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1 String Similarity

In the string similarity problem, we are given n strings x1, . . . , xn ∈ {0, 1}d, and are interested in answering
queries on normalized hamming distance between pairs of them. For any pairs of strings x, y ∈ {0, 1}d, define

∆(x, y) =
∆(x, y)

d
,

where ∆(x, y) is the hamming distance between x and y, i.e., the number of indices where they differ.

Our goal in the string similarity problem is to compress the data such that given a query (i, j), we can
output whether ∆xi, xj > 0.1, say, or not. Of course, this problem is easy if we store the xi’s as is; in this
lecture, we will see how to solve this problem approximately while storing only a roughly (log n)-dimensional
representation of each xi.

1.1 Attempt 1: Random indices

The most natural thing to try is to pick t random indices from [d] independently and uniformly (i.e. with
replacement). Let S denote the random variable containing all the indices we chose, and for j ∈ [t], let Sj

denote the j-th element of S. For i ∈ [n], let yi denote the projection of xi to the coordinates in S. Then,
we have the following claim.

Claim 1. For t = 10 ln(2n)
ε2 , ∆(yi,yj) ∈ [∆(xi, xj)± ε] for all i, j ∈ [n] with probability > 1− 1/n2.

Note that the guarantee of the claim is additive — this approach cannot give multiplicative guarantees:
e.g., if ∆(xi, xj) = O(1), then the indices where they differ will w.h.p not appear in S.

Proof. Let φ : {0, 1}d → {0, 1}t be the map that projects x down to xS. First, we will show that ∆(x, y) is
preserved with high probability for any pair of strings x, y.
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Fix x, y ∈ {0, 1}d; for i ∈ [t], let Zi = 1 iff xSi 6= ySi and let Z =
∑t

i=1 Zi. Observe that Z =
∆(φ(x), φ(y)). Then by the additive Chernoff bound, we have that

Pr

[∣∣∣Z− E[Z]
∣∣∣ > εt

]
6 2 exp

(
−ε

2t2

2t

)
= 2 exp

(
−ε

2t

2

)
6 2 exp(−5 ln(2n)) =

2

(2n)5
6

1

n4
.

On the other hand, since each Zi is an unbiased estimator for ∆(x, y) we know that E[Z] = t ·∆(x, y), and
so we have that ∣∣∣∣∆(φ(x), φ(y))

t
−∆(x, y)

∣∣∣∣ < ε

with probability > 1− 1/n4.

To finish the proof we will union bound over (
(
n
2

)
-many) pairs xi, xj in our input; using the bound we

showed above, one can see that ∣∣∣∣∆(φ(xi), φ(xj))

t
−∆(xi, yi)

∣∣∣∣ < ε

for all i, j ∈ [n] with probability > 1− 1/n2.

Remark. Notice that φ is a linear map — it has a t× d matrix where the (i, j)-th entry is 1 iff Si = j.
This means that φ(x + y) = φ(x) + φ(y), and hence we can easily update the representation of any xi
should only a few bits of xi change, without having to recompute the entire map from the beginning.

We will now see a second idea that can get multiplicative error bounds, even for the vector analogue of our
string similarity problem.

2 Johnson-Lindenstrauss Lemma (JLL)

We begin by defining the vector similarity problem; here we are given vectors x1, . . . , xn ∈ Rd, and want
to store low dimension representations y1, . . . , yn ∈ Rt that preserve the `2-norm. In particular, we want1

‖yi − yj‖2 ≈ε ‖xi − xj‖2

for all i, j ∈ [n].

2.1 Attempt 2: Gaussians

Recall that N (µ, σ2) is the gaussian random variable with mean µ and variance σ2, whose PDF is:

p(x) :=
1

σ ·
√

2π
· exp(− (x− µ)2

2σ2
).

See Figure 1 for the familiar “bell curve” shape of this distribution with different parameters.

We are now ready to state the main lemma of this lecture:

Lemma 2 (Johnson-Lindenstrauss Lemma [JL84]). For vectors x1, . . . , xn ∈ Rd, define y1, . . . ,yn ∈ Rt

such that yi = Sxi/
√
t, where S is a t × d matrix of independent N (0, 1) variables, and t = 100(lnn)/ε2.

Then with high probability (over the choice of S), ‖yi − yj‖ ≈ε ‖xi − xj‖ for all i, j ∈ [n].

To prove the lemma, we first claim that S preserves the norm of a fixed unit vector.

1Here and throughout this note, we will use a ≈ε b to mean (1− ε) · b 6 a 6 (1 + ε) · b.
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Figure 1: A selection of Normal Distribution Probability Density Functions (PDFs). Both the mean, µ, and
variance, σ2, are varied. The key is given on the graph.
Source: By Inductiveload - Own work (Original text: self-made, Mathematica, Inkscape), Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3817954.

Claim 3. For a vector v ∈ Rd such that ‖v‖ = 1 and a matrix S sampled as in Lemma 2 with dimension
t = 10 ln(1/δ)/ε2,

Pr
S

[
‖Sv‖√

t
≈ε 1] > 1− 2δ.

Before proving the claim, we see how it implies the lemma.

Proof of Lemma 2. For i, j ∈ [n] define vij = (xi − xj)/‖xi − xj‖. Since t = 100(lnn)/ε2, we can apply
Claim 3 on all vij ’s with δ = 1/n10, to get that for any i, j ∈ [n], PrS[‖Svij‖/

√
t 6≈ε 1] 6 2/n10. Union-

bounding over i, j, we obtain that ‖Svij‖/
√
t ≈ε 1 for all i 6= j ∈ [n] with probability > 1− 1/n8.

To finish, we expand the definition of vij and use the linearity of S:

‖Svij‖√
t
≈ε 1 ⇐⇒ ‖S(xi − xj)‖√

t · ‖xi − xj‖
≈ε 1 ⇐⇒

∥∥∥∥Sxi√t − Sxj√
t

∥∥∥∥ ≈ε ‖xi − xj‖ ⇐⇒ ‖yi − yj‖ ≈ε ‖xi − xj‖,

which concludes the proof.

So it “only” remains to show Claim 3. Emulating the proof of Claim 1, we will first argue that each row
of S gives an unbiased estimator for ‖v‖2. Let g = (g1, . . . ,gd) ∼ N (0, 1)d be a vector of d independent
N (0, 1)’s, and look at the random variable 〈g , v〉. Because the gi’s are mean-0, the expectation of 〈g , v〉 is
also 0, and gives us no information. The quantity we should really care about (because we are computing
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‖Sv‖, which sums the squares of each entry of Sv) is the expectation of its square:

E
[
〈g , v〉2

]
= E

( t∑
i=1

givi

)2
 = E

 t∑
i=1

(givi)
2 +

∑
i 6=j

givigjvj

 =

t∑
i=1

E
[
(givi)

2
]

+
∑
i 6=j

E[givigjvj ],

where the last inequality is by linearity of expectation. Since gi and gj are independent when i 6= j the
second sum is 0, whereas the i-th term of the first is equal to:

v2
i · E[gi]

2
= v2

i · (Var[gi]− E[gi]
2) = v2

i .

Hence E[〈g , v〉2] = ‖v‖2, and E[‖Sv‖/
√
t] = ‖v‖ = 1. We note that thus far we only used the fact that each

entry of g is independent, has mean 0 and variance 1.

To finish the proof, we need to show a concentration result on ‖Sv‖. We have

Pr

[
‖Sv‖√

t
6≈ε 1

]
= Pr

[
‖Sv‖2 /∈

[
(1− ε)2 · t, (1 + ε)2 · t

]]
6 Pr

[
‖Sv‖2 6≈ε t

]
,

where the inequality holds because for 0 < ε < 1, [(1 − ε), (1 + ε)] ⊆ [(1 − ε)2, (1 + ε)2] and t > 0. Let
S1, . . . ,St denote the rows of S, and define the random variables Xi := 〈Si , v〉 and X =

∑
i X

2
i . Since we

showed above that E[X] = E[‖Sv‖2] = t, all we need is a bound on the probability Pr[|X−E[X] > εt|]. This
is precisely a concentration inequality and it additionally has the familiar form that X is sum of independent
random variables. However, we cannot readily use Chernoff-like bounds on the X directly since the variables
X2

i used in the sum-definition of X are not bounded.

We will use the fact that a linear combination of independent Gaussians is still a Gaussian. In particular,
the distribution of Xi is N (0, ‖v‖) = N (0, 1). And so X =

∑
i X

2
i has a χ-squared distribution, for which

the following concentration bound is known:

Proposition 4 ([LM00]). Suppose X =
∑

i X
2
i where each Xi ∼ N (0, 1) independently of the rest; then,

Pr[|X− t| > εt] 6 2 exp

(
−ε

2t

8

)
.

Plugging this in, we have that

Pr

[
‖Sv‖√

t
6≈ε 1

]
6 2 exp

(
−ε

2t

8

)
= 2 exp

(
−ε

2 · 10 ln(1/δ)

8ε2

)
6 2 exp(− ln(1/δ)) = 2/δ.

This concludes the proof of Claim 3.

Detour: a “generic hack” for applying Chernoff to unbounded variables

Before concluding this lecture, let us mention a way of applying Chernoff bound itself to prove a weaker
version of Claim 3, to show case a useful technique (although, in most cases, one should be able to replace
this hack with a proper concentration inequality which is stronger than Chernoff bound).

Recall that the problem with applying Chernoff bound to X =
∑t

i=1 X
2
i is that X2

i variables are not
bounded. We can get around this by defining the “clamping” variables Yi := min(X2

i , 8 log n), and show
that with high probability, Yi = X2

i for all i, because

Pr
[
X2

i > 8 log n
]

= Pr
[
|Xi| >

√
8 log n

]
6

exp(−4 log n)√
8 log n

6
1

n3
,

where the first inequality is Mill’s Inequality [Was04]. And since Y :=
∑

i Yi is a sum of bounded, indepen-
dent random variables, we can use Chernoff bound to finish the proof. Note that since Yi ∈ [±8 log n], to
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get a useful bound from Chernoff we will need t = 1000(log2 n)/ε2 as opposed to t = O(log n/ε2) of previous
part. Nevertheless, this way we have,

Pr(|X− E[X]| > εt) 6 Pr(|Y − E[Y]| > εt)︸ ︷︷ ︸
handled by Chernoff bound

+ Pr(Y 6= X)︸ ︷︷ ︸
handled by Mill’s inequality

,

and so we can use this technique to prove “some” concentration for X as well.
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