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In this lecture, we will primarily focus on the following paper:

• “Sepehr Assadi, Sanjeev Khanna, Yang Li, Tight Bounds for Single-Pass Streaming Complexity of the
Set Cover Problem. In STOC 2016, SICOMP 2019”

1 The Minimum Set Cover Problem

In this lecture, we slightly deviate from graph problems and instead consider another family of classical
optimization problems, namely, coverage problems1, and in particular the set cover problem.

In the set cover problem, we a collection of m sets S1, . . . , Sm from a universe {1, . . . , n} and the goal
is to find the minimum number of sets whose union cover the entire universe. The set cover problem is
a classical optimization problem that has been studied from numerous angles in combinatorics, computer
science, operation research, complexity theory, and so on. In particular, set cover is one of Karp’s original
21 NP-hard problems and its study from both (approximation) algorithms as well as hardness results has
led to the development of fundamental techniques for the entire TCS.

We are going to study this problem in the streaming model. However, let us start by a warm-up on getting
an O(log n) approximation for this problem using the greedy algorithm in the classical setting.

Proposition 1. Consider the following greedy algorithm for set cover: as long as there is an element left
uncovered, pick the set that covers the maximum number of uncovered elements in the set cover. This greedy
algorithm achieves an O(log n) approximation.

Proof. Suppose O1, . . . , Ok is an optimal set cover of the instance. For any iteration i of this algorithm, let
ni denote the number of uncovered elements at the beginning of iteration i (so n1 = n). The important
observation is that in any iteration i, there is a set that covers at least ni/k elements; this is because
O1, . . . , Ok together cover all of ni elements and so one of them has to cover at least ni/k elements (if we
have chosen some of Oi’s already, this ratio can only become better).

As such, for any iteration i, ni+1 ≤ ni− ni

k =
(
1− 1

k

)
ni. This means that the number of uncovered elements

shrink by a factor of at least (1 − 1/k) in every iteration of the greedy algorithm. Hence, after i∗ = k lnn
iterations,

ni∗+1 ≤
(

1− 1

k

)i∗
· n < exp (− lnn) · n < 1,

where we used the fact that 1 − x < e−x for x ∈ (0, 1). As such, after picking at most k lnn sets, greedy
covers the entire universe, thus it is a lnn-approximation.

1We should however emphasize that these problems are closely tied to graph optimization problems and have natural graph-
theoretic interpretation as well. Moreover, in the streaming setting, these problems are often studied alongside graph problems
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Streaming Set Cover Problem. We can model the set cover problem in the streaming model as follows:
the universe {1, . . . , n} is known in advance and each set Si arrives with all its elements together in a
streaming fashion; the algorithm can make one pass (or a few in case of multi-pass algorithms) over these
sets and at the end, it needs to output an approximate set cover of the universe plus a certificate of coverage:
for any element e in the universe, the algorithm should specify one set in the output that covers this element.

Notice that in this setting, the input size to the problem is O(mn), while the output is of size O(n). As such,
we can potentially hope to achieve a streaming algorithm with space as low as O(n), while at the same time,
getting any algorithm with space o(mn) would be non-trivial. Indeed, there are two settings of parameters
that have been studied for the set cover problem:

• Streaming algorithms with memory Õ(n);

• Streaming algorithms with memory Õ(m+ n) of even Õ(mnδ) for δ ∈ (0, 1).

We will consider both regimes in this paper and as before, focus solely on single-pass algorithms.

2 Simple Algorithms for Streaming Set Cover

Let us start by designing some simple algorithms for the streaming set cover problem. The first algorithm
is a clever, yet quite simple, algorithm with Õ(n) space that achieves a O(

√
n)-approximation. This result

is originally due to Emek and Rosén [5] and was further refined (and extended to multi-pass algorithms) by
Chakrabarti and Wirth [3].

Algorithm 1. An O(
√
n)-approximation algorithm for streaming set cover.

(i) Let U ← {1, . . . , n} denote the uncovered elements and Sol← ∅ denote the solution.

(ii) For each arriving set Si in the stream: if Si covers ≥
√
n elements from U , then

Sol← Sol ∪ {Si} and U ← U \ Si;

(for each newly covered element, mark Si as the “coverer” of this element in the certificate).

(iii) In parallel, for any element e ∈ {1, . . . , n}, pick one arbitrary set Se from the stream that covers e.

(iv) Output Sol ∪
⋃
e∈U Se.

The space complexity of this algorithm is O(n) simply because for every element, we store (the name of) at
most 2 sets during the stream. Its correctness also follows immediately because elements in {1, . . . , n}\U are
covered by Sol and the remaining elements will be covered by

⋃
e∈U Se. We now analyze its approximation.

Lemma 2. Algorithm 1 is an O(
√
n)-approximation algorithm.

Proof. The collection Sol can only contain
√
n sets as each one of them covers at least

√
n new elements

and there are n elements in total. Any set not picked in Sol, including the optimal sets, can only cover
√
n

elements from U . Thus, optimum needs at least |U |/
√
n sets to cover U , while Algorithm 1 uses at most

|U | sets to cover U . As a result, the solution returned by Algorithm 1 is at most 2
√
n times larger than the

optimum, proving the lemma.

As such, Algorithm 1 is an O(n)-space streaming algorithm for O(
√
n)-approximation of set cover. But

is there a better streaming algorithm? Emek and Rosén [5] also proved that if one aims for a better
approximation, then the space of the algorithm needs to grow to at least Ω(m). This lower bound was also
further refined (and extended to multi-pass algorithms) by Chakrabarti and Wirth [3].
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Theorem 3 (cf. [5, 3]). Any single-pass streaming algorithm for
√
n-approximation of set cover requires

Ω(m) space (in instances where m = poly(n) for some large degree > 1).

We shall not prove this lower bound for now as we will prove a stronger bound later in this lecture.

The results of [5] essentially settle the complexity of streaming set cover as long as we focus on the o(m) space

regime; but what is we allow for larger space of Õ(m) (or even larger as long as it is o(mn))? Let us first
show that one can obtain better than

√
n approximations in o(mn) space via a straightforward algorithm.

Algorithm 2. An α-approximation algorithm for streaming set cover in O(mn/α) space.

(i) Take the union of every α consecutive sets in the stream and store them as sets T1, . . . , Tm/α (for
every element in the union, store the name of one of the original sets that covers it also).

(ii) Store all sets T1, . . . , Tm/α during the stream in O(mn/α) space.

(iii) Compute a minimum set cover of T1, . . . , Tm/α at the end of the stream; for any set Ti in the cover,
pick all the α sets merged in Ti in the final set cover.

The correctness of this algorithm is immediate to verify. As for the approximation ratio, the optimum
solution of T1, . . . , Tm/α has size at most as large as the original set system; since for every set of this
optimal solution we pick α sets from the original set system, we immediately obtain an α-approximation.

Algorithm 2 suggests that one can do (slightly) better than the
√
n-approximation when the memory can

be Ω(m). But is this the limit? Or can we also get an O(1)-approximation (or even, say, n1/3) in Õ(m)
space? This question was first addressed by Har-Peled, Indyk, Mahabadi, and Vakilian [6] who proved that,
among other interesting results for multi-pass algorithms, any better-than-3/2-approximation algorithm
requires Ω(mn) space. This however still leaves open the possibility of the type of algorithms above. But
then Assadi, Khanna, and Li [1] proved that, perhaps surprisingly, the straightforward α-approximation
algorithm in O(mn/α) is in fact already optimal.

Theorem 4 ([1]). For any α = o
( √

n
logn

)
and m = poly(n), any single-pass α-approximation streaming

algorithm for set cover requires Ω(mn/α) space.

We will prove this theorem in the rest of this lecture.

3 A Hard Distribution for Set Cover

The proof of Theorem 4 is via a communication complexity lower bound for set cover. As before, the first
step in proving this lower bound is identifying a hard distribution of inputs which we do in this section2.

Distribution 1. A hard distribution DSC for one-way two-player set cover communication problem.

Notation. Let s := n
10α and t := 10α logm.

(i) The input to Alice is the following: Sample m sets S1, . . . , Sm independently and uniformly random
among s-subsets of [n], and give them to Alice.

(ii) The input to Bob is the following: Sample i∗ ∈ [m] uniformly at random and let T := [n] \E where
E is chosen uniformly at random among all sets such that |E| = t and |E \ Si∗ | = 1; give T to Bob.

2For simplicity of the notation, the number of sets in these instances will be m+ 1 as opposed to m.
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We establish some key properties of this distribution with respect to the set cover problem that helps explain
why we expect it to be hard for set cover. The proof of both claims are application of Chernoff bound (for
negatively correlated random variables) and are omitted in this version.

Claim 5. For any instance (S1, . . . , Sm, T ) sampled from DSC, with probability 1−o(1), the optimum solution
has size 3 (and otherwise the instance is not feasible, i.e., there is no way to cover the entire universe).

Claim 6. For any instance (S1, . . . , Sm, T ) sampled from DSC, with probability 1− o(1), no collection of 3α
sets can cover more than half of E.

We will reduce the set cover problem over DSC to the following problem that we call the Trap problem.

Definition 7 (Trap Communication Problem). Alice is given a set A ⊆ [n] of size s < n/2. Bob is
given a set B of size t = o(s) such that B \A = {e∗} (e∗ is called the target element). The goal for Bob is to
output a set C ⊆ B of size t/2 such that e∗ ∈ C, i.e., “trap” the target element among half of his input B.

The plan for the rest of the proof is as follows.

(i) We show that the message sent by Alice should allow the players to solve the Trap problem for the pair
(Si∗ , E) in the distribution DSC; this is roughly because Bob should cover the element in |E \Si∗ | using
set other Si∗ and by Claim 5 and Claim 6, for this to happen, he should be able to trap e∗ = E \ Si∗
in a set of size at most half of E (so that the trap set can be covered by 3α sets other than Si∗).

(ii) We will then prove that solving the Trap problem requires Ω(s) communication which would be Ω(n/α)
in our case.

(iii) The above steps only allow us to prove a lower bound of Ω(n/α) as opposed to Ω(mn/α) that we need.
However, notice that even though Alice and Bob only need to solve Trap for (Si∗ , E), Alice is unaware
of which set is Si∗ ; so effectively Alice’s message should be able to solve Trap not only given Si∗ but
for almost all of the sets S1, . . . , Sm. We thus would like to be able to argue that solving set cover is
“equivalent” to solving m instances of the Trap problem, and thus “should be” m times harder as well:
this will then give us the Ω(mn/α) lower bound.

The first two steps of the plan above should sound familiar by now considering we already covered multiple
streaming lower bounds. The last step however is somewhat new; we need to be able to prove a statement
of the following type, often referred to as a direct sum problem:

if solving a problem P requires c unit of “resources”, the solving m independent copies of P
should require ≥ m · c resources.3

An extremely powerful yet simple tool for answering direct sum questions in the context of communication
problems is information complexity. Roughly speaking, in this paradigm, instead of focusing on the length of
the messages communicated between Alice and Bob, we focus on the amount of information revealed about
their inputs (to themselves or to external observers) when solving the problem. In the rest of this lecture, we
focus on building the background on properly defining these notions (what do even mean by “information”)
and how they can be used to address these direct sum questions. We then will come back in the next lecture
and use these to implement our three step plan for the lower bound of the set cover problem.

3Notice that while such a statement may sound “obviously” true, it is in fact not even true in most scenarios. For instance,
consider multiplying a n × n fixed matrix A with a vector x; this obviously requires Θ(n2) time. But multiplying A with n
vectors x1, . . . , xn can be done via fast matrix multiplication in O(n2.37...) � n3 time which is much less resources than solving
n independent problems individually (we shall emphasize that some care is needed to turn this question into a proper direct
sum question to ensure that we are indeed solving n independent problems and not correlated ones).
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4 A Quick Intro to Information Theory

Entropy

Suppose you have a random variable X from a domain X . How many bits to do you need to “encode” a
sample X and send it over to someone else? Well, in the worst-case, definitely log |X | bits is needed, just by
pigeonhole principle. But what about average-case (over the randomness of X)? At this point, the answer
depends on the distribution of X. For instance, if X has a uniform distribution, intuitively you cannot do
much better than (almost) log |X | bits even on average, while if almost all of the mass of X is on a single
value x0, you can do much better by encoding x0 with a shorter message than the rest.

A rough idea is to do the following: start from the largest probability p of any element under X; we can have
at most 1/p different x ∈ X with Pr (X = x) = p(x) = p as otherwise the sum of their probabilities will be
more than 1; thus, we can encode each of these x’s with log (1/p) bits and then move to the next value of p
and continue like this. This way, for any element x, the expected length of encoding used for the element x
is p(x) · log (1/p(x)) (ignoring all ceiling/floor issues, etc.).4

Based on the above discussion, we define the entropy of a random variable X with PDF p(x) for x ∈ X as:

H(X) := E
x∼X

[
log

1

p(x))

]
=
∑
x∈X

p(x) · log
1

p(x)
; (1)

(we use the convention that 0 · log (1/0) = 0 in the definition above).

By the above intuition, we can think of H(X) as a “measure” of the average length of best encoding of X.5

Examples. What are the entropy of each of the random variables below over the domain Ω = {1, . . . , n}?
(compare these with the encoding length of variables you “expect” to achieve by your “own” coding scheme.)

• X: uniform over X ;

• Y : deterministically equal to 1 always;

• Z: Pr(Z = 1) = 1
2 and Pr(Z = i) = 1

2(n−1) for any other i 6= 1 ∈ Ω.

Let us now establish several useful properties of entropy. For that, we first need to recall Jensen’s inequality.

Proposition 8 (Jensen’s inequality). Let f a convex function and X be a random variable over Ω. Then,

f(E [X]) ≤ E [f(X)] .

Moreover, the equality holds iff X is deterministic or f is linear.

Considering log(1/x) function is a convex function of x, we can use Jensen’s inequality to establish several
simple properties of entropy.

Proposition 9 (entropy and support size). For a random variable X with domain X , we have,

0 ≤ H(X) ≤ log |X |.

The LHS is tight iff X is deterministic and the RHS is tight iff X is uniform.

4This is a very handwavy argument and is only meant to help the reader put the notion of entropy in some context; that
being said, this is also not too far from what happens with Huffman coding.

5And again, while this is not precise, this is also not too far from the truth as Huffman coding achieves average length for a
random variable X which is between H(X) and H(X) + 1.
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Proof. The LHS is obviously true because H(X) is expectation of non-negative terms and the only case they
are all zero is when X is deterministic. For the RHS, we apply Jensen’s inequality as follows:

H(X) = E
x∼X

[log (1/p(x))] ≤ log
(

E
x∼X

[1/p(x))]
)

= log |X |.

Jensen’s inequality will be tight here iff all p(x) values are the same (making the random variable 1/p(x)
deterministic), thus implying the second part.

Proposition 10 (sub-additivity of entropy). For random variables X,Y , we have,

H(X,Y ) ≤ H(X) + H(Y );

moreover, the equality holds iff X ⊥ Y . Here H(X,Y ) is simply entropy of the joint random variable (X,Y ).

Proof. We can compute H(X,Y )− (H(X) + H(Y )) as follows:

H(X,Y )−H(X)−H(Y ) =
∑
x,y

p(x, y) log
1

p(x, y)
−
∑
x,y

p(x, y) log
1

p(x)
−
∑
x,y

p(x, y) log
1

p(y)

(p(x) =
∑
y p(x, y) and p(y) =

∑
x,y p(x, y))

=
∑
x,y

p(x, y) log
p(x)p(y)

p(x, y)
= E

(x,y)∼(X,Y )

[
log

p(x)p(y)

p(x, y)

]
≤ log

(
E

(x,y)∼(X,Y )

[
p(x)p(y)

p(x, y)

])
(by Jensen’s inequality)

= log

(∑
x,y

p(x)p(y)

)
= log 1 = 0.

Moreover, Jensen’s inequality above is tight whenever p(x)p(y) = p(x, y) for all x, y, meaning X ⊥ Y .

Conditional Entropy

Recall the motivating example for the entropy and now suppose that you have joint random variables (X,Y ):
Given a sample (x, y) ∼ (X,Y ), how many bits do you need to encode x alone and send it to someone who
already knows y? Again, we are interested in this question on average over choices of both X and Y . You
can again see that this question depends on the distribution of X,Y and the correlation between the two; for
instance for X,Y with fixed marginals, say, both uniform, the answer would be very different when X = Y
so highly correlated vs. when X ⊥ Y .

This discussion brings us to the notion of conditional entropy :

H(X | Y ) := E
y∼Y

[H(X | Y = y)] =
∑
y∈Y

p(y) ·
∑
x∈X

p(x | y) · log
1

p(x | y)
; (2)

(notice that here H(X | Y = y) is just the entropy of random variable X ′ with distribution X | Y = y).

Examples. What are the conditional entropy of each of the random variables? (compare these with the
encoding length you “expect” to achieve by your “own” coding scheme.)

• H(A | B): when A,B are independent and uniform over {0, 1}n;

• H(C | D): when C is uniform over {0, 1}n and D is XOR of bits of D.

• H(E | F ): when E is uniform over {0, 1}n and F is the indicator random variable for E = 0n.

Let us now present on some useful properties of conditional entropy.
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Proposition 11 (chain rule of entropy). For a random variables X,Y , we have,

H(X,Y ) = H(X) + H(Y | X).

Proof. We can compute H(X,Y )− (H(X) + H(Y | X)) as follows:

H(X,Y )−H(X)−H(Y | X) =
∑
x,y

p(x, y) log
1

p(x, y)
−
∑
x,y

p(x, y) log
1

p(x)
−
∑
x

p(x)
∑
y

p(y | x) log
1

p(y | x)

=
∑
x,y

p(x, y) log
1

p(x, y)
−
∑
x,y

p(x, y) log
1

p(x)
−
∑
x,y

p(x, y) log
1

p(y | x)

(p(x) · p(y | x) = p(x, y))

=
∑
x,y

p(x, y) log
p(x) · p(y | x)

p(x, y)
=
∑
x,y

p(x, y) log
p(x, y)

p(x, y)

=
∑
x,y

p(x, y) log 1 = 0.

We shall note that chain rule is one of the most important properties of entropy as it gives us additivity.

Proposition 12 (conditioning cannot increase entropy). For a random variables X,Y , we have,

H(X | Y ) ≤ H(X);

moreover, the equality holds iff X ⊥ Y .

Proof. By sub-additivity H(X,Y ) ≤ H(X)+H(Y ) while by chain rule H(X,Y ) = H(Y )+H(X | Y ). Plugging
in these two implies the result. The second part follows from the second part of Proposition 10.

Let us emphasize that this proposition is only true when conditioning on a random variable and not an event
(i.e., realization of a random variable). Can you give an example when the latter does not hold?

Mutual Information

Finally, we can talk about “information” between two random variables X,Y . In the context of the moti-
vating examples before, we would like to quantify how much the knowledge of Y helped us in encoding X,
i.e., the gap between the average encoding of X with or without the extra knowledge of Y (and vice versa).

Formally, the mutual information between two variables X,Y is defined as:

I(X ; Y ) := H(X,Y )− (H(X | Y ) + H(Y | X)). (3)

By applying chain rule of entropy, we can see right away that

I(X ; Y ) := H(X)−H(X | Y ) = H(Y )−H(Y | X). (4)

which might sound more familiar. Finally, conditional mutual information is defined analogously:

I(X ; Y | Z) := H(X,Y | Z)− (H(X | Z, Y ) + H(Y | Z,X)) (5)

= H(X | Z)−H(X | Z, Y ) = H(Y | Z)−H(Y | Z,X). (6)

Examples. What are the mutual information between the following random variables?
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• I(A ; B): when A,B are independent and uniform over {0, 1}n;

• I(C ; D): when C is uniform over {0, 1}n and D is XOR of bits of D.

• I(E ; F ): when E is uniform over {0, 1}n and F is the indicator random variable for E = 0n.

Some of the important properties of mutual information is as follows.

Proposition 13 (mutual information is non-negative). For any random variables X,Y ,

0 ≤ I(X ; Y ) ≤ min {H(X),H(Y )} ;

moreover, the LHS inequality is tight iff X ⊥ Y .

Proof. The LHS is because I(X ; Y ) = H(X) − H(X | Y ) and conditioning cannot increase entropy. The
RHS is by non-negativity of entropy. The second part of the result also follows from Proposition 12.

Proposition 14 (chain rule of mutual information). For any random variables X,Y, Z,

I(X,Y ; Z) = I(X ; Z) + I(Y ; Z | X).

(note that (X,Y ) is one argument of the mutual information term as a joint variable and Z the other, which
are separated by ’;’).

Proof. By the definition of mutual information and chain rule of entropy,

I(X,Y ; Z) = H(X,Y )−H(X,Y | Z) = H(X) + H(Y | X)−H(X | Z)−H(Y | Z,X)

= H(X)−H(X | Z) + H(Y | X)−H(Y | X,Z) = I(X ; Z) + I(Y ; Z | X).

Unlike entropy, mutual information does not behave that straightforwardly under conditioning (which is to
be expected from our intuition). For instance (you should prove both statements below):

• if X,Y are independent and uniform over {0, 1} and Z = X ⊕ Y , then,

I(X ; Y ) = 0 but I(X ; Y | Z) = 1;

• on the other hand, if X = Y = Z and X is uniform over {0, 1}, then,

I(X ; Y ) = 1 but I(X ; Y | Z) = 0,

Still, there are many cases that we can say something interesting about the effect of conditioning on a mutual
information term.

Proposition 15 (conditioning on an independent random variable cannot decrease information).
For any random variables X,Y, Z, if X ⊥ Z, then,

I(X ; Y ) ≤ I(X ; Y | Z).

Proof. By the definition of mutual information and the fact that conditioning cannot increase entropy,

I(X ; Y | Z) = H(X | Z)−H(X | Y,Z)

= H(X)−H(X | Y,Z) (by moreover part of Proposition 12 since X ⊥ Z)

≥ H(X)−H(X | Y ) (as conditioning on Z cannot increase the entropy)

= I(X ; Y ).
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Remark. This section was only a glance into the amazing area of information theory and in no ways can
do justice to this field. Interested reader is referred to the excellent textbook of Cover and Thomas [4]
as well as numerous courses on information theory tools in TCS for further background.

5 Information Theory Methods in Communication Complexity6

Before we even get to the notion of information complexity, it is worth to examine the power of information
theory tools in addressing communication complexity questions, by studying our favorite problem, the Index
problem, through this lens. Recall that in the Index problem, Alice is given a string x ∈ {0, 1}n and Bob
is given an index i ∈ [n]; the goal is for Alice to send a single message m to Bob and Bob uses m and i to
output xi. We prove the following lower bound for the Index problem (compare this with our previous lower
bound from Lecture 1).

Theorem 16. For any δ ∈ (0, 1), any one-way δ-error protocol for Index over the uniform distribution of
x ∈ {0, 1}n and i ∈ [n] requires

(1−H2(δ)) · n,

communication where

H2(δ) := δ · log
1

δ
+ (1− δ) · log

1

(1− δ)
,

is the binary entropy function (i.e., entropy of a Bernoulli random variable with mean δ).7

To prove this theorem, we need just one more tool from information theory: the Fano’s inequality.

Proposition 17 (Fano’s inequality). Let A,B be two random variables and suppose that there is a function
g : supp(B)→ supp(A) such that Pr (A 6= g(B)) = δ. Then, H(A | B) ≤ H2(δ).

Proving this proposition is left as an exercise in Problem set 7. Using this, we prove the theorem.

Proof of Theorem 16. Let X,M, I denote the random variable for x,m, i, respectively. Let g(m, i) denote
the deterministic function used by Bob to output the answer given m and i.

Since the protocol errs with probability at most δ, we know that

E
(m,i)

Pr
x

(xi 6= g(m, i) |M = m, I = i) ≤ δ.

By taking A to be the random variable XI and B = (M, I) in Fano’s inequality, we obtain that

H(XI |M, I) ≤ δ.

On the other hand, we know that H(XI | I) = 1, as the distribution of XI even conditioned on I is uniform
over {0, 1} and thus we can apply Proposition 9. Putting these two together implies that

I(XI ; M | I) = 1−H2(δ),

i.e., M needs to reveal 1−H2(δ) about XI conditioned on I; this perfectly matches our intuition that Alice
should be able to reveal xi to Bob via the message m.

6The title of this section is borrowed from the title of the pioneering work of [2] which is one of the first papers that initiated
the extremely fruitful approach of using information theory methods to address communication complexity questions.

7Note that for any constant δ < 1/2, H2(δ) < 1 is a constant and thus the lower bound is Ω(n).
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Let us now show that considering Alice is oblivious to the identity of the index i, for revealing this much
information about xi, Alice actually needs to reveal n times more information across all indices. Formally,

I(XI ; M | I) = E
i∼I

[I(XI ; M | I = i)] (by definition of conditional mutual information)

=
1

n

n∑
i=1

I(Xi ; M | I = i) (as I is uniform and since XI = Xi conditioned on I = i)

=
1

n

n∑
i=1

I(Xi ; M)

(as the distribution of X which uniquely determines both Xi and M is independent of the event I = i)

≤ 1

n

n∑
i=1

I(Xi ; M | X<i)

(where X<i = (X1, . . . , Xi−1) and by Proposition 15 since Xi ⊥ X<i as X is uniform over {0, 1}n)

=
1

n
· I(X ; M).

(by a repeated application of the chain rule of mutual information in Proposition 14)

Again, this perfectly matches our intuition; the information revealed about a random coordinate is 1/n times
smaller than the information revealed about the entire string.

Finally, we would like to show that to reveal almost n bit of information about X, the message M has to
be of length almost n as well—this is simply because one bit of message cannot carry more than one bit of
information. Formally, by applying Proposition 13 and Proposition 9, we have,

I(X ; M) ≤ H(M) ≤ log |supp(M)|.

Plugging in this into the bound obtain above, we obtain that

log |supp(M)| ≥ (1−H2(δ)) · n,

which means that we need to have at least 2(1−H2(δ))·n many different messages and thus at least one message
needs to be of size (1−H2(δ)) · n, proving the theorem.
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