CS 761: Randomized Algorithms	University of Waterloo: Winter 2025
	Lecture 11
	February 25, 2025
Instructor: Sepehr Assadi	Scribe: Parth Mittal

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

Topics of this Lecture

1	String Similarity	1
	1.1 Attempt 1: Random indices	1
2	Johnson-Lindenstrauss Lemma (JLL)	2
	2.1 Attempt 2: Gaussians	2

1 String Similarity

In the string similarity problem, we are given n strings $x_1, \ldots, x_n \in \{0, 1\}^d$, and are interested in answering queries on normalized hamming distance between pairs of them. For any pairs of strings $x, y \in \{0, 1\}^d$, define

$$\overline{\Delta}(x,y) = \frac{\Delta(x,y)}{d},$$

where $\Delta(x, y)$ is the hamming distance between x and y, i.e., the number of indices where they differ.

Our goal in the string similarity problem is to compress the data such that given a query (i, j), we can output whether $\overline{\Delta}x_i, x_j > 0.1$, say, or not. Of course, this problem is easy if we store the x_i 's as is; in this lecture, we will see how to solve this problem approximately while storing only a roughly $(\log n)$ -dimensional representation of each x_i .

1.1 Attempt 1: Random indices

The most natural thing to try is to pick t random indices from [d] independently and uniformly (i.e. with replacement). Let **S** denote the random variable containing all the indices we chose, and for $j \in [t]$, let \mathbf{S}_j denote the j-th element of **S**. For $i \in [n]$, let \mathbf{y}_i denote the projection of x_i to the coordinates in **S**. Then, we have the following claim.

Claim 1. For
$$t = \frac{10\ln(2n)}{\varepsilon^2}$$
, $\overline{\Delta}(\mathbf{y}_i, \mathbf{y}_j) \in [\overline{\Delta}(x_i, x_j) \pm \varepsilon]$ for all $i, j \in [n]$ with probability $\ge 1 - 1/n^2$.

Note that the guarantee of the claim is additive — this approach cannot give multiplicative guarantees: e.g., if $\Delta(x_i, x_j) = O(1)$, then the indices where they differ will w.h.p not appear in **S**.

Proof. Let $\phi : \{0,1\}^d \to \{0,1\}^t$ be the map that projects x down to $x_{\mathbf{S}}$. First, we will show that $\overline{\Delta}(x,y)$ is preserved with high probability for any pair of strings x, y.

Fix $x, y \in \{0, 1\}^d$; for $i \in [t]$, let $\mathbf{Z}_i = 1$ iff $x_{\mathbf{S}_i} \neq y_{\mathbf{S}_i}$ and let $\mathbf{Z} = \sum_{i=1}^t \mathbf{Z}_i$. Observe that $\mathbf{Z} = \Delta(\phi(x), \phi(y))$. Then by the additive Chernoff bound, we have that

$$\Pr\left[\left|\mathbf{Z} - \mathbb{E}[\mathbf{Z}]\right| \ge \varepsilon t\right] \le 2\exp\left(-\frac{\varepsilon^2 t^2}{2t}\right) = 2\exp\left(-\frac{\varepsilon^2 t}{2}\right) \le 2\exp(-5\ln(2n)) = \frac{2}{(2n)^5} \le \frac{1}{n^4}.$$

On the other hand, since each \mathbf{Z}_i is an unbiased estimator for $\overline{\Delta}(x, y)$ we know that $\mathbb{E}[\mathbf{Z}] = t \cdot \overline{\Delta}(x, y)$, and so we have that

$$\left|\frac{\Delta(\phi(x),\phi(y))}{t} - \overline{\Delta}(x,y)\right| < \varepsilon$$

with probability $\geq 1 - 1/n^4$.

To finish the proof we will union bound over $\binom{n}{2}$ -many) pairs x_i, x_j in our input; using the bound we showed above, one can see that

$$\left|\frac{\Delta(\phi(x_i),\phi(x_j))}{t} - \overline{\Delta}(x_i,y_i)\right| < \varepsilon$$

for all $i, j \in [n]$ with probability $\ge 1 - 1/n^2$.

Remark. Notice that ϕ is a linear map — it has a $t \times d$ matrix where the (i, j)-th entry is 1 iff $\mathbf{S}_i = j$. This means that $\phi(x + y) = \phi(x) + \phi(y)$, and hence we can easily update the representation of any x_i should only a few bits of x_i change, without having to recompute the entire map from the beginning.

We will now see a second idea that can get multiplicative error bounds, even for the vector analogue of our string similarity problem.

2 Johnson-Lindenstrauss Lemma (JLL)

We begin by defining the **vector similarity** problem; here we are given vectors $x_1, \ldots, x_n \in \mathbb{R}^d$, and want to store low dimension representations $y_1, \ldots, y_n \in \mathbb{R}^t$ that preserve the ℓ_2 -norm. In particular, we want¹

$$\|y_i - y_j\|_2 \approx_{\varepsilon} \|x_i - x_j\|_2$$

for all $i, j \in [n]$.

2.1 Attempt 2: Gaussians

Recall that $\mathcal{N}(\mu, \sigma^2)$ is the gaussian random variable with mean μ and variance σ^2 , whose PDF is:

$$p(x) := \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot \exp(-\frac{(x-\mu)^2}{2\sigma^2}).$$

See Figure 1 for the familiar "bell curve" shape of this distribution with different parameters.

We are now ready to state the main lemma of this lecture:

Lemma 2 (Johnson-Lindenstrauss Lemma [JL84]). For vectors $x_1, \ldots, x_n \in \mathbb{R}^d$, define $\mathbf{y}_1, \ldots, \mathbf{y}_n \in \mathbb{R}^t$ such that $\mathbf{y}_i = \mathbf{S}x_i/\sqrt{t}$, where \mathbf{S} is a $t \times d$ matrix of independent $\mathcal{N}(0,1)$ variables, and $t = 100(\ln n)/\varepsilon^2$. Then with high probability (over the choice of \mathbf{S}), $\|\mathbf{y}_i - \mathbf{y}_j\| \approx_{\varepsilon} \|x_i - x_j\|$ for all $i, j \in [n]$.

To prove the lemma, we first claim that \mathbf{S} preserves the norm of a fixed unit vector.

¹Here and throughout this note, we will use $a \approx_{\varepsilon} b$ to mean $(1 - \varepsilon) \cdot b \leq a \leq (1 + \varepsilon) \cdot b$.

Figure 1: A selection of Normal Distribution Probability Density Functions (PDFs). Both the mean, μ , and variance, σ^2 , are varied. The key is given on the graph.

Source: By Inductiveload - Own work (Original text: self-made, Mathematica, Inkscape), Public Domain, https://commons.wikimedia.org/w/index.php?curid=3817954.

Claim 3. For a vector $v \in \mathbb{R}^d$ such that ||v|| = 1 and a matrix **S** sampled as in Lemma 2 with dimension $t = 10 \ln(1/\delta)/\varepsilon^2$,

$$\Pr_{\mathbf{S}}\left[\frac{\|\mathbf{S}v\|}{\sqrt{t}} \approx_{\varepsilon} 1\right] \ge 1 - 2\delta.$$

Before proving the claim, we see how it implies the lemma.

Proof of Lemma 2. For $i, j \in [n]$ define $v_{ij} = (x_i - x_j)/||x_i - x_j||$. Since $t = 100(\ln n)/\varepsilon^2$, we can apply Claim 3 on all v_{ij} 's with $\delta = 1/n^{10}$, to get that for any $i, j \in [n]$, $\Pr_{\mathbf{S}}[||\mathbf{S}v_{ij}||/\sqrt{t} \not\approx_{\varepsilon} 1] \leq 2/n^{10}$. Union-bounding over i, j, we obtain that $||\mathbf{S}v_{ij}||/\sqrt{t} \approx_{\varepsilon} 1$ for all $i \neq j \in [n]$ with probability $\geq 1 - 1/n^8$.

To finish, we expand the definition of v_{ij} and use the linearity of **S**:

$$\frac{\|\mathbf{S}v_{ij}\|}{\sqrt{t}} \approx_{\varepsilon} 1 \iff \frac{\|\mathbf{S}(x_i - x_j)\|}{\sqrt{t} \cdot \|x_i - x_j\|} \approx_{\varepsilon} 1 \iff \left\|\frac{\mathbf{S}x_i}{\sqrt{t}} - \frac{\mathbf{S}x_j}{\sqrt{t}}\right\| \approx_{\varepsilon} \|x_i - x_j\| \iff \|\mathbf{y}_i - \mathbf{y}_j\| \approx_{\varepsilon} \|x_i - x_j\|,$$

which concludes the proof.

So it "only" remains to show Claim 3. Emulating the proof of Claim 1, we will first argue that each row of **S** gives an unbiased estimator for $||v||^2$. Let $\mathbf{g} = (\mathbf{g}_1, \ldots, \mathbf{g}_d) \sim \mathcal{N}(0, 1)^d$ be a vector of d independent $\mathcal{N}(0, 1)$'s, and look at the random variable $\langle \mathbf{g}, v \rangle$. Because the \mathbf{g}_i 's are mean-0, the expectation of $\langle \mathbf{g}, v \rangle$ is also 0, and gives us no information. The quantity we should really care about (because we are computing

 $\|\mathbf{S}v\|$, which sums the squares of each entry of $\mathbf{S}v$ is the expectation of its square:

$$\mathbb{E}\left[\langle \mathbf{g}, v \rangle^2\right] = \mathbb{E}\left[\left(\sum_{i=1}^t \mathbf{g}_i v_i\right)^2\right] = \mathbb{E}\left[\sum_{i=1}^t (\mathbf{g}_i v_i)^2 + \sum_{i \neq j} \mathbf{g}_i v_i \mathbf{g}_j v_j\right] = \sum_{i=1}^t \mathbb{E}\left[(\mathbf{g}_i v_i)^2\right] + \sum_{i \neq j} \mathbb{E}[\mathbf{g}_i v_i \mathbf{g}_j v_j],$$

where the last inequality is by linearity of expectation. Since \mathbf{g}_i and \mathbf{g}_j are independent when $i \neq j$ the second sum is 0, whereas the *i*-th term of the first is equal to:

$$v_i^2 \cdot \mathbb{E}[\mathbf{g}_i]^2 = v_i^2 \cdot (\operatorname{Var}[\mathbf{g}_i] - \mathbb{E}[\mathbf{g}_i]^2) = v_i^2.$$

Hence $\mathbb{E}[\langle \mathbf{g}, v \rangle^2] = ||v||^2$, and $\mathbb{E}[||\mathbf{S}v||/\sqrt{t}] = ||v|| = 1$. We note that thus far we only used the fact that each entry of \mathbf{g} is independent, has mean 0 and variance 1.

To finish the proof, we need to show a concentration result on $\|\mathbf{S}v\|$. We have

$$\Pr\left[\frac{\|\mathbf{S}v\|}{\sqrt{t}} \not\approx_{\varepsilon} 1\right] = \Pr\left[\|\mathbf{S}v\|^2 \notin \left[(1-\varepsilon)^2 \cdot t, (1+\varepsilon)^2 \cdot t\right]\right] \leqslant \Pr\left[\|\mathbf{S}v\|^2 \not\approx_{\varepsilon} t\right],$$

where the inequality holds because for $0 < \varepsilon < 1$, $[(1 - \varepsilon), (1 + \varepsilon)] \subseteq [(1 - \varepsilon)^2, (1 + \varepsilon)^2]$ and t > 0. Let $\mathbf{S}_1, \ldots, \mathbf{S}_t$ denote the rows of \mathbf{S} , and define the random variables $\mathbf{X}_i := \langle \mathbf{S}_i, v \rangle$ and $\mathbf{X} = \sum_i \mathbf{X}_i^2$. Since we showed above that $\mathbb{E}[\mathbf{X}] = \mathbb{E}[||\mathbf{S}v||^2] = t$, all we need is a bound on the probability $\Pr[|\mathbf{X} - \mathbb{E}[\mathbf{X}] \ge \varepsilon t|]$. This is precisely a concentration inequality and it additionally has the familiar form that \mathbf{X} is sum of *independent* random variables. However, we cannot readily use Chernoff-like bounds on the \mathbf{X} directly since the variables \mathbf{X}_i^2 used in the sum-definition of \mathbf{X} are not bounded.

We will use the fact that a linear combination of independent Gaussians is still a Gaussian. In particular, the distribution of \mathbf{X}_i is $\mathcal{N}(0, ||v||) = \mathcal{N}(0, 1)$. And so $\mathbf{X} = \sum_i \mathbf{X}_i^2$ has a χ -squared distribution, for which the following concentration bound is known:

Proposition 4 ([LM00]). Suppose $\mathbf{X} = \sum_{i} \mathbf{X}_{i}^{2}$ where each $\mathbf{X}_{i} \sim \mathcal{N}(0, 1)$ independently of the rest; then,

$$\Pr[|\mathbf{X} - t| \ge \varepsilon t] \le 2 \exp\left(-\frac{\varepsilon^2 t}{8}\right).$$

Plugging this in, we have that

$$\Pr\left[\frac{\|\mathbf{S}v\|}{\sqrt{t}} \not\approx_{\varepsilon} 1\right] \leqslant 2\exp\left(-\frac{\varepsilon^2 t}{8}\right) = 2\exp\left(-\frac{\varepsilon^2 \cdot 10\ln(1/\delta)}{8\varepsilon^2}\right) \leqslant 2\exp(-\ln(1/\delta)) = 2/\delta.$$

This concludes the proof of Claim 3.

Detour: a "generic hack" for applying Chernoff to unbounded variables

Before concluding this lecture, let us mention a way of applying Chernoff bound itself to prove a weaker version of Claim 3, to show case a useful technique (although, in most cases, one should be able to replace this hack with a proper concentration inequality which is stronger than Chernoff bound).

Recall that the problem with applying Chernoff bound to $\mathbf{X} = \sum_{i=1}^{t} \mathbf{X}_{i}^{2}$ is that \mathbf{X}_{i}^{2} variables are not bounded. We can get around this by defining the "clamping" variables $\mathbf{Y}_{i} := \min(\mathbf{X}_{i}^{2}, 8 \log n)$, and show that with high probability, $\mathbf{Y}_{i} = \mathbf{X}_{i}^{2}$ for all *i*, because

$$\Pr\left[\mathbf{X}_{i}^{2} > 8\log n\right] = \Pr\left[|\mathbf{X}_{i}| > \sqrt{8\log n}\right] \leqslant \frac{\exp(-4\log n)}{\sqrt{8\log n}} \leqslant \frac{1}{n^{3}},$$

where the first inequality is Mill's Inequality [Was04]. And since $\mathbf{Y} := \sum_{i} \mathbf{Y}_{i}$ is a sum of bounded, independent random variables, we can use Chernoff bound to finish the proof. Note that since $\mathbf{Y}_{i} \in [\pm 8 \log n]$, to

get a useful bound from Chernoff we will need $t = 1000(\log^2 n)/\varepsilon^2$ as opposed to $t = O(\log n/\varepsilon^2)$ of previous part. Nevertheless, this way we have,

$$\Pr(|\mathbf{X} - \mathbb{E}[\mathbf{X}]| \ge \varepsilon t) \leqslant \underbrace{\Pr(|\mathbf{Y} - \mathbb{E}[\mathbf{Y}]| \ge \varepsilon t)}_{\text{handled by Chernoff bound}} + \underbrace{\Pr(\mathbf{Y} \neq \mathbf{X})}_{\text{handled by Mill's inequality}},$$

and so we can use this technique to prove "some" concentration for \mathbf{X} as well.

References

- [JL84] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In Conference in modern analysis and probability (New Haven, Conn., 1982), volume 26 of Contemp. Math., pages 189–206. Amer. Math. Soc., Providence, RI, 1984. 2
- [LM00] B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. Ann. Statist., 28(5):1302–1338, 2000. 4
- [Was04] Larry Wasserman. All of statistics. Springer Texts in Statistics. Springer-Verlag, New York, 2004. A concise course in statistical inference. 4