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1 Balls and Bins Revisited

We again consider a balls and experiment. This time n balls are thrown into n bins independently, uniformly
at random. We are interested in the number of empty bins after all n balls have been thrown. More precisely,
we wish to asymptotically characterize the functions T : N→ N such that the number of empty bins at the
conclusion of the experiment, differs from its expected value by at most T (n) with probability at least some
big constant, e.g., 2/3.

Since we are studying the concentration of random variables, one feels tempted to use standard concen-
tration inequalities like those presented in Lecture 3 (Markov, Chebyshev, or Chernoff). For any i ∈ [n],
define an indicator random variable where Xi = 1 iff the i-th bin is empty at the end of the experiment, and

X :=

n∑
i=1

Xi ,

so X counts the number of empty bins.

We can immediately conclude, using linearity of expectation, that

E [X] =

n∑
i=1

E [Xi] = n · E [X1] = n ·
(

1− 1

n

)n

,
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since the probability that any fixed bin remains empty after n balls have been thrown is
(
1− 1

n

)n
(the

exponent comes from the n balls that are thrown independently, the 1− 1
n from the fact that each of these

has to choose some bin which is not the one we are considering).

Going into auto-pilot and applying the additive Chernoff bound, we conclude

Pr (|X − E [X]| > t) 6 2 · exp

(
− t

2

n

)
.

Choosing t =
√

ln(3) · n, we obtain

Pr (|X − E [X]| > t) 6
2

3
.

However, our application of the Chernoff bound had one, quite severe, problem – the indicator random
variables we considered are not independent, turning our use of this bound into a fundamentally flawed
approach. On the other hand, it can be empirically verified that X is concentrated around its expected value
(see the histogram below), suggesting that we might be lacking mathematical machinery to prove what we
want, rather than the entire statement being false.

Figure 1: A histogram of frequency of empty bins in 100,000 trials of throwing 1000 balls into 1000 bins
uniformly and independently. Note that in this case, the number of empty bins X satisfies E [X] ∼ 367.

2 Strengthening the Chernoff Bound

It turns out that one way to show concentration of the random variable X considered in the previous section
is to use Azuma’s inequality, a generalization of the additive Chernoff bound to random variables which
may be correlated, but whose correlation is, in some sense, low. To continue, we need to take some detours.
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2.1 Conditional Expectations

Azuma’s inequality relies on martingales, which in turn rely on conditional expectations. We begin by
studying the latter, starting with a simple example:

Example 1. Suppose we are interested in studying two random variables A and B, defined as:

B :=

{
0 with probability 1

3

1 with probability 2
3

A :=


{

0 with probability 1
2

1 with probability 1
2

if B = 0

1 if B = 1

It is natural to wonder about the expected value of A given that B has taken on specific values. If we do
so, it is easy to conclude that

E [A | B = 0] =
1

2
· 0 +

1

2
· 1 =

1

2
and E [A | B = 1] = 1 .

From this, we can additionally see that

E [A] = Pr (B = 0) · E [A | B = 0] + Pr (B = 1) · E [A | B = 1] =
1

3
· 1

2
+

2

3
· 1 =

5

6
.

It is equally natural to define a random variable E [A | B] which is distributed “like the expected value
of A given that B takes on particular values”, but “inherits its randomness from B”:

E [A | B] :=

{
1
2 with probability 1

3

1 with probability 2
3

.

Armed with this intuition, we define the conditional expectation of a random variable X given a discrete
random variable Y as

E [X | Y ] := E [X | Y = y] with probability Pr (Y = y) for all y ∈ supp(Y ) ,

where supp(Y ) is the set of points y such that Pr (Y = y) > 0. We again emphasize that while E [X] is a
number, E [X | Y ] is a random variable.

Some basic facts follow from this definition:

Proposition 2 (Law of Total Expectation). Let A be a random variable and B be a discrete random variable.
Then

E [E [A | B]] = E [A] .

Proof. We have

[E [E [A | B]] =
∑
b

Pr (B = b) · E [A | B = b] =
∑
b

∑
a

Pr (B = b) · a · Pr (A = a | B = b)

=
∑
b

∑
a

a · Pr (A = a ∧B = b) =
∑
a

a ·
∑
b

Pr (A = a ∧B = b) =
∑
a

a · Pr (A = a) = E [A] ,

concluding the proof.

Proposition 3 (Tower Property). Let A be a random variable and B,C be discrete random variables. Then

E [E [A | B,C] | C] = E [A | C] .

Proof. For any c ∈ supp(C), by applying Proposition 2 to the distribution of A,B | C = c, denoted by
A′, B′, we have,

E [E [A | B,C = c] | C = c] = E [E [A′ | B′]] = E [A′] = E [A | C = c] .

By the equality in the statement now follows from the definition of E [ · | C].
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2.2 Martingales

With this new notion, we can define martingales:

Definition 4. Let S0, . . . , Sn be a sequence of real-valued random variables and F0, . . . ,Fn be a sequence
of multiset-valued random variables with F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn. We say random variables S0, . . . , Sn

form a martingale with respect to F0, . . . ,Fn iff:

• for all i ∈ [n] ∪ {0}, E [Si] <∞;

• for all i ∈ [n], E [Si | Fi−1] = Si−1.

To illustrate the intuition behind this definition, we present a simple martingale process revolving
around a random walk:

Consider an n-step random walk on the number line starting at 0. At each time step, we choose with
equal probability to take a step forwards, or to take a step backwards. More precisely, we consider {ξk}nk=1,
a sequence of i.i.d. random variables taking value +1 or −1 each with probability 1/2. Formally:

P(ξk = 1) = 1
2 , P(ξk = −1) = 1

2 , and all ξk are independent.

The random walk process is then defined as a discrete-time stochastic process {Mi}ni=0 with

Mi =

i∑
k=1

ξk, and M0 = 0.

Intuitively, Mi indicates the position of the random walker after i steps. We now introduce (multi-)sets Fi

describing the first i ξk’s:
Fi = {ξ1, ξ2, . . . , ξi} .

Clearly, F0 ⊆ F1 ⊆ · · · ⊆ Fn. We now show that {Mi} is a martingale (w.r.t. {Fi}). Firstly, note that for
all i ∈ [n] we have E [Mi] 6 i 6 n, implying that E [Mi] is finite. We now have to show that:

Claim 5. E[Mi+1 | Fi] = Mi for all i ∈ [n− 1].

Proof. We verify this for our random walk:

1. Decompose Mi+1:

Mi+1 =

i+1∑
k=1

ξk =

i∑
k=1

ξk︸ ︷︷ ︸
=Mi

+ ξi+1.

2. Conditional expectation given Fi:

E[Mi+1 | Fi] = E
[
Mi + ξi+1

∣∣∣ Fi

]
.

3. Fi completely captures Mi and ξi+1 is independent of Fi:

E[Mi | Fi] = Mi, E[ξi+1 | Fi] = E[ξi+1] = 0,

since ξi+1 takes values ±1 with equal probability.
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4. Use linearity of expectation:

E[Mi+1 | Fi] = E[Mi | Fi] + E[ξi+1 | Fi] = Mi + 0 = Mi.

Hence, the sequence {Mi}ni=0 is a martingale.

2.3 Azuma’s Inequality

Equipped with the understanding of martingales, we introduce a “Chernoff-like” inequality on them:

Proposition 6 (Azuma’s Inequality [Hoe63, Azu67]). Let S0, . . . , Sn be a martingale (w.r.t. some sequence
of random variables F0, . . . ,Fn). If |Si − Si−1| 6 c for all i ∈ [n] and some constant c ∈ R>0, then

Pr (|Sn − S0| > t) 6 2 · exp

(
− t2

n · c2

)
.

3 Applications

3.1 Application 1: Balls and Bins

After this slight detour, we return to the balls and bins experiment from Section 1. We would like to use
Azuma’s inequality to show concentration of the number of empty bins around its expectation. Thus, our
goal becomes to identify an appropriate martingale S0, . . . , Sn.

To do this, we introduce a martingale called a Doob martingale [Doo40] where S0 = E [X] (i.e., S0 is the
expected number of empty bins) and Sn = X (i.e., Sn is the random variable counting the number of empty
bins at the end of the experiment). The Si’s in the middle show how our knowledge of the final number of
empty bins evolves as randomness is gradually revealed step by step. We define multiset random variables
F0, . . . ,Fn, where Fi represents the multiset of bins that the first i balls landed in. The random variables
S0, . . . , Sn are defined as Si := E [X | Fi], namely, Si is the expected value of X given the information
accumulated after seeing the outcome of first i balls.

Examples. Let us first familiarize ourselves with these variables. Firstly,

S0 = E [X | F0] = E [X | ∅] = E [X] .

Additionally,

S1 = E [X | F1] =E

[
n∑

i=1

{(
1− 1

n

)n−1
if F1 6= {i}

0 otherwise

∣∣∣∣∣F1

]

=E

[
(n− 1) ·

(
1− 1

n

)n−1
∣∣∣∣∣F1

]
=
{

(n− 1) ·
(
1− 1

n

)n−1
with probability 1

Note that (n− 1) ·
(
1− 1

n

)n−1
= n ·

(
1− 1

n

)n
= E [X].

Similarly,

S2 =

{
(n− 1) ·

(
1− 1

n

)n−2
with probability Pr (F2 = {i, i}) for some i ∈ [n]

(n− 2) ·
(
1− 1

n

)n−2
with probability Pr (F2 = {i, j}) for some i, j ∈ [n] with i 6= j
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Another sanity check is the following:

E [S2] =
1

n
· (n− 1) ·

(
1− 1

n

)n−2

+

(
1− 1

n

)
· (n− 2) ·

(
1− 1

n

)n−2

=

(
1− 1

n

)n−1

+ (n− 2) ·
(

1− 1

n

)n−1

= (n− 1) ·
(

1− 1

n

)n−1

= E [X] .

Iterating this process, it will eventually become clear that we are adding one support point when we
move from Si to Si+1, which eventually results in Sn = X. In other words, the Si’s represent the best
running estimate of the final number of empty bins as the experiment progresses. Initially, the expectation
serves as our starting prediction, which continuously refines itself as more randomness is revealed, ultimately
converging on the actual outcome.

Martingale properties. We now show that {Si}ni=0 is a martingale (w.r.t. {Fi}). Firstly, we have for all
i ∈ [0, n], E [Si] 6 n, because there are at most n bins, implying that E [Si] is finite.

The tower property in Proposition 3 guarantees that for all i ∈ [n],

E [Si | Fi−1] = E [E [X | Fi] | Fi−1] = E [E [X | Fi−1,F ′i ] | Fi−1] = E [X | Fi−1] = Si−1,

where F ′i denotes the random variable taking on the index of the bin the i-th ball landed in. Combining
these two facts, we conclude that S0, . . . , Sn is a martingale with respect to F0, . . . ,Fn.

Applying Azuma’s inequality. Finally, to apply Azuma’s inequality, we show that for all i ∈ [n],

|Si − Si−1| 6 1.

Let f ′i , fi−1 be events such that Pr (Fi = fi−1, f
′
i) 6= 0 and Pr (Fi−1 = fi−1) 6= 0 (that is fi−1 is a possible

“assignment of bins to balls 1, . . . , i” and f ′i ∈ [n] represents the bin the i-th ball was thrown into). Thus,

Si = E [X | Fi = (fi−1, f
′
i)] = empty(fi−1, f

′
i) ·
(

1− 1

n

)n−i

and

Si−1 = E [X | Fi−1 = fi−1] = empty(fi−1) ·
(

1− 1

n

)n−(i−1)

where empty(f) denotes the number of bins not present in the multiset f (or equivalently, the number of bins
left empty if balls were thrown into bins “as dictated by the multiset f”). With this definition of empty(f),
we can immediately conclude that |empty(fi−1, f

′
i)− empty(fi−1)| 6 1. Hence, for all i ∈ [n]:

|Si − Si−1| =

∣∣∣∣∣empty(fi−1, f
′
i) ·
(

1− 1

n

)n−i

− empty(fi−1) ·
(

1− 1

n

)n−(i−1)
∣∣∣∣∣

=

(
1− 1

n

)n−i

·
∣∣∣∣empty(fi−1, f

′
i)− empty(fi−1) ·

(
1− 1

n

)∣∣∣∣
6

∣∣∣∣empty(fi−1, f
′
i)− empty(fi−1) ·

(
1− 1

n

)∣∣∣∣ (since (1− 1/n) 6 1 and n− i > 0)

=

{∣∣empty(fi−1)− empty(fi−1) ·
(
1− 1

n

)∣∣ if empty(fi−1, f
′
i) = empty(fi−1)∣∣(empty(fi−1)− 1)− empty(fi−1) ·

(
1− 1

n

)∣∣ otherwise

6 max

(
empty(fi−1)

n
, 1− empty(fi−1)

n

)
6 1.
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This is because the number of empty bins empty(·) can change by at most 1 when one more ball is thrown.
Thus, Azuma’s inequality in Proposition 6 applies with c = 1. We can conclude that

Pr (|X − E [X] | > t) 6 2 · exp

(
− t

2

n

)
and, as before, choosing t =

√
ln(3) · n

Pr (|X − E [X] | > t) 6
2

3
.

Thus, we indeed managed to prove precisely the bound we “claimed” using Chernoff bound, but this
time properly by using Martingales and Azuma’s inequality.

3.2 Application 2: Chromatic Number

We now consider the problem of finding the chromatic number of a graph G sampled from G(n, 1/2), denoted
by X = χ (G) (a random graph where an edge is present between each pair of vertices with probability 1/2).
Recall that the chromatic number χ(G) of G is the minimum number of colors we can color the vertices of
the graph with such that no edge is monochromatic i.e., has the same color on both vertex endpoints.

It is known that the expected chromatic number of G ∼ G(n, 1/2) is Θ(n/ log n) [Bol88], but to our
knowledge, the constants here are not well-understood yet. We will use Azuma’s inequality to show that
the chromatic number is within ±

√
ln(3) · n of this expectation with constant probability. Note that this

provides a sharper concentration result than the ±Θ(n/ log n) bound around the expected value.

The proof goes as before by defining a proper martingale and then applying Azuma’s inequality.

3.2.1 A First Attempt – Edge Exposure Martingales

Let us start with the perhaps most obvious choice for defining our martingales. We first define the multisets
{Fk} which “reveal” information over time. This is achieved by ordering the edges, e.g., enumerating all
potential edges in lexicographical order as e1, e2, . . . , e(n

2)
(any fixed ordering of the potential edges would

work just as well). Now let {ξk}
(n
2)

i=1 be a sequence of i.i.d. random variables taking values 0 or 1 with equal
probability 1/2. Intuitively, ξi is a random variable indicating whether the ith edge is present in G. We
reveal edges incrementally, i.e., we define the multi-sets Fi for all i ∈ [

(
n
2

)
] as Fi = {ξ1, ξ2, . . . , ξi}. In other

words, after i steps, we only know whether each of the first i edges in our list is present or not; we do not
yet know about edges ei+1, . . . , e(n

2)
. Clearly, F0 ⊆ F1 ⊆ · · · ⊆ F(n

2)
.

As with the balls and bins experiment, we define the Doob martingale with respect to {Fi} as

Mi = E
[
X
∣∣Fi

]
.

We now show that {Mi} is a martingale (w.r.t. {Fi}). Firstly, we have E [Mi] 6
(
n
2

)
, implying that E [Mi]

is finite. We now have to show that:
E[Mi+1 | Fi ] = Mi.

Using the tower property of Proposition 3:

E[Mi+1 | Fi ] = E
[
E[X | Fi+1 ]

∣∣∣ Fi

]
= E[X | Fi ] = Mi.

Hence, {Mi}
(n
2)

i=0 is a martingale with respect to {Fi}.
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Remark. We should remark that we can define a Doob martingale for any stochastic process as follows.
Let Y be a bounded random variable and think of F0 ⊆ F1 ⊆ . . . ⊆ Fm (for some finite m), as
providing some “filtration”, where F0 = ∅ and Fm deterministically determines Y , and each step
provides outcomes of more randomness used in defining Y , until in the last step fully determines Y .
Define for t ∈ [m],

Zt := E [Y | Ft] ;

then, Z1, . . . , Zm form a martingale with respect to F0, . . . ,Fm. To see, why this is a martingale, we
have that for every t > 1, every |Zt| <∞ since Y is bounded and moreover,

E [Zt | Ft−1] = E [E [Y | Ft] | Ft−1] = E [Y | Ft−1] = Zt−1,

where the first and last equality are by the definition of Zt and Zt−1, respectively, and the middle
equality is by the tower property of Proposition 3.

We can now apply Azuma’s inequality to it provided that |Mi −Mi−1| 6 1 holds for all i ∈ [
(
n
2

)
].

Claim 7. |Mi −Mi−1| 6 1 for all i ∈ [
(
n
2

)
]

Proof. We start with the following fact. Consider two graphs G and G′ on the same vertex set, differing in
the status of exactly one potential edge e = {u, v}. Then∣∣χ(G)− χ(G′)

∣∣ 6 1.

We show this by assuming, without loss of generality, that G is the graph with the extra edge. Clearly, any
valid coloring of G is a valid coloring of G′. Hence, χ(G′) 6 χ(G). Now take an optimal coloring of G′ and
color G with it. If the extra edge e “violates this coloring”, then color max{u, v} with a new color. This
clearly forms a valid coloring of G using only χ(G′) + 1 colors. It follows that χ(G) 6 χ(G′) + 1. Thus,
χ(G′) 6 χ(G) 6 χ(G′) + 1.

Additionally, recall that:
Mi = E

[
X
∣∣ Fi

]
and Mi−1 = E

[
X
∣∣ Fi−1

]
.

The only difference between Fi−1 and Fi is that (exactly) one new edge ei has been revealed (i.e., we now
know whether it is present or absent). Conditioned on Fi−1, there are two possible worlds for G as far as
edge ei is concerned: ei present, or ei absent. The above shows that χ(·) can differ by at most 1 between
the two possibilities. Since the two random variables differ by at most 1 pointwise for every outcome, the
conditional expectations of X under “ei present” versus “ei absent” can differ by at most 1. Formally:∣∣E[X | Fi−1, ei = 1] − E[X | Fi−1, ei = 0]

∣∣ 6 1.

Note that Mi = E [X | Fi−1, ei] can take the values a0 = E[X | Fi−1, ei = 0] or a1 = E[X | Fi−1, ei = 1].
Also, we have:

Mi−1 = E[X | Fi−1
]

= E
[
E[X | Fi−1, ei ]

∣∣ Fi−1
]

(Tower property of Proposition 3)

=
1

2
E[X | Fi−1, ei = 1 ] +

1

2
E[X | Fi−1, ei = 0 ]. (Pr (ei = 1 | Fi−1) = 1/2)

Mi−1 is the average of a0 and a1. Thus, its value lies between the two, implying that:

|Mi −Mi−1| 6 max (|a0 −Mi−1|, |a1 −Mi−1|) (Mi is a0 or a1)

6 max (|a0 − a1|, |a1 − a0|) (Mi−1 lies between a0 and a1)

6 1.

This proves the claim for all i ∈ [
(
n
2

)
].
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We can now apply Azuma’s inequality:

Pr (|Sn − S0| > t) 6 2 · exp

(
− t2(

n
2

)) .
We want failure with constant probability, so we need to set t ≈ n. This tells us that X is within ±n of
E [X]. Unfortunately, this is an absolutely trivial statement, because 1 6 χ(G) 6 n for any graph G!

We seem to need to define the Fi’s in a cleverer way: Azuma’s inequality is a dimension-dependent
concentration bound and as such is sensitive to the number of variables in its martingale; as such, to obtain
a better bound, we need to reduce the number of variables from ≈ n2 to something much smaller.

3.2.2 Refining our Approach – Vertex Exposure Martingales

Earlier, we constructed the Fi’s by revealing one edge at a time (Edge Exposure Martingale). Instead,
one could reveal one vertex, or more precisely the neighborhood of one vertex, at a time (Vertex Exposure
Martingale). Vertices are assumed to be numbered from 1 to n, so we reveal them in that order (any other

order also works). We still use the indicator random variables for the edges {ξk}
(n
2)

i=1 that we used in the edge
exposure martingale.

We define N+(u) as the set of edges incident on u that go to lower ranked vertices. So N+(1) = ∅, because
no other vertices have been revealed. N+(2) = {ξ1}, where ξ1 is the random variable that corresponds to
the edge {2, 1}. Similarly, N+(3) = {ξ2, ξ3}, and so on. Basically, N+(i) will have i − 1 random variables
corresponding to the edges (i, 1), (i, 2), . . . , (i, i − 1). We can now define the multisets Fi for all i ∈ [n] as
the first i N+(k)’s: Fi = {N+(1), N+(2), . . . , N+(i)}.

What we have done is create a grouping of the random variables ξk, and reveal them in groups instead of
one at a time, reducing the number of Fi’s. In other words, after i steps we know the graph induced on the
first i vertices, we do not yet know about edges incident on vertices i+ 1 to n. Clearly, F0 ⊆ F1 ⊆ · · · ⊆ Fn.

Similar to the previous analysis, we define the Doob martingale with respect to {Fi} as

Mi = E
[
X
∣∣Fi

]
,

and as before, we have that this is indeed a martingale with respect to {Fi}.

We are almost ready to apply Azuma’s inequality to it, but before doing so, we have to establish the
“bounded-ness condition”. We first make a simple observation.

Claim 8. Consider two graphs G and G′ on the same vertex set, differing in the neighborhood of exactly
one vertex i. Then

∣∣χ(G)− χ(G′)
∣∣ 6 1.

Proof. The two graphs G and G′ are on the same vertex set, differing in the neighborhood of exactly one
vertex i. This means that both graphs induced on V \ {i} are identical, but they have potentially different
edges incident on vertex i. For such graphs we want to show that:∣∣χ(G)− χ(G′)

∣∣ 6 1.

Consider graph G and color it using the optimal coloring of G′. Now just color i with a completely new
color. Any edge not incident on i is not monochromatic, because it also exists in G′. Any edge incident on i
is not monochromatic, since i has a completely new color. This implies: χ(G) 6 χ(G′) + 1. We can similarly
show χ(G′) 6 χ(G) + 1, which implies

∣∣χ(G)− χ(G′)
∣∣ 6 1.

We now show that |Mi −Mi−1| 6 1 for all i ∈ [n].

Claim 9. |Mi −Mi−1| 6 1 for all i ∈ [n]
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Proof. Recall that:
Mi = E

[
X
∣∣ Fi

]
and Mi−1 = E

[
X
∣∣ Fi−1

]
.

When going from Fi−1 to Fi, we revealed the neighborhood of exactly one vertex i to vertices in [i − 1].
Conditioned on Fi−1, there are 2i−1 possible worlds for G as far as vertex i is concerned: for all vertices
k ∈ [i− 1], the edge (i, k) could be present or absent. This gives us 2i−1 possible neighborhoods (to previous
vertices) for vertex i: N+

1 (i), N+
2 (i), . . . , N+

2i−1(i). Now fix any possibility for the remaining graph, i.e., for
vertices from i+ 1 to n fix any choices of edges incident on them.

We hereby obtain 2i−1 different graphs G1, G2, . . . , G2i−1 . χ(·) can differ by at most 1 between any two
such graphs, because they differ in the neighborhood of only one vertex (Claim 8). Since the two random
variables differ by at most 1 pointwise for every fixed value they may assume, the conditional expectations
of X under any two neighborhoods N+

j (i) and N+
k (i) can differ by at most 1. Formally:∣∣E[X | Fi−1, N

+(i) = N+
j (i)] − E[X | Fi−1, N

+(i) = N+
k (i)]

∣∣ 6 1.

Note that Mi = E [X | Fi−1, N
+(i)] can take 2i−1 values depending on the value of N+(i). Let a0 be the

smallest of the 2i−1 values which occurs for N+(i) = N+
j (i). Let a1 be the largest of the 2i−1 values which

occurs for N+(i) = N+
k (i). Also, we have:

Mi−1 = E[X | Fi−1
]

= E
[
E[X | Fi−1, N

+(i) ]
∣∣ Fi−1

]
(Tower property of expectation)

=

2i−1∑
`=1

1

2i−1
E[X | Fi−1, N

+(i) = N+
` (i) ]. (Pr

(
N+(i) = N+

` (i) | Fi−1
)

= 1/2i−1)

Mi−1 is the average of 2i−1 numbers between a0 and a1. Thus, its value lies between the two implying that:

|Mi −Mi−1| 6 max
`

(
|Mi−1 − E[X | Fi−1, N

+(i) = N+
` (i) ]|

)
(Mi is one of these 2i−1 values)

6 |a0 − a1| (all the values lie between a0 and a1)

6 1.

This proves the claim for all i ∈ [n].

We can now apply Azuma’s inequality with t =
√

ln(3) · n:

Pr (|Sn − S0| > t) 6 2 · exp

(
− t

2

n

)
6 2/3.

Thus, we get failure with small constant probability. This tells that X is within ±
√

ln(3) · n of E [X] with
constant probability. Note that we just know the value of E [X] to within ±Θ(n/ log n). What we have
shown here is that whatever the value of E [X] is, X is within ±

√
ln(3) · n of it with constant probability.

We are able to show this, because these additive concentration bounds do not depend on the expectation of
the random variable we are dealing with.
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