
CS 761: Randomized Algorithms University of Waterloo: Winter 2025

Lecture 8
February 6, 2025

Instructor: Sepehr Assadi

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Topics of this Lecture

1 Proof of Lovász Local Lemma 1

2 An Algorithmic LLL? 3

2.1 An Algorithmic Version of Proposition 2 . 3

2.2 Entropy Compression Method and Runtime Analysis of Algorithm 1 4

1 Proof of Lovász Local Lemma

In the previous lecture, we saw the Lovász Local Lemma (LLL) and its amazing power. We now prove a
slightly weaker form of LLL to provide more intuition about it (notice that we effectively replace 1/e in the
original statement with a weaker constant of 1/4).

Theorem 1 (A “Weak” Form of LLL). Suppose B1, . . . , Bn are a collection of events. If:

1. Pr (Bi) 6 p for every i ∈ [n], for some p ∈ (0, 1);

2. and, the events admit a dependency graph with maximum degree d > 1, i.e., for each event Bi, there
exists a set N(i) of size at most d such that for all T ⊆ [n] \ (N(i) ∪ {i}),

Pr (Bi | ∧j∈TBj) = Pr (Bi) .

Then, as long as

p · d 6 1/4

the probability that none of B1, . . . , Bn happens is strictly more than zero.

Proof. Define Ai to be the complement of the event Bi. Moreover, for any i ∈ [n], define A<i as the event
that A1, . . . , Ai−1 all happen. Our goal is to prove that

0 < Pr
(
∧ni=1B̄i

)
= Pr (∧ni=1Ai) =

n∏
i=1

Pr
(
Ai | ∧i−1j=1Aj

)
=

n∏
i=1

Pr (Ai | A<i) .

Thus, we have to prove that
Pr (Ai | A<i) > 0 ⇐⇒ Pr (Bi | A<i) < 1

for all i ∈ [n]. We actually prove a stronger statement inductively:

1

Induction hypothesis: For any i ∈ [n] and any set S ⊆ [n] \ {i},

Pr (Bi | AS) 6 2p,

where AS is defined as ∧j∈SAj .

The base case for each i ∈ [n] and S = ∅ follows immediately because Pr (Bi) 6 p by the theorem
statement. We now prove the induction step.

Step 1. We know that Bi only depends on at most d other events in N(i) so we should find a way to “get
rid of” the remaining terms in AS . To do so, we write,

Pr (Bi | AS) = Pr
(
Bi | AS∩N(i) AS\N(i)

)
=

Pr
(
Bi ∧AS∩N(i) | AS\N(i)

)
Pr
(
AS∩N(i) | AS\N(i)

) (by the definition of conditional probability)

6
Pr
(
Bi | AS\N(i)

)
Pr
(
AS∩N(i) | AS\N(i)

) (as Pr(C ∧D) 6 Pr(C) for any events C,D)

=
Pr (Bi)

Pr
(
AS∩N(i) | AS\N(i)

) (because Bi is independent of events outside N(i))

6
p

Pr
(
AS∩N(i) | AS\N(i)

) . (as Pr (Bi) 6 p in the theorem statement)

The only “real” inequality above is in dropping ∧AS\N(i) (the other inequality might as well be tight also
because we have no control over the gap between Pr(Bi) and p in the theorem statement). As we shall see,
the “math is going to work out” even when taking this inequality but it is good to see some intuition why
this is the case. This is because, AS∩N(i) only contains d terms and in the next step we are going to prove
that these terms actually happen with a “large enough” probability (a constant more than zero); As a result,
we are not “dropping” a very low probability event that can make the inequality quite loose.

Step 2. We know need to lower bound the denominator of the RHS above. But now, this term only depends
on d events in total and we can try to simply use a union bound to get a loose bound here. Specifically,

Pr
(
AS∩N(i) | AS\N(i)

)
= 1− Pr

(
∨j∈S∩N(i)Bj | AS\N(i)

)
> 1−

∑
j∈S∩N(i)

Pr
(
Bj | AS\N(i)

)
.

Given that N(i) has at least one element (as otherwise Bi is independent of all other events and trivially
satisfies the induction hypothesis), we have that |S\N(i)| < |S|. Thus, we can apply our induction hypothesis
and obtain that for every j ∈ S ∩N(i),

Pr
(
Bj | AS\N(i)

)
6 2p.

Plugging this bound above gives us

Pr
(
AS∩N(i) | AS\N(i)

)
> 1−

∑
j∈S∩N(i)

2p > 1− 2p · d > 1/2,

where the last inequality is by the assumption in the theorem statement that p · d 6 1/2.

Plugging in the bounds of step 2 on the last equation of step 1 give us

Pr (Bi | AS) 6
p

1/2
6 2p,

as desired. This concludes the proof.

It is worth mentioning that the statement of Theorem 1 is actually the original version of LLL proven
by Erdős and Lovász in [EL75].

2

Another application of LLL: “Sparse” CNFs. Let us use Theorem 1 to showcase yet another appli-
cation of LLL in preparation for the main topic of this lecture that will appear afterwards.

Recall that for any integer k > 1, a k-CNF (conjunctive normal form) is a set of m clauses each consisting
of ‘OR’ of k literals over n variables; moreover, these clauses are ‘AND’ together. E.g., the following is an
example of a 3-CNF:

(x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ ¬x2 ∨ ¬x4) ∧ (x4 ∨ x6 ∨ x7) ∧ · · ·

We are going to prove that if in a k-CNF, every variable appears in “few” other clauses; then, the CNF is
always satisfiable, i.e., there exists an assignment to the n variables such that every clause becomes true.

Proposition 2. For any k > 2, let Φ be a k-CNF such that every variable appears in at most 2k/4k other
clauses. Then, Φ is satisfiable.

Proof. The proof is again a simple application of LLL. Suppose we pick the assignment to x1, . . . , xn randomly
from {0, 1}n. Define the ‘bad’ event Bi for each clause i ∈ [m] as the event that under this assignment, the
i-th clause is not satisfied. Given each clause is ‘OR’ of k literals, there exists exactly one assignment to its
k variables that does not satisfy the clause. Thus,

Pr (Bi) = 2−k.

On the other hand, each bad even Bi is entirely independent of all bad events Bj that their clauses to do
not share any variable with those of Bi. Since each variable in clause i can belong to at most 2k/8k other
clauses and there are k variables in the clause i, Bi is independent of all but at most

d =
2k

4k
· k =

2k

4

other bad events. As

2−k · (2k

4
) 6

1

4
,

we can apply LLL in Theorem 1 and obtain that with non-zero probability, none of the bad events happen.
This means that there is a satisfying assignment for Φ, concluding the proof.

2 An Algorithmic LLL?

Up until this point, we only used LLL to prove existence of objects. But, what if we would like to find those
objects as well?

For instance, in Proposition 2, can we also find the satisfying assignment? LLL implies that the proba-
bility of the bad events not happening is non-zero, so if we continue sampling random assignments, we will
eventually find a satisfying assignment. But, using the probabilities implied by LLL only implies that the
probability of finding a satisfying assignment is > 2−n. But that requires running the algorithm roughly
2n times before finding the ‘right’ assignment. This is basically the same as (in fact, even worse than)
enumerating all assignments and finding a satisfying one (that LLL guarantees its existence). But, can we
do this in polynomial time?

This is the content of algorithmic Lovász Local Lemma, a beautiful area of research that has been
developed over a decade ago. We will see an application of this to finding an assignment in Proposition 2 in
polynomial time due to a brilliant idea of Moser [Mos09].

2.1 An Algorithmic Version of Proposition 2

The algorithm is as follows.

3

Algorithm 1.

1. Let C1, . . . , Cm be the clauses and x be a random assignment in {0, 1}n to the variables.

2. For i = 1 to m: if clause Ci is violated under x, run the subroutine Fix(Ci).

Subroutine Fix(Ci):

1. Resample the variables in the clause Ci from {0, 1}k.

2. Go over ‘neighbors’ of Ci, namely, clauses that share a variable with Ci—including Ci itself—
denoted by N(Ci), and for each clause C ∈ N(Ci), if C is violated now, recursively call Fix(Ci).

Note that it is not clear apriori that this algorithm ever terminates. This is because we maybe “fixing”
one clause, but then create many violated clause as a result, and now have to fix them and just continue
doing this in a loop forever! Nevertheless, we can at least say that if the algorithm terminates, then the
resulting assignment is feasible.

Lemma 3. If Algorithm 1 terminates, then the final assignment x to the variables satisfy all clauses.

Proof. We inductively prove that after iteration i ∈ [m] of the for-loop, all clauses C1, . . . , Ci are satisfied.
This is vacuously true for i = 0.

Now consider some iteration i > 1. By induction hypothesis, C1, . . . , Ci−1 are already satisfied so we
only need to worry about Ci. If Ci is already satisfied, then we are done, so suppose Ci is not satisfied. But,
then we will be calling Fix(Ci) which “fixes” Ci; in addition, if any of the neighbors of Ci become violated,
we recurse on them also, so this chain of recursion never terminates before making sure everything that was
satisfied before the call Fix(Ci) is also satisfied now. This means that if the call to Fix(Ci) terminates,
then, C1, . . . , Ci−1 remain satisfied, and Ci is also now additionally satisfied. This proves the induction.

Hence, after the for-loop finishes (if ever), all clauses are satisfied.

Thus, it “only” remains to prove that this algorithm actually terminates. What makes this hard to argue
is that seemingly no particular “progress” is being made here; we may make a single clause satisfied when
calling Fix and in the process violate several other clauses, hence, making the matter worse in some sense!
This is where Moser’s brilliant idea comes into picture that provides a unique way of analyzing these types
of processes, which is called the entropy compression method, as termed by Terry Tao.

2.2 Entropy Compression Method and Runtime Analysis of Algorithm 1

To continue, we just need the following simple information-theoretic lemma.

Lemma 4. Let δ ∈ (0, 1) and f : {0, 1}m → {0, 1}t be any fixed function with the following property: if we
sample x uniformly at random from {0, 1}m, we can recover x from f(x) with probability at least δ. Then,
we should have t > m− log (1/δ)

This lemma says that if we attempt to “compress” the strings in {0, 1}m to shorter lengths, most of
the times we will not be able to recover the strings correctly anymore. Even more informally speaking, we
cannot hope to compress random strings.

Proof. Let X ⊆ {0, 1}m be the strings that can be recovered uniquely from f(x). The function f from
X → {0, 1}t should be injective as otherwise we cannot recover x uniquely from f(x) if f(y) = x also and
both x, y ∈ X. This means that |X| 6 2t. But, we also have |X| > δ · 2m as a uniformly chosen x ∈ {0, 1}m
can be recovered from f(x) with probability at least δ. Hence,

2t > |X| > δ · 2m =⇒ t > m− log (1/δ),

4

concluding the proof.

We are going to prove that Algorithm 1 is “trying” to compress random bits—thus, if it gets to run for
a very long time with a large probability, it will manage to compress random bits beyond what is allowed
by Lemma 4, a contradiction. In particular, we will prove the following main theorem.

Theorem 5 ([Mos09]). For any k > 2, let Φ be a k-CNF such that every variable appears in at most 2k−c/k
other clauses for some large constant c > 10. Then, Algorithm 1 finds a satisfying assignment of Φ in
O(m · k) time with probability at least 0.99.

Let s be a parameter to be determined later (we fill set s = m+O(1) eventually). Consider the following
modification to the algorithm (this is only for the purpose of the analysis): we only allow the algorithm to
call the subroutine Fix at most s times and after that we simply terminate the algorithm. Our goal is to
show that with high constant probability, the algorithm actually does not get to make these s calls and thus
finishes beforehand with the answer.

Firstly, how many random bits the modified algorithms generates throughout the whole process? Well,
it starts with n random bits at the beginning and then each call to Fix tosses k new random bits so the
total number of bits is n+ s · k. We are going to assume that the algorithm simply tosses all these coins in
advance. Consider the following way of “compressing” these random bits.

The compression scheme. We are going to maintain a log of what the algorithm does so that we can
regenerate all its decision from this log. In the following, let R := 2k−c be the number of neighbors of any
single clause. We do as follows.

• Firstly, we will write a string of m bits where its i-th bit is 1 if in the i-th for-loop of Algorithm 1, the
algorithm had to call Fix(Ci) and is 0 otherwise.

Notice that given this m bit string, we can figure out exactly what were the “top level” calls to Fix

(although of course not the “inner” recursive calls).

• We then follow these m bits with the following strings. Consider the first time Fix was called, say, on
a clause C. Write a (logR)-bit string to name which neighbor of C is being called next in Fix. We
continue doing this but also whenever a call to Fix is terminated, we will write a ‘terminated’ symbol
in O(1) bits.

For instance, suppose the algorithm calls Fix(100) and then calls Fix(2) (namely, as in, the second
neighbor of 100), and terminates, and then call Fix(5) and inside it call Fix(7) also and so on; then,
we will write

100, 2, ‘terminated’, 5, 7, · · ·

Notice that each of these numbers can be written with logR+O(1) bits. In particular, if the algorithm
makes s calls to Fix, we can write this part using

s · (logR+O(1))

bits.

• Finally, we will write the assignment to the variables after the s calls in n bits. (If the algorithm
finishes before making s call, we let the log to be simply the empty string; in other words, the log
is only used when the algorithm finishes all s calls to Fix without finding the assignment and thus
terminates instead).

We claim that using this information, we can recover all the random bits used by the algorithm exactly.
This is because, we can look at the very final call to Fix (which can be recovered from the log). The only
reason the algorithm called this clause C is because the current assignment of the variables did not satisfy
this clause. But, there is only one assignment of the k variables that violates this clause. So, we can recover

5

what was the state of assignment x when this call to Fix happened. We can then backtrack this way and
now what were the values of x in every step and since we know the clauses also, we know exactly what are
the random bits used.

Now, suppose that the original algorithm does not terminate with probability at least δ. This in turn
means that the modified algorithm gets to output a complete log with probability at least δ, from which, we
can recover all the n+ s · k random bits. By Lemma 4, this means the length of the log should be at least

n+ s · k − log (1/δ).

But, on the other hand, the length of the log is also at most

m+ s · (logR+O(1)) + n

bits by construction. Recall that logR = k − c for some arbitrarily large constant c > 1, and thus, we have

m+ s · (logR+O(1)) + n = m+ s · (k − c+O(1)) + n > n+ s · k − log (1/δ).

By taking c to be large enough to become equal to the O(1)-term plus one, we get

m+ s · k − s > s · k − log (1/δ) =⇒ s 6 m+ log (1/δ).

This implies that for any δ ∈ (0, 1), the algorithm terminates after at most m + log (1/δ) calls to Fix,
concluding the proof of Theorem 5.

References

[EL75] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some related
questions. Infinite and finite sets, 10(2):609–627, 1975. 2

[Mos09] Robin A. Moser. A constructive proof of the lovász local lemma. In Michael Mitzenmacher, editor,
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, May 31 - June 2, 2009, pages 343–350. ACM, 2009. 3, 5

6

	1 Proof of Lovász Local Lemma
	2 An Algorithmic LLL?
	2.1 An Algorithmic Version of prop:k-cnf
	2.2 Entropy Compression Method and Runtime Analysis of alg

