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1 Subspace embeding

In the previous note, we saw low-dimensional embeddings of vectors that preserve the `2-norm. In particular,
we proved the following claim:

Claim 1. Let S ∈ Rt×d be a matrix of independent N (0, 1) variables. For a vector v ∈ Rd such that ‖v‖ = 1
and t = 10 ln(1/δ)/ε2,

Pr
S

[‖Sv‖/
√
t /∈ [1− ε, 1 + ε]] 6 2δ.

In this lecture, we will see how to extend this notion to embedding an entire subspaces (with infinitely
many vectors). We continue to use our notation of a ≈ε b to mean (1− ε)b 6 a 6 (1 + ε)b.

Definition 2 (ε-subspace embedding). Let U be a d-dimensional subspace of Rn. Then S ∈ Rt×n is
an ε-subspace embedding of U iff for all y ∈ U , ‖Sy‖ ≈ε ‖y‖.

Recall that if A ∈ Rn×d is a matrix whose columns are a basis for U , then U = {Ax | x ∈ Rd}. In
particular, if we use an orthonormal basis u1, . . . , ud as the columns of A, and let S = AT , we obtain that
for y =

∑
i αiui ∈ U , ‖Sy‖2 =

∑
i α

2
i = ‖y‖2. This is also tight, since if S has fewer than d columns,

dim(Ker(S) ∩ U) > 0, which means S maps a non-zero vector within U to 0. However, for algorithmic
applications, this solution is not good enough, since we may not always have a handle on U — our aim will
be to develop an analogue of Claim 1: an embedding where S is oblivious to U ( hence necessarily random).

Theorem 3. If S is a t×n matrix of independent N (0, 1)’s where t = O(d/ε2), then with probability 1−1/2d,
S is an ε-subspace embedding of U .

As above, let A ∈ Rd×n be a matrix whose columns are an orthonormal basis for U , so U = {Ax | x ∈ Rd}.
As such, the theorem is equivalent to showing that ‖SAx‖ ≈ε ‖Ax‖ for all x ∈ Rd. In fact, because S and A
are linear, and ‖cx‖ = c‖x‖ for any c ∈ R, it is enough to show the above for all x ∈ Rd such that ‖x‖ = 1.
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A short proof using two facts about Gaussian random variables follows. First, for any orthonormal matrix
A, the matrix SA itself is a t×d matrix of independent N (0, 1)’s. So it is enough to show that ‖Tx‖ ≈ε ‖x‖
for each x ∈ Rd, and where T is a t × d matrix of independent N (0, 1)’s. Second, it turns out that the
singular values of T are concentrated around 1. That is, σmax(T) 6 1 + ε, and σmin(T) > 1 − ε with high
probability. Singular values measure exactly how much T stretches its input in the `2 norm, so these two
facts are sufficient to get the theorem.

In the rest of this lecture, we show a self-contained proof of Theorem 3 that both showcase new ideas for
proving such statements and also has the benefit of working with any JLL-type matrix S that can preserve
the norm of vectors approximately (regardless whether its distribution is Gaussian or not).

1.1 γ-Nets

The main idea we want to use to prove Theorem 3 is a union bound and Claim 1 – but it is of course
impossible to union bound over the uncountably many vectors in U . Instead, we will union bound over some
(finitely many) vectors, and somehow interpolate between them to get the full theorem. Let Sd denote the
unit sphere {x ∈ Rd | ‖x‖ = 1} in d dimensions.

Definition 4 (γ-nets). A set N ⊆ Sd is a γ-net if for all x ∈ Sd, there is a y ∈ N such that ‖x−y‖ 6 γ.

Note that in the literature, these are typically called ε-nets (we avoided using ε to avoid confusion with
the distortion parameter ε of our embedding).

The most immediate question is: how do we construct a small, or even finite, γ-net? Greedily! In
particular, start with N = ∅, and while there is a vector x ∈ Sd with no y ∈ N such that ‖x− y‖ 6 γ, add
x to N . To analyse this algorithm, we have the following proposition about pairwise distances in Sd.

Proposition 5. Let M ⊆ Sd such that for each x, y ∈M , ‖x− y‖ > γ. Then |M | 6 (4/γ)d.

Note that Proposition 5 immediately implies that the greedy algorithm produces a γ-net of size O(1/γ)d,
since a point is added to N iff its pairwise distance with all previous points is > γ.

Proof of Proposition 5. Let Bdr (x) denote the d-dimensional closed ball of radius r centered on the point x,
i.e. {y ∈ Rd | ‖x−y‖ 6 r}. Suppose we place a ball of radius γ/2 around each point in M . Then for any two
points x, y ∈ M , since ‖x − y‖ > γ, Bdγ

2
(x) and Bdγ

2
(y) do not intersect. On the other hand, since M ⊆ Sd,

we know that for each x ∈ M , Bdγ
2
(x) is contained in Bd1+ γ

2
(0). Hence, the number of points in M is upper

bounded by the ratio of these balls’ volumes:

|M | 6
Vol(Bd1+ γ

2
)

Vol(Bdγ
2
)

=
(1 + γ/2)d

(γ/2)d
6

(
4

γ

)d

,

where the first equality holds because the volume of Bdr is equal to f(d) · rd for some function f : N → R,
and the second inequality holds because γ 6 2 =⇒ (1 + γ/2) 6 2. (If γ > 2, a single point in N is enough
to cover all of Sd).

We will now see two different ways to prove Theorem 3.

1.2 A (weaker) One Shot Argument by Using ε-Nets

Let N be an ε-net for Sd of size 6 (4/ε)d, which exists by Proposition 5. Also, as before, let A be a
matrix whose columns are an orthonormal basis for U . Recall that for any x ∈ Sd, ‖Ax‖ = ‖x‖ = 1, and
it is sufficient to show that ‖SAx‖ ≈ε ‖Ax‖ for x ∈ Sd to obtain Theorem 3. For any x ∈ N , we can
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apply Claim 1 with δ = 1/(4|N |2) to obtain that when S is a t × n matrix of independent N (0, 1)’s with
t = 20 ln(4|N |)/ε2,

Pr[‖SAx‖ 6≈ε 1] 6
1

2|N |2
.

Using a union bound over all the above event for all x ∈ N , we have that SAx ≈ε 1 for all x ∈ N with
probability > 1− 1/|N | > 1− 2−d.

From this point onwards, we will fix S to be a t× n matrix that satisfies the above (i.e. we will make no
further use of randomness). The rest of the argument shows that now that S “works” for the points in the
net N , it should “somewhat work” for all the points in Sd (and by extension Rd) as well.

We bound each direction of the inequalities in the following two claims separately. The proofs are similar
but not identical and in fact the latter one relies on the former.

Claim 6. For any point x ∈ Sd, ‖SAx‖ 6 1 + 3ε.

Proof. Let x? be a maximizer of ‖SAx‖ over x ∈ Sd (such an x? exists because ‖SAx‖ is a continuous
function, and Sd is compact). It suffices to prove the bound for x? then.

Let y ∈ N be the closest point to x in the net, i.e., a minimizer of ‖x?−y‖. Define z := (x?−y)/‖x?−y‖,
and note that z ∈ Sd, and ‖SAz‖ > ‖SAx?‖ by our choice of x?. Using the linearity of S and A, and the
triangle inequality, we have:

‖SAx?‖ = ‖SA(x? − y) + SAy‖ 6 ‖SA(x? − y)‖+ ‖SAy‖ 6 ‖x? − y‖ · ‖SAz‖+ (1 + ε),

where the last inequality holds because S preserves the norm of y ∈ N . But since ‖SAz‖ 6 ‖SAx?‖, and
‖x? − y‖ 6 ε because N is an ε-net, we can rearrange the above to see that

‖SAx?‖ 6 1 + ε

1− ε
6 1 + 3ε,

proving the claim.

Claim 7. For any point x ∈ Sd, ‖SAx‖ > 1− 3ε.

Proof. Let y ∈ N be the closest point to x in the net, i.e., a minimizer of ‖x?−y‖. Let z := (x?−y)/‖x?−y‖.
Using the linearity of S and A, and the triangle inequality, we have:

‖SAx?‖ = ‖SAy + SA(x? − y)‖ > ‖SAy‖ − ‖SA(x? − y)‖ > (1− ε)− ‖x? − y‖ · ‖SAz‖,

where the last inequality holds because S preserves the norm of y ∈ N . But since ‖SAz‖ 6 (1 + 3ε)
by Claim 6, and ‖x? − y‖ 6 ε because N is an ε-net, we can rearrange the above to see that

‖SAx?‖ > (1− ε)− ε · (1 + 3ε) > 1− 3ε.

proving the claim (here, we assumed without loss of generality that ε < 1/3).

Putting it all together, we have shown that if S is a t× n matrix of N (0, 1)’s, where

t = 10 ln(4|N |)/ε2 6 10

(
d ln

(
4

ε

)
+O(1)

)
/ε2 = O

(
1

ε2
· d lg

(
1

ε

))
,

then for any d-dimensional subspace U ⊆ Rn, with probability > 1 − 2−d, we have ‖Sx‖ ≈3ε ‖x‖ for all
x ∈ U . To get the right distortion and probability bound, we need to use an ε′-net with ε′ = ε/3, to make
t larger (say 20 ln(4|N |)/(ε′)2). While this is very close to the right answer, we are still off by a factor of
log(1/ε) from the promised statement in Theorem 3.
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1.3 The Optimal Bound: Chaining via (1/2)-Nets

We now show a general way of using nets via a simple application of the so-called chaining technique.

In a quest to drop the log(1/ε) dependence in our previous proof, we start with a much coarser (1/2)-
net N of Sd. This time, we will pick δ = 1/(2|N |4) instead, so S is a t × n matrix of N (0, 1)’s with
t = 40 ln(4|N |)/ε2 = O(d/ε2). We chose a smaller value of δ relative to |N | so that we can union bound over
|N |2 events, but we do not pay a log(1/ε) factor in t because N is smaller. By applying Claim 1 to each
point, and each pair of points in N , we have:

• For each x ∈ N , ‖SAx‖ ≈ε 1 with probability 1− 1/|N |4.

• For each pair x, y ∈ N , ‖SA(x− y)‖ ≈ε ‖A(x− y)‖ with probability 1− 1/|N |4.

All of the events above hold simultaneously with probability > 1 − 1/|N |2 > 1 − 2−d by the union bound,
and from this point we fix S to be a t × n matrix satisfying the above. For brevity, let T = SA. Before
considering an arbitrary point in Sd, we first show that T roughly preserves even inner products of pairs of
points in N .

Claim 8. For x, y ∈ N , we have |〈Tx , Ty〉 − 〈x , y〉 | 6 3ε 〈x , y〉 + 5ε.

Proof. This is because

2 〈Tx , Ty〉 = ‖T (x− y)‖2 − ‖Tx‖2 − ‖Ty‖2

6 ‖x− y‖2 · (1 + ε)2 −
(
‖x‖2 + ‖y‖2

)
· (1− ε)2 (T preserves norms on N)

6 ‖x− y‖2 · (1 + 3ε)−
(
‖x‖2 + ‖y‖2

)
· (1− 2ε) (??)

=
(
‖x− y‖2 − ‖x‖2 − ‖y‖2

)
· (1 + 3ε) +

(
‖x‖2 + ‖y‖2

)
· 5ε

= 2 〈x , y〉 · (1 + 3ε) + 10ε. (1)

And similarly,

2 〈Tx , Ty〉 = ‖T (x− y)‖2 − ‖Tx‖2 − ‖Ty‖2

> ‖x− y‖2 · (1− ε)2 −
(
‖x‖2 + ‖y‖2

)
· (1 + ε)2

> ‖x− y‖2 · (1− 2ε)−
(
‖x‖2 + ‖y‖2

)
· (1 + 3ε)

(as (1 + ε)2 6 (1 + 3ε) and (1− ε)2 > (1− 2ε))

=
(
‖x− y‖2 − ‖x‖2 − ‖y‖2

)
· (1− 2ε)−

(
‖x‖2 + ‖y‖2

)
· (5ε)

= 2 〈x , y〉 · (1− 2ε)− 10ε. (2)

Combining (1) and (2), we obtain that

〈x , y〉 · (1− 2ε)− 5ε 6 〈Tx , Ty〉 6 〈x , y〉 · (1 + 3ε) + 5ε,

proving the claim.

We are now ready to prove Theorem 3 with the correct bounds. We will start with z0 := x, for an
arbitrary point x ∈ Sd, and for i > 1, define the sequences

yi = argmin
y∈N

‖zi−1 − y‖,

and

zi =
zi−1 − yi
‖zi−1 − y‖

.

4



Rewriting x using successively more terms of zi and yi, we have

x = z0

= y1 + ‖z0 − y1‖ · z1
= y1 + ‖z0 − y1‖ · (y2 + ‖z1 − y2‖ · z2)

(Expanding n− 1 times)

=

n∑
i=1

i−1∏
j=1

‖zj−1 − yj‖

yi +

 n∏
j=1

‖zj−1 − yj‖

 · zn
Roughly speaking, our plan is the following:

1. Consider the sequence (of points in Rd) obtained by dropping the zn term from the n-th expansion
above, and show that T preserves the norms of each point in this sequence.

2. Show that this sequence of points approaches x in the limit, and hence T preserves the norm of x.

For n > 1, let

y′n =

n−1∏
j=1

‖zj−1 − yj‖

 · yn
and define

xn = x−

 n∏
j=1

‖zj−1 − yj‖

 · zn.
(Here xn is the sequence we alluded to in the plan, and y′n is just defined for brevity.) The upshot is that
since ‖zn‖ = 1 and ‖yn‖ = 1, we have

‖x− xn‖ =

n∏
j=1

‖zj−1 − yj‖ 6
1

2n
, (3)

and

‖y′n‖ =

n−1∏
j=1

‖zj−1 − yj‖ 6
1

2n−1
, (4)

because each yj is chosen to minimize ‖yj − zj−1‖, and N is a (1/2)-net. On the other hand, for any n > 1,

‖Txn‖2 =

〈
T

n∑
i=1

y′i , T

n∑
i=1

y′i

〉

=

n∑
i=1

‖Ty′i‖2 +

n∑
i=1

∑
j∈[n]\{i}

〈
Ty′i , T y

′
j

〉
6

n∑
i=1

‖y′i‖2 · (1 + 3ε) +

n∑
i=1

∑
j∈[n]\{i}

〈
y′i , y

′
j

〉
· (1 + 3ε) + 8ε‖y′i‖‖y′j‖

(T preserves norms and Claim 8)

6

∥∥∥∥ n∑
i=1

y′i

∥∥∥∥2 · (1 + 3ε) +
∑

16i 6=j6n

8ε

2i−1 · 2j−1

6 ‖xn‖2 · (1 + 3ε) + 64ε,

where the second last inequality follows because we placed the
〈
y′i , y

′
j

〉
· (1 + 3ε) terms into the earlier sum,

and used Eq (4) to upper bound the norms ‖y′i‖ and ‖y′j‖.
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To finish, recall Eq (3) and use

lim
n→∞

‖x− xn‖ = 0 =⇒ lim
n→∞

xn = x.

And because T and ‖·‖2 are both continuous functions, this also means lim
n→∞

‖xn‖2 = ‖x‖2 and lim
n→∞

‖Txn‖2 =

‖Tx‖2. Hence we have that

‖Tx‖2 = lim
n→∞

‖Txn‖2 6 lim
n→∞

‖xn‖2 · (1 + 3ε) + 64ε = ‖x‖2 · (1 + 3ε) + 64ε = 1 + 67ε,

which of course implies ‖Tx‖ 6 1 + 67ε since ε > 0. One can repeat the argument above, interjecting lower
bounds instead of upper bounds and obtain a similar lower bound on ‖Tx‖.

Putting it all together, we have shown that if S is a t× n matrix of N (0, 1)’s, where

t = 10 ln(4|N |2)/ε2 6 10(d ln(8) +O(1))/ε2 = O

(
1

ε2
· d
)
,

then for any d-dimensional subspace U ⊆ Rn, with probability > 1−2−d, we have ‖Sx‖ ≈100ε ‖x‖ for all x ∈
U . To get the statement of Theorem 3 exactly, we substitute ε′ = ε/100, and increase t to 20 ln(4|N |2)/ε′2,
paying only a constant blow up in the size of S. This concludes the proof of Theorem 3.

2 A Simple Application: `2-Regression

Suppose we are given a matrix A ∈ Rn×d and a vector b ∈ Rn, and wish to find argminx∈Rd‖Ax− b‖. This
is a fairly standard problem, and has an easy solution: Take the derivative of f(x) = ‖Ax − b‖, equate it
with 0, and solve for x (x = (A>A)−1A>b). The solution above requires us to have all of A in memory, and
we would like to avoid this.

We can use subspace embedding to convert this to a problem in Rd as follows: Consider the matrix
M ∈ Rn×(d+1) where the first d columns are A, and the last column is b, and for any x ∈ Rd, define the
vector y ∈ Rd+1 where the first d entries of y are x, and the last entry is −1. Then ‖Ax− b‖ = ‖My‖. Using
Theorem 3 on the (d+ 1)-dimensional column space of M , we obtain an ε-subspace embedding matrix S of
O(d/ε2) rows. We have

‖SMy‖ ≈ε ‖My‖ =⇒ ‖S(Ax− b)‖ ≈ε ‖Ax− b‖ =⇒ ‖SAx− Sb‖ ≈ε ‖Ax− b‖.

Hence we can simply store SA instead of A (this is useful, if e.g. A is arriving online, column by column),
and solve the resulting regression problem to get a good approximation for the original instance.

Remark. If we are actually using the JLL to solve an algorithmic problem, the matrices with indepen-
dent gaussians are not the most performant choices (S is likely to be dense, for example). There are
many works (e.g. [AC09]) which show JLL-like statements for matrices that are much more efficient to
work with.

You can find several more remarkable examples of applications of JLL and subspace embedding to various
problems, while compressing the input in [CW09].
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