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1 Randomized Algorithms

Welcome to the “Randomized Algorithms” course!

Let me start right away by saying that this is not a good title for this course; a better choice would have
been “A Biased Tour of Probabilistic Ideas in Theoretical Computer Science” but that would have been too
much a mouthful. So, we are going to stick with the standard name.

So, what are some probabilistic ideas in theoretical computer science? It turns out you can use random-
ization to design faster and/or simpler randomized algorithms (of course!), but also:

• Design and analyze deterministic algorithms (e.g., derandomization),

• Preserve privacy of people affected by the algorithms (e.g., differential privacy),

• Ensure truthfulness of people providing inputs to the algorithms (e.g. mechanism design),

• Prove entirely non-probabilistic mathematical facts (e.g., probabilistic method),

• Allow symmetry breaking and coordination between different processes (e.g., distributed algorithms),

• Analyze enormous amount of data using extremely limited space (e.g., streaming algorithms),

and many many more ways. Think of this course as providing you with basic tools for getting into these
exciting areas.

We start our course by studying a recent and surprisingly fast algorithm—using randomization—for one
of the oldest problems in graph theory: (∆ + 1) coloring of a graph with maximum degree ∆.
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2 The (∆ + 1) Vertex Coloring Problem

Given an undirected graph G = (V,E), we use ∆ := ∆(G) to denote the maximum degree of G. For any
integer c > 1, a proper c-coloring of G is an assignment of colors from {1, . . . , c} to the vertices of the
graph, such that for every edge (u, v) ∈ E, the color assigned to u and v is different. For instance, think of
a group of people with some enmity between some pairs of them; we would like to sit them all at a limited
number of tables such that no two enemies sit at the same table. Then, we can think of the people as vertices
of a graph G and have edge between any two of them iff they are enemies; then, if we have c tables in total,
finding the assignment of the people to the tables is exactly the same as finding a proper c-coloring of G
(which may or may not even exist). Figure 1 gives an illustration of these definitions.

Figure 1: An example of a proper 5-coloring of a graph G with maximum degree ∆ = 4.

In this lecture, we are interested in finding a (proper) (∆ + 1)-coloring of any given graph. A simple
observation is that every graph admits such a coloring and in fact there is a very simple greedy algorithm
for finding this coloring: color vertices of the graph in some arbitrary order, and when it is vertex v’s turn
to be colored, check all neighbors of v that are already colored, and find a color missing from all of them.
By the pigeonhole principle, since v has at most ∆ neighbors but (∆ + 1) colors to choose from, we can find
a missing color for v and move on (see the marked vertex v in Figure 1). Once the algorithm terminates,
we will end up with a (∆ + 1) coloring of G. It is easy to see that this algorithm can be implemented in
O(n ·∆) time (try and prove it yourself).

But, can we find a (∆ + 1) coloring even faster than O(n ·∆) time? At first glance, this seems trivially
hopeless – after all, an input graph with maximum degree ∆ may have Ω(n ·∆) edges and thus even reading
the entire input once requires us to spend Ω(n · ∆) time. It turns out that this intuition is actually not
entirely correct and one can indeed obtain even faster algorithms at least for certain ranges of ∆, by using
randomization. The first algorithm to achieve this is due to Assadi, Chen, and Khanna [ACK19] in 2019
but this algorithm is quite complicated (and it actually does a lot more than just obtaining a faster (∆ + 1)
coloring algorithm). In this lecture, we see a different and very simple algorithm for this problem inspired
by a recent result of Assadi and Yazdanyar [AY25] (although the algorithm of [AY25] is different from this
and can achieve some further properties that we will not discuss in this lecture).

3 A Faster (∆ + 1) Coloring Algorithm

Our goal is to design a randomized algorithm for finding a (∆ + 1) coloring. There are in general two
approaches when it comes to randomized algorithms:

• Either the algorithm always outputs a correct answer and thus spend its randomization only to reduce
the runtime; in this case, we are interested in the expected runtime of the algorithm1. These algorithms
are often called Las Vegas (randomized) algorithms.

1More formally, for each input x and choice of random bits r for the algorithm, if T (x, r) denote the runtime of the algorithm
on this particular input x and this choice of random bits, then we are interested in minimizing Er [T (x, r)].
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• The other option is to sometimes err and thus spend its randomization to obtain the correct answer
with high probability2. These algorithms are often called Monte Carlo (randomized) algorithms.

In many cases, one can also translate algorithms of one type into the other type, and we will see that later
in the course.

For this lecture, we will be designing a randomized algorithm that always outputs a (∆ + 1) coloring of
any given graph and its expected runtime is

O(
n2

∆
· log n).

Notice that whenever ∆ = ω(
√
n log n), the runtime of this algorithm will be o(n · ∆) and thus (possibly)

even faster than reading the entire input. In general, we can combine this algorithm and the standard greedy
algorithm to obtain an algorithm for (∆ + 1) coloring that runs in expected O(n ·

√
n log n) time3– for any

graph with more than these many edges, this algorithm runs in sublinear time! The rest of this lecture is
dedicated to the presentation and analysis of this algorithm.

3.1 The Algorithm

The new algorithm also follows the approach of the greedy algorithm quite closely. It will iterate over the
vertices in some order (to be determined later). For every vertex v, as in the greedy algorithm, it attempts to
find a color to assign to v and will not change its decision afterwards. The difference between this algorithm
and the standard greedy algorithm is here: instead of going over all neighbors of v to find a missing color
for v, the new algorithm picks a color c ∈ [∆ + 1] uniformly at random for v and then go over all vertices
that are colored c to see if they are neighbor to v; if not, v will be colored c and the algorithm moves on,
otherwise, it simply picks another random color (again, from all of [∆ + 1] without even discarding “bad”
colors) and continue like this until it can actually color v.

Algorithm 1.

1. Let C1, C2, . . . , C∆+1 = ∅ (we maintain the invariant that Cc always contains vertices colored c).

2. Iterate over vertices in some order (to be determined later); for each vertex v in this order:

(a) Sample a color c ∈ [∆ + 1] uniformly at random;

(b) For every vertex u ∈ Cc, i.e., colored c so far, check if u is a neighbor of v;

(c) If none of Cc is neighbor to v, color v with c, i.e., update Cc ← Cc ∪ {v}; otherwise, go to
the sampling step again.

We can easily observe that if the algorithm does indeed terminate, then the coloring it finds is a proper
(∆+1)-coloring of the input graph. Any new vertex colored does not create a conflict with previously colored
vertices (given the algorithm explicitly checks to not color v with a color c if one of its neighbors is already
colored c) and thus at the end, there cannot be any monochromatic edge in the graph. As such, the only
actual part of the analysis is to figure out how long this algorithm takes (in expectation). Before getting to
this however, we need to take care of an important issue.

Representation of the input. Graphs are typically presented to algorithms as adjacency list or adjacency
matrix. In many cases, the choice of representation does not matter much as we can simply switch between
them without much extra cost by simply reading the input once (especially going from adjacency list to
adjacency matrix is quite straightforward). Yet, in our setting, we are interested in an algorithm that aims

2More formally, for each input x and choice of random bits r, if O(x, r) ∈ {‘correct’,‘incorrect’} denote whether the output of
the algorithm on this particular input and this choice of random bits is correct or not, then, we are in interested in maximizing
Prr(O(x, r) = ‘correct’).

3Basically, run this algorithm when ∆ = ω(
√
n logn) and otherwise run the original greedy algorithm.
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to solve the problem faster than even reading the input once. As such, the representation of the input
actually matters in our case. So, what does our algorithm need? It is easy to see that the only access of the
algorithm to the graph is in Line (2b): it needs to check for a given vertex v and another vertex u ∈ Cc,
whether or not (u, v) is an edge in the graph. For this purpose, having access to the adjacency matrix is
more helpful as it immediately allows for implementing such a query to the input in O(1) time4. Thus, for
the rest of this lecture, we assume the input is given via an adjacency matrix.

3.2 Runtime Analysis

For every vertex v ∈ V , define a random variable Xv, which is equal to the total number of entries of the
adjacency matrix queried by Algorithm 1 in Line (2b) when attempting to color the vertex v. Basically, if

the algorithm “tries” colors c1, c2, . . . , ck before it finds a color for v, then Xv =
∑k
i=1 |Cci |. Note that it is

possible for Xv to be even infinity (although the probability if this event is zero). We have,

Runtime of Algorithm 1 = O(1) ·
∑
v∈V

Xv. (1)

This is simply because the only real time consuming step of the algorithm is this step and all the rest only
take O(n) time (deterministically) which is suppressed in the above asymptotic runtime. Thus, our goal is
now to upper bound

E [Runtime of Algorithm 1] = E

[
O(1) ·

∑
v∈V

Xv

]
= O(1)

∑
v∈V

E [Xv] .

Here, the first step is by Eq (1) and the second one is by linearity of expectation. Thus, our task is now to
simply bound E [Xv] for any given vertex v ∈ V .

Fix a vertex v and define deg<(v) as the number of neighbors of v that appear before v in the ordering
of Algorithm 1. In other words, deg<(v) counts the neighbors of v that already received a color before
coloring v. We claim the following.

Claim 1. For every v ∈ V
E [Xv] 6

n

∆ + 1− deg<(v)
.

Before proving this (simple) claim, let us start with two warm-up questions that provide more intuition
about the algorithm and its analysis.

• Probability a random color is “good” for v: What is the probability that when we sample a color
for the vertex v, it can be used to color v, i.e., c is good for v? Well, this color should not be the color
of one of the already colored neighbors of v which are deg<(v) many. Thus, even if they all receive a
different color, we have,

Pr (c is not used in the neighborhood of v) = 1− Pr (c is used in the neighborhood of v)

> 1− deg<(v)

∆ + 1
=

∆ + 1− deg<(v)

∆ + 1
.

• Expected number of queries for a single random color c: Another question is that when we
sample a single color c ∈ [∆ + 1], how many queries the algorithm needs to do (in expectation) for just
this single color, regardless of whether or not this color is “good” for v. This can be easily calculated
by the definition of expected value as

1

∆ + 1

∆+1∑
c=1

|Cc| 6
n

∆ + 1
,

4Although this is not the only way; for instance, if the input is stored in a way that neighbors of every vertex is stored in a
dedicated hash table (or a balanced search trees), we can obtain almost (but not exactly) the same guarantees.
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since picking a color c means making |Cc| queries, and the sets C1, . . . , C∆+1 form a partition of (a
subset of) vertices of the graph at every point (since every vertex receives a single color).

We now use the same ideas to prove Claim 1 also.

Proof of Claim 1. By the law of conditional expectations, we have,

E [Xv] =

∆+1∑
c=1

Pr (first sampled color for v was c) · E [Xv | first sampled color for v was c] .

Now suppose we know the first sampled color for v was c, what does it tell us about Xv (conditioned on this
event)? Well, first of all, we know that Xv involves making |Cc| queries; then, if c is good for v, i.e., can be
used to color v, then we are done. In other words, for every c which is good for v, we have,

E [Xv | first sampled color for v was c] = |Cc|.

But, what if c is not good for v? Then, we spend |Cc| queries and are in exactly the same place as we were
when we started (since the algorithm simply does a “goto step” to the beginning of coloring v). Thus, for
every c which is not good for v,

E [Xv | first sampled color for v was c] = E [|Cc|+Xv] = |Cc|+ E [Xv] .

But now, letting B(v) denote the set of colors that are not good for v and noting that |B(v)| 6 deg<(v) (for
the same reason as the one when calculating probability a color is not good for v), we have,

E [Xv] =

∆+1∑
c=1

Pr (first sampled color for v was c) · E [Xv | first sampled color for v was c]

=

∆+1∑
c=1

1

∆ + 1
· |Cc|+

∑
c∈B(v)

1

∆ + 1
· E [Xv]

(since the given probability is 1/∆ + 1 and by the discussions above)

6
n

∆ + 1
+

deg<(v)

∆ + 1
· E [Xv] .

Moving E [Xv] to the LHS in the equation above and simplifying the terms imply the result.

At this point, we have proven that

E [Runtime of Algorithm 1] = O(1) ·
∑
v∈V

n

∆ + 1− deg<(v)
. (2)

To conclude the runtime calculation, we need to bound this RHS. The challenge however is that deg<(v) can
be quite different for different vertices and in fact, the value of this sum can change dramatically depending
on the ordering of vertices in the algorithm. This is where we have to fix the notion of picking vertices in
some order stated earlier in Algorithm 1.

Fixing the ordering of vertices in Algorithm 1. The solution here is quite simple: we will also pick
the ordering of the vertices uniformly at random. Let π denote an ordering of vertices. Eq (2) shows that
no matter the choice of π, the runtime of the algorithm can be bounded by the given expression. although
now that ordering of vertices is also random, deg<(v) is a random variable that depends on π; we denote
this by deg<π (v)π for more clarity. Thus, by taking the randomness of π into account, we will have

E [Runtime of Algorithm 1] = E
π
E [Runtime of Algorithm 1 | π] (by the law of conditional probabilities)

= O(1) ·
∑
v∈V

E
π

[
n

∆ + 1− deg<π (v)

]
. (by Eq (2) and linearity of expectation)

The final step is to bound this RHS for every vertex v ∈ V , which is done in the following claim.
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Claim 2. For every vertex v ∈ V ,

E
π

[
n

∆ + 1− deg<π (v)

]
6

n

∆ + 1
· (ln (∆ + 1) + 1) .

Proof. Let deg(v) denote the degree of v in the entire graph. By picking π randomly, we also obtain that
the ordering of the vertices v ∪ N(v) (where N(v) are neighbors of v) is chosen uniformly at random. In
particular, the relative order of v among v ∪N(v) is chosen uniformly. As such, deg<π (v) is chosen uniformly
at random from {0, 1, . . . ,deg(v)}. Hence,

E
π

[
n

∆ + 1− deg<π (v)

]
=

deg(v)∑
d=0

1

deg(v) + 1
· n

∆ + 1− d
. (by the discussion above)

Note that for any choice of deg(v), we have,

deg(v)∑
d=0

1

deg(v) + 1
· n

∆ + 1− d
6

∆∑
d=0

1

∆ + 1
· n

∆ + 1− d
,

because if we let A := {n/(∆ + 1− i)}∆i=0, then, in the LHS, we are taking the average of the smallest
deg(v) + 1 numbers in A, whereas in the RHS we are taking the average of all of A. Continuing the above
then we have,

∆∑
d=0

1

∆ + 1
· n

∆ + 1− d
=

n

∆ + 1
·

∆+1∑
i=1

1

i
(by a change of variable)

6
n

∆ + 1
· (ln (∆ + 1) + 1) ,

where we used the standard inequality that
∑K
i=1 1/i 6 ln (K) + 1 (the series is called the Harmonic series).

Putting everything together, we have,

E
π

[
n

∆ + 1− deg<π (v)

]
6

n

∆ + 1
· (ln (∆ + 1) + 1) ,

concluding the proof.

Plugging in all the bounds we proved so far, we have that

E [Runtime of Algorithm 1] =
∑
v∈V

E [Xv] 6
∑
v∈V

n

∆ + 1
· ln (∆ + 1) = O(

n2

∆
· log (∆)),

proving the desired upper bound on the expected runtime of Algorithm 1. Thus, at this point, we saw an
algorithm and its full analysis for finding a (∆ + 1) coloring in sublinear time (for certain ranges of ∆).
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