v ∈ V , we sample O(log (n)/ε) colors L(v) uniformly at random from
[(1 + ε) · k]; then, with high probability, G is list-colorable from the sampled lists {L(v) | v ∈ V }.

(25 points)

Problem 4. Let P be a directed path of n vertices. Design an algorithm that given any integer d > 2, uses
Õ(n/d) shortcutting edges H and reduce the diameter of P ∪H to d. Prove that this is nearly optimal, i.e.,
any shortcutting set of edges that reduces diameter of a path to at most d requires Ω(n/d) shortcuts.

(25 points)

Problem 5 (Extra Credit). In Lecture 2, we saw an algorithm that given a general (not necessarily
bipartite) graph G = (V,E) and a matching M ⊆ E in G, computes an augmenting path for M in G (if
it exists) in O(mn) time.

Design an algorithm for the same problem that runs in O(m log n) time instead. (+20 points)

You receive half the credit even for an algorithm with O(m + n2) runtime.

Problem 6 (Extra Credit). Consider Problem 4 again. What is the minimum diameter you can achieve
if you are using only O(n) shortcuts? You do not need to prove your answer is asymptotically minimum as
long as it is the right answer (or at least close enough to it). (+20 points)

Hint: You can do better, much better, than a direct extension of your solution in Problem 4.
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