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In this lecture, we will primarily focus on the following paper:

• “Sepehr Assadi, Yu Chen, Sanjeev Khanna, Sublinear Algorithms for (∆ + 1) Vertex Coloring.
In SODA 2019.”

1 The (∆ + 1) Vertex Coloring Problem

A proper c-coloring of an undirected graph is any assignment of colors from the palette {1, 2, . . . , c} to the
vertices of the graph such that no two adjacent vertices receive the same color. Graph coloring is another
highly fundamental problem in TCS and graph theory with a wide range of applications. One of the most
basic and applicable forms of graph coloring problems is (∆ + 1) coloring of graphs with maximum degree
∆ as every graph admits such a coloring1: we can color the vertices greedily and by the pigeonhole principle
we never run out of color for each vertex as number of its neighbors is less than the available colors2.

Figure 1: An illustration of the greedy (∆ + 1) coloring algorithm: By the time we get to color a vertex v,
there is still at least one color available to v.

In this lecture, we study the (∆+1) coloring problem in single-pass streams. Despite its utter simplicity, the
greedy algorithm for (∆ + 1) coloring is not suitable for streaming implementation as it requires visiting all
neighbors of each vertex at the same time. As a result, (∆+1) coloring appeared to be more or less a “hard”
problem that cannot be solved via single-pass semi-streaming algorithm. However, in 2019, Assadi, Chen,
and Khanna [2] proved that this problem in fact admits a single-pass semi-streaming algorithm. Formally,

Theorem 1 ([2]). There is a randomized semi-streaming algorithm that makes a single pass over the edges
of any graph G = (V,E) with maximum degree ∆ and with high probability, outputs a (∆ + 1) coloring of G.
Moreover, the algorithm does not need the prior knowledge of ∆, runs in polynomial time, and never outputs
a wrong coloring of G (rather, outputs FAIL when it cannot find a proper coloring).

1And this is tight for cliques and odd-cycles and in fact only for these graphs: by Brook’s theorem, any connected graph
other than a clique or an odd-cycle admits a ∆-coloring.

2In fact, (∆ + 1) coloring has an “ultra greedy” property: any partial solution, i.e., a partial coloring of vertices, can be
extended to a proper coloring without modification.
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We will prove a slightly simpler version of this theorem in this lecture: the algorithm we design will have
exponential time and also assumes the prior knowledge of ∆.3

Notation and Preliminaries. For any integer t ≥ 1, we use [t] := {1, . . . , t}. As before, for any graph
G = (V,E) and vertex v ∈ V , N(v) denotes the neighborset of v and deg(v) is the degree of v. We will use
the following variant of Chernoff bound.

Proposition 2 (Chernoff bound). Suppose X1, . . . , Xn are independent random variables in [0, 1] and
X =

∑
iXi. Then, for any t ≥ 1,

Pr (|X − E [X] | ≥ t · E [X]) ≤ 2 · exp

(
− t · E [X]

3

)
.

2 Warm Up: A Semi-Streaming (2∆)-Coloring Algorithm

We start by presenting a very simple semi-streaming algorithm for (2∆)-coloring (which is an algorithmically
easier problem than (∆ + 1) coloring). The algorithm simply samples O(log n) “potential” colors for each
vertex at the beginning of the stream and throughout the stream store any edge that can ever become
monochromatic under these potential colors; at the end, it tries to find a coloring of the vertices greedily
using these potential colors. Formally,

Algorithm 1. A single-pass semi-streaming algorithm for (2∆)-coloring.

(i) For every vertex v ∈ V , sample a set L(v) of s = (4 logn) colors from {1, . . . , 2∆} uniformly at
random and independently.

(ii) During the stream, store any edge e = (u, v) in a subgraph H if L(u) ∩ L(v) 6= ∅.

(iii) At the end of the stream:

(a) Go over vertices v in V in some arbitrary order;

(b) For any vertex v, if L(v) = ∅ output FAIL; otherwise, color v from any color c in L(v) and
remove c from L(u) for any neighbor u of v in H.

Figure 2: An illustration of Algorithm 1: Many of the edges of the graph can be discarded without the risk
of outputting a wrong coloring.

3The latter assumption is quite easy to remove but removing the former one requires some work. However, it was shown
in [2] that the entire algorithm can be made to work even in Õ(n3/2) time; for moderately dense graphs, this is even faster than
reading the entire input once–in other words, there is an algorithm faster than the textbook greedy algorithm for this problem!
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We first prove that the space complexity of Algorithm 1 is Õ(n) with high probability. The space of this
algorithm is O(n · s) = O(n log n) for storing the colors plus the size of H which we bound in the following.

Lemma 3. The number of edges in the subgraph H of Algorithm 1 is O(n log2(n)) with high probability.

Proof. We prove that the maximum degree of H is O(log2 (n)) with high probability which implies the
lemma immediately. Fix any vertex v ∈ V and its list of colors L(v) and for any neighbor u of v in G, let
Xu ∈ {0, 1} be an indicator random variable which is 1 iff v is neighbor to u in H. For u to be neighbor of
v, L(u) ∩ L(v) should be non-empty. Thus,

Pr (Xu = 1) ≤
∑
c∈L(v)

Pr (c ∈ L(u)) =
s2

2∆
,

where the first inequality is by union bound and the equality is because |L(v)| = |L(u)| = s and conditioned
on L(v), the set L(u) is still a random s-subset of {1, . . . , 2∆}. Moreover, degH(v) =

∑
u∈NG(v)Xu and thus

E [degH(v)] ≤ ∆ · s
2

2∆
= 8 log2 (n).

As degH(v) is sum of independent4 0/1-random variables Xu for u ∈ NG(v), we can apply Chernoff bound
(Proposition 2) and obtain that

Pr
(
degH(v) ≥ 16 log2 (n)

)
≤ 2 · exp

(
−16 log2(n)

3

)
<

1

n5
.

A union bound over all n vertices now finalizes the proof.

We now prove the correctness of Algorithm 1. An immediate observation is that this algorithm never outputs
a wrong coloring of G. More formally, any proper coloring of H such that color of each vertex v is chosen from
L(v)—this is called a list-coloring of H from lists L(v) for v ∈ V—is also a proper (2∆)-coloring of G. This
is simply because each L(v) ⊆ {1, . . . , 2∆} and that any edge (u, v) of G that can ever be monochromatic
under the list-coloring of H also belongs to H by definition. The above argument suggests that as long
as the algorithm does not output FAIL, it will give a correct answer. We now bound the probability of it
outputting FAIL, which finalizes the proof.

Figure 3: An illustration of the proof of Lemma 4: By the time we get to process v, there are still ≥ ∆
colors whose inclusion in L(v) allows for coloring v.

Lemma 4. With high probability, Algorithm 1 does not output FAIL.

4Xu’s are independent as we already conditioned on L(v), and after that, L(u)’s for u ∈ NG(v) are chosen independently.
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Proof. Suppose we are at the step of coloring a vertex v ∈ V in the greedy algorithm at the end of Algorithm 1.
At this point, we condition on the choice of all lists L(u) for vertices u which have already been colored and
say that a color c ∈ {1, . . . , 2∆} is good, if is not used to color any neighbor of v. Clearly, if L(v) contains
any good color, we will be able to color v and no need to output FAIL at this point. By the independence
of the choice of lists, we can think of L(v) being sampled only now. As there are at most ∆ neighbors for v,

Pr (L(v) contains no good color) ≤ ∆

2∆

s

=

(
1

2

)4 logn

=
1

n4
.

A union bound over all v ∈ V implies that the algorithm does not output FAIL with high probability.

Remark. The space complexity of Algorithm 1 is bounded by Õ(n) with high probability but not in
the worst case; with some non-zero probability, it may even use Ω(n2) space. Typically in the streaming
model, we rather bound the worst-case space complexity of algorithms (similar to the communication
cost of protocols in communication complexity). The transition however is standard: we can simply run
the algorithm as it is and whenever it attempted to use a space beyond the bound of Lemma 3 we just
terminate the algorithm and output FAIL right away. This fixes the space complexity of the algorithm
to a worst case bound, while increasing the error probability by a negligible factor.

3 The Semi-Streaming (∆ + 1) Coloring Algorithm

Algorithm 1 suggests a natural approach for the (∆ + 1) coloring problem as well: what will happen if we
sample the colors of each vertex from a set of (∆ + 1) colors instead of (2∆) ones?

It is quite easy to verify that a simple extension of Lemma 3 still holds to bound the space of this new
algorithm. Alas, the last step of the algorithm for greedy list-coloring of H from lists L(v) of v ∈ V no
longer works as before. For instance, suppose G was a (∆ + 1)-clique. By the time we get to color the last
vertex of the clique, all of its ∆ neighbors should have necessarily been colored with distinct colors (or the
algorithm may have failed already). But since we only have (∆ + 1) colors to begin with, this leaves out just
a single good color for v; the probability that this color is chosen in L(v) is then only Θ(log n/∆) and thus
with probability 1− o(1) the algorithm has to output FAIL.

The (∆+1)-clique example on the surface suggest that Algorithm 1 is doomed for (∆+1) coloring. However,
there is still a silver lining in this example: as we prove in the lemma below, even though in this example H
is no longer greedily list-colorable, it still admits proper list-coloring using a different argument.

Lemma 5. Suppose for every vertex v of a (∆ + 1)-clique G, we sample a list L(v) of colors of size s = 8 lnn
independently and uniformly at random from the colors {1, . . . ,∆ + 1}. Then, with high probability, G is
list-colorable from lists L(v) of v ∈ V (note that here n = ∆ + 1).

Proof. As we saw, there is no hope of list-coloring G greedily in this lemma. We instead use a “global”
argument that allows us to color all vertices at the same time by exploiting their dependencies more carefully.

Define the following bipartite graph G := (L,R, E) which we call the palette graph (see Figure 4):

1. The set of vertices on the left L is all vertices of the (∆ + 1)-clique;

2. The set of vertices on the right R is the colors {1, . . . ,∆ + 1};

3. There is an edge between a vertex v ∈ L to a color c ∈ R iff c ∈ L(v).

We claim that there is a list-coloring of G from lists L iff G admits a perfect matching5: this is simply
because there is a one-to-one mappings between list-colorings of g and perfect matchings in G by considering
any edge (v, c) as part of the matchings of G as the assignment of color c from L(v) to v in G.

5The reader may want to consult Lecture 2 for the definitions of perfect matchings and basic tools such as Hall’s theorem
that will be used repeatedly in this lecture as well.
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Figure 4: An illustration of the palette graph in Lemma 5: Finding a perfect matching in this palette graph
allows us to color all vertices the same way in our clique.

It thus remains to prove that G admits a perfect matching with high probability. Considering G is a random
graph with degree Θ(log n), standard results in random graph theory already implies the existence of such
a perfect matching [3]. For completeness and as a warm up, we prove this claim below.

Claim 6. The bipartite graph G := (L,R, E) has a perfect matching with high probability.

Proof. Recall that by Hall’s theorem (see Lecture 2), for this bipartite graph to not have a perfect matching,
there should exist a set S in L, and T in R, such that |T | = |S| − 1 and there are no edges between S
and T̄ = R \ T (this is true iff |N(S)| < |S| for some S which is the more familiar statement of Hall’s
theorem—note that as |L| = |R|, we can simply consider the sets in L instead of both sides).

Let us now fix such a choice of S ⊆ L and T ⊆ R and see what is the probability of this event happening:

Pr (NG(S) ⊆ T ) ≤
(
|T |
n

)|S|·s
=

(
|S| − 1

n

)|S|·s
=

(
1− n− |S|+ 1

n

)|S|·s
≤ exp

(
− (n− |S|+ 1) · |S|

n
· s
)
.

We can bound the above quantity differently for |S| ≤ n/2 and |S| > n/2 and obtain that:

when |S| ≤ n/2: Pr (NG(S) ⊆ T ) ≤ exp (−|S| · 4 lnn) ;

when |S| > n/2: Pr (NG(S) ⊆ T ) ≤ exp (−(n− |S|+ 1) · 4 lnn) ;

Finally, we do a union bound over all choices of S, T , by grouping them based on the size of S:

Pr (G has no perfect matching) ≤
n∑
k=1

∑
S⊆L
|S|=k

∑
T⊆R
|T |=k−1

Pr (NG(S) ⊆ T )

≤
n/2∑
k=1

(
n

k

)2

exp (−4k · lnn) +

n∑
k=n/2+1

(
n

k − 1

)2

exp (−4(n− k + 1) · lnn)

(by monotonicity of
(
a
b

)
for b ≤ a/2 and b ≥ a/2 individually)

=

n/2∑
k=1

(
n

k

)2

exp (−4k · lnn) +

n∑
k=n/2+1

(
n

n− k + 1

)2

exp (−4(n− k + 1) · lnn)

(as
(
a
b

)
=
(
a
a−b
)
)

≤
n/2∑
k=1

exp (−2k · lnn) +

n∑
k=n/2+1

exp (−2(n− k + 1) · lnn) (as
(
a
b

)
≤ ab)

= 2

n/2∑
k=1

1

n2k
≤ 3

n2
. Claim 6
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We are now done as we can color the vertices of G according to the perfect matching of G and find a
list-coloring of G from the lists {L(v) | v ∈ G}.

The natural question at this point is that whether Lemma 5 and (∆+1)-cliques were just lucky exceptions, or
rather Algorithm 1 can be made to work for any input graph, as long as we change the post-processing step
of the algorithm to a more sophisticated approach beyond greedy list-coloring? The palette sparsification
theorem of [2] proves that, perhaps surprisingly, the correct answer is the latter one.

Theorem 7 (Palette Sparsification Theorem [2]). Let G = (V,E) be any graph with n vertices and
maximum degree ∆. Suppose for every vertex v ∈ V , we sample a list L(v) of Θ(log n) colors independently
and uniformly at random from the colors {1, . . . ,∆ + 1}. Then, with high probability, G can be properly
colored by coloring every v ∈ V from the list L(v); in other words, G is list-colorable from lists {L(v) | v ∈ V }.

We will go over the proof of this theorem in the next section. For now, let us see the resulting semi-streaming
algorithm for (∆ + 1) coloring.

Algorithm 2. A single-pass semi-streaming algorithm for (∆ + 1)-coloring.

(i) For every vertex v ∈ V , sample a set L(v) of s = α · log n colors from {1, . . . ,∆ + 1} uniformly at
random and independently, where α is the hidden constant in the Oh-notation of Theorem 7.

(ii) During the stream, store any edge e = (u, v) in a subgraph H if L(u) ∩ L(v) 6= ∅.

(iii) At the end of the stream, find a list-coloring of H from the lists L(v) for v ∈ V or output FAIL if
no list-coloring exists.

We can bound the space complexity of this algorithm with O(n log2(n)) using the same exact argument as
in Lemma 3, and thus we omit the proof. The fact that this algorithm never outputs a wrong coloring is also
exactly as before for Algorithm 1. Finally, the Palette Sparsification Theorem (Theorem 7) ensures that the
algorithm does not output FAIL with high probability, ensuring its correctness.

We should note that Algorithm 2, as it is, takes exponential time as the list-coloring problem it aims to solve
at the end is in general NP-hard. As our main focus in the streaming model is the space of the algorithm,
this is not a total deal breaker. That being said, considering the list-coloring instances that arise in this
algorithm have additional structures (as we shall see in the proof of the Palette Sparsification Theorem), one
can in fact design a very fast algorithm for this list-coloring also; see [2] for this part.

Remark. As is clear from Algorithm 2, almost the entirety of the semi-streaming algorithm for (∆+1)
coloring relies on the Palette Sparsification Theorem and the rest can be handled pretty easily. It turns
out that the surprising power of the Palette Sparsification Theorem is not limited to the streaming
setting and one can use this theorem to design various other sublinear algorithms for (∆ + 1) coloring
and beyond. We refer the interested reader to [2, 1] for further details on this theorem and its extensions
and applications.

4 Palette Sparsification Theorem

We now present a proof of the palette sparsification theorem. The general strategy of the proof is as follows:
the greedy list-coloring approach to coloring G from the sampled lists {L(v) | v ∈ V } works fine for coloring
vertices of degree (1−Ω(1)) ·∆ using the same proof as Lemma 4; as we shall see, this proof can be extended
even to subgraphs of G that are “locally sparse”, i.e., with “sufficient” number of non-edges in the subgraph.
At the same time, to color the subgraphs of G that are “almost a clique”, we can use a similar strategy as
the random graph theory approach of Lemma 5. Thus for a complete proof, we are going to decompose the
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graph into sparse and dense subgraphs and apply each of these ideas separately to each part, while showing
that the resulting partial colorings of each part can be extended to the entire graph.

Remark. This approach of coloring sparse and dense parts of the graph separately has a rich history
in the graph theory literature starting from the pioneering work of Reed [7]. The very high level idea is
typically as follows: the sparse vertices do not have much structure but can be colored greedily while
the dense part typically cannot be colored greedily but has a “nice” structure that one can exploit in a
more global argumenta.

aThe reason this global argument is not applied to the entire graph is the lack of any structure for sparse vertices which
makes the arguments tedious or downright infeasible to carry out there.

4.1 A Sparse-Dense Decomposition

We shall use the following decomposition which is a simple extension of the classical graph decomposition
of Reed in [7] and numerous follow-ups (see Chapter 15 of the excellent book of Molloy and Reed on graph
coloring [6] for more details).

Figure 5: An illustration of the decomposition in Proposition 8.

Proposition 8. Let ε < 1/50 and G = (V,E) be any arbitrary graph. We can decompose the vertices of G
into the sets Vsparse, C1, . . . , Ck with the following properties:

(i) For every vertex v ∈ Vsparse, the total number of edges between the neighbors of v is (1− ε2) ·∆2/2;

(ii) Any set of vertices Ci, called an almost-clique6, has the following properties:

(a) (1− 5ε)∆ ≤ |Ci| ≤ (1 + 5ε)∆;

(b) Any vertex v ∈ Ci has at most 10ε∆ neighbors outside of Ci;

(c) Any vertex v ∈ Ci has at most 10ε∆ non-neighbors inside of Ci.

Proof. Let D denote the set of all vertices with more than (1− ε2) ·∆2/2 edges among their neighbors. For
any vertex v ∈ D, define the following set Sv:

6The reason behind the name should be clear from the properties; each Ci can be turned into a (∆ + 1)-clique by changing
≈ ε fraction of its vertices and edges.

7



1. Let Sv ← N(v) ∪ {v} initially;

2. While there is a vertex u ∈ Sv with |N(u) ∩ Sv| ≤ (1− 4ε)∆, delete u from Sv;

3. While there is a vertex w ∈ V \ Sv with |N(w) ∩ Sv| ≥ (1− 4ε)∆, insert w to Sv.

Considering there is no alternation between deleting and inserting vertices to Sv, this process gives a unique
set Sv. We now list the following properties of the sets Sv for all v ∈ D:

(i) every vertex u ∈ Sv has at least (1− 4ε)∆ neighbors in Sv;

Proof: by the definition of the set Sv itself.

(ii) every vertex u ∈ Sv has at most 4ε∆ neighbors outside of Sv;

Proof: by part (i) and the fact that degree of each vertex is at most ∆.

(iii) |N(v) ∩ Sv| ≥ (1− 3ε)∆ and at least (1− 3ε)∆ vertices in N(v) have ≤ 3ε∆ neighbors outside of Sv.

Proof: we define the non-degree of u ∈ N(v) as the number of vertices in N(v) that are not neighbor
to u. As the average degree of vertices in N(v) is ≥ (1− ε2)∆ and |N(v)| ≤ ∆, the average non-degree
is ≤ ε2∆. By Markov bound, number of vertices U ⊆ N(v) with non-degree > ε∆ is less than ε∆. As
such, each vertex of N(v) \U has more than |N(v)| − ε∆− ε∆ > (1− 3ε)∆ neighbors inside N(v) \U
(note that |N(v)| > (1−2ε2)∆ as otherwise v cannot belong to D even if its neighborhood is a clique).
Finally, it can be seen that Sv ⊇ N(v) \ U as none of the vertices of N(v) \ U would ever be deleted
in the definition of Sv, implying the property.

(iv) |Sv \N(v)| ≤ 5ε∆ and the total number of edges going out of Sv is ≤ 4ε∆2.

Proof: consider the set Sv at the end of the step (2) of its definition. At this point, the total number of
edges going from Sv to outside vertices by parts (iii) and (ii) is ≤ (1−3ε)∆ ·3ε∆ + 3ε∆ ·4ε∆ < 4ε∆2.
At the same time, whenever we add a new vertex w to Sv in the step (3), we reduce the number
of outgoing edges by ≥ (1 − 4ε)∆ due to the inclusion of w, and increase it by ≤ 4ε∆ for the new
contribution of the outside edges of w. As such, the total number of times we can include a new vertex
w to Sv at step (3) is (4ε∆2)/(1− 8ε)∆ ≤ 5ε∆. This means that |Sv \N(v)| ≤ 5ε∆.

(v) If Sv ∩ Su 6= ∅, then u belongs to Sv and v belongs to Su;

Proof: let w be any vertex in Sv ∩ Su and note that by part (i), N(w) intersects both Sv and Su in
at least (1− 4ε)∆ vertices. By part (iv), this also implies that

|N(v) ∩N(w)| ≥ (1− 4ε− 5ε)∆ > 4∆/5 and |N(u) ∩N(w)| > (1− 4ε− 5ε)∆ > 4∆/5.

As such |N(u)∩N(v)| ≥ 3∆/5. Now, consider the set of edges between N(v)∩N(u) and N(u) \N(v).
On one hand, all these edges are from N(v) to outside N(v) and there can be only ε2∆2 such edges
since v ∈ D. On the other hand, all these edges are inside N(u) and there are at most ε2∆2 non-edges
inside N(u) since u ∈ D. This implies that

|N(v) ∩N(u)| · |N(u) \N(v)| − ε2∆2 ≤ |E(N(v) ∩N(u), N(u) \N(v))| ≤ ε2∆2.

Combining with the (loose) lower bound of |N(u)∩N(v)| ≥ 3∆/5, we get |N(u) \N(v)| < 4ε2∆. This
gives a much stronger lower bound of |N(v) ∩N(u)| > (1− ε)∆. Finally, this means that

|N(v) ∩ Su| > (1− 4ε)∆ and |N(u) ∩ Sv| > (1− 4ε)∆,

implying that v ∈ Su and u ∈ Sv by steps (2)/(3) of the procedure.

(vi) v belongs to Sv;

Proof: By part (iii), |N(v) ∩ Sv| > (1− 3ε)∆ and thus v never gets deleted from Sv in step (2).
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Let us now construct the decomposition. We go over vertices of D in some arbitrary order and pick v ∈ D
and corresponding Sv to form an almost-clique C; we then remove all of Sv from D. Properties (v) and (vi)
ensures that the collection of Sv-sets picked in this procedure partitions D and that each almost-clique is
corresponding to some set Sv. This ensures that for any set C (= Sv for some v ∈ D):

• (1− 3ε)∆ ≤ |C| ≤ (1 + 5ε)∆: by properties (iii) and (iv) of Sv = C;

• each vertex u ∈ C has at most 4ε∆ outside neighbors: by property (ii) of Sv = C;

• each vertex u ∈ C has at most 9ε∆ inside non-neighbors: by property (i) and (iv) of Sv = C.

As a result each C is truly an almost-clique as desired in Proposition 8. Finally, any remaining vertex after
this step does not belong to D and thus can be safely placed in Vsparse, concluding the proof.

Throughout the proof of Theorem 7, we pick ε := 10−10, chosen so that any constant arising in the proofs
times ε < 1 and we do not mention this explicitly each time. We then fix a decomposition of the input graph
G = (V,E) with this parameter ε given by Proposition 8 and let Vsparse and C1, . . . , Ck refer to the sets of
this decomposition. We assume the number of sampled colors is O(ε−4 · log n) (which is Θ(log n) considering
ε = Θ(1)). We also assume that ∆ = Ω(ε−4 · log n) as otherwise sampling the colors in Theorem 7 will collect
all available colors of each vertex and the theorem become vacuously true7.

Remark. The decomposition given in Proposition 8 is somewhat different, in terms of the construc-
tions but not the properties, than the one used in the original proof of [2], which was motivated by
the HSS network decomposition of [4]. The reason for the choice of [2] is that it is easier to obtain
the decomposition using the existing result of [4] compared to the approach above, and the resulting
decomposition is more suitable for the “algorithmic” palette sparsification that is needed to obtain fast
algorithms for the list-coloring part compared to the exponential-time algorithms in this lecture.

4.2 Part One: Coloring Vertices in Vsparse

We first show that all vertices in Vsparse are list-colorable from the sampled lists with high probability. The
proof of this part closely follows the classical approaches in graph theory [5] for proving that “locally sparse”
vertices, as in Vsparse, can be colored with much less than ∆ colors. The approach is to first show that
we can color a constant fraction of vertices v ∈ Vsparse using colors of L(v) in a way that the remaining
uncolored graph basically becomes a “low degree” graph and then apply the same argument as in Lemma 4
to finalize the proof. We note that throughout this proof, we solely focus on the induced subgraph of G on
Vsparse (notice that property of Vsparse vertices in Proposition 8 continues to hold here as well as we may
have only reduced the number of edges in their neighborhoods).

Part One-(A): Creating Excess Colors

Consider the following algorithm for a partial list-coloring of Vsparse:

Algorithm 3. An algorithm for partially list-coloring a subset of Vsparse from the sampled lists.

(i) For any vertex v ∈ Vsparse, sample a color c(v) uniformly at random from L(v).

(ii) If the color c(v) 6= c(u) for any neighbor u ∈ N(v), we color v with c(v).

7We note that as stated, the hidden constant in O(logn) samples for this theorem is ∼ 1040 or so (!). However, we made
no attempt to reduce the constants and simply used the simplest choices throughout to help clarify the (already complicated
enough) proof. Indeed, one can reduce these constants dramatically without changing any part of the proof; that being said,
the limit of this approach is still a large constant ∼ 103 or so.
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For any vertex v ∈ Vsparse, define:

• A1(v): the colors in {1, . . . ,∆ + 1}− c(v) that are not used to color any neighbor of v in Algorithm 3;
these colors are available to v (if included in L(v)), for the next step of coloring Vsparse.

• deg1(v): the number of uncolored neighbors of v after Algorithm 3.

The intuition behind Algorithm 3 is simply as follows: for any pairs of vertices in the neighborhood of a
vertex v ∈ Vsparse that are colored the same, A1(v) reduces by one while deg1(v) reduces by two. As such,
if we can have a “large” number of pairs of vertices in the neighborhood of v with the same color, then v
becomes “low degree” compared to the number of available colors it has (and then we know how to handle
low degree vertices similar to Lemma 4 in the next part). Now considering the fact that there are many
non-adjacent pairs of vertices in N(v) as v ∈ Vsparse, we hope that Algorithm 3 would be able to color
enough of number of such pairs with the same color8. We now formalize this as follows.

Figure 6: An illustration of the intuition behind Algorithm 3 and the proof of Lemma 9: the more pairs of
vertices we can color the same in N(v), the more colors we “save” for the next step.

Lemma 9. After running Algorithm 3, with high probability, |A1(v)| ≥ deg1(v) + 10−4 · ε2∆.

Proof. For the purpose of this proof, let us assume that degree of v is exactly ∆: this can be achieved by
adding a set of ∆ − deg(v) ‘dummy’ vertices to the neighborhood of v. Considering v belongs to Vsparse,
by Proposition 8, the number of edges in the neighborhood of v is at most (1 − ε2) · ∆2/2, which implies
that there are ≥

(
∆
2

)
− (1− ε2)∆2/2 = ε2∆2/2−∆/2 non-edges between neighbors of v (including the new

dummy vertices). Let t = ε2∆2/3 and f̄1, . . . , f̄t denote t arbitrary non-edge in N(v). Additionally, define
the following random variable:

• X: number of colors that are sampled by at least two neighbors of v and are additionally retained by
all these neighbors.

8Strictly speaking, the statement that “there are many non-adjacent pairs of vertices in N(v) as v ∈ Vsparse” is not true as
when deg(v) < (1− ε)∆, N(v) can be a clique and v would still be in Vsparse. But in that case v is a already low degree and
there is nothing we need to do anyway.
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Since any color counted in X is used more than once to color a neighbor of v, we have

|A1(v)| ≥ deg1(v) +X − 1, (1)

where the −1 term is because of c(v) itself. Let us first lower bound the expected value of X.

Claim 10. E [X] ≥ e−6 · ε2 ·∆.

Proof. We define Y as the number of colors that are sampled by the endpoints of exactly one of f̄i’s and
are retained by both endpoints. Clearly, X ≥ Y . We thus lower bound Y instead. For every non-edge
f̄i := (ui, wi), define the indicator random variable f̄i where f̄i = 1 if the following two conditions happen:

• c(ui) = c(wi), and,

• for all z ∈ N(v) ∪ N(ui) ∪ N(wi) \ {ui, wi}, c(z) 6= c(ui) (this way, c(ui) = c(wi) and is assigned to
both of them for sure);

otherwise f̄i = 0. By definition, Y =
∑t
i=1 Yi. We have,

Pr [Yi = 1] = Pr [c(ui) = c(wi) ∧ ∀z ∈ N(ui) ∪N(wi) ∪N(v) \ {ui, vi} : c(z) 6= c(ui)]

≥ 1

∆ + 1
·
(

1− 1

∆ + 1

)∆+(∆−1)+(∆−2)

(the color of each vertex is chosen independently and uniformly at random from ∆ + 1 colors)

≥ 1

∆ + 1
· exp

(
− 4∆

∆ + 1

)
≥ e−4

∆ + 1
.

(1− x ≥ e−4x/3 for sufficiently small x ∈ (0, 1/10) and since ∆ is ω(1))

By linearity of expectation, E [X] ≥ E [Y ] ≥ t · e
−4

∆+1 ≥ e
−6 · ε2∆ as t = ε2∆2/3. Claim 10

The next step is to prove that X is concentrated. The proof of this part is a rather involved yet standard
exercise in probabilistic arguments (see, e.g. [6, Chapter 10]) and can be skipped by the reader.

The proof uses Talagrand’s inequality: A function f(x1, . . . , xn) is called c-Lipschitz if changing any xi can
affect the value of f by at most c. Additionally, f is called r-certifiable iff whenever f(x1, . . . , xn) ≥ s, there
exists at most r · s variables xi1 , . . . , xir·s so that knowing the values of these variables certifies f ≥ s.

Proposition 11 (Talagrand’s inequality; cf. [6]). Let X1, . . . , Xn be n independent random variables and
f(X1, . . . , Xn) be a c-Lipschitz and r-certifiable function. For any t ≥ 1,

Pr
(
|f − E [f ] | > t+ 30c

√
r · E [f ]

)
≤ 4 exp

(
− t2

8c2rE [f ]

)
.

Remark. Perhaps the most common concentration inequality used in probabilistic analysis is Chernoff
bound. Despite its simplicity, Chernoff bound is applicable to a surprisingly large number of situation.
Yet, there are still some limits to the power of this basic tool. In such cases, one may want to consider
stronger tools such as Talagrand’s, McDiarmid’s, or Azuma’s inequalities. At a very high level, the
common theme of all these concentration inequalities is the following: if we have a random variable T
which is a function of n independent trials X1, . . . , Xn and T is not “very sensitive” to the outcome of
each triala, then T is “more or less” concentrated around its expectation.

aThis is captured by the notions of Lipschitz constant and certifiably in Talagrand’s inequality in Proposition 11.

We still cannot apply Proposition 11 directly to bound the deviation of X as X is not a certifiable function
of the independent random variables in this context, i.e., c(v) for v ∈ Vsparse. As such, we prove the
concentration of X indirectly as follows. Define the following two additional variables:
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• W : number of colors that are sampled by at least two neighbors of v, regardless of whether they are
assigned to them or not.

• Z: number of colors that are sampled by at least two neighbors of v but are not assigned to at least
one of them.

It is clear that X = W − Z. Also notice that both W and Z are functions of independent random variables
that define the choices of random colors c(v) for every v ∈ Vsparse. Both W and Z are Θ(1)-certifiable (for
W point to two neighbors of v that sampled the color; for Z additionally point to one of the neighbors
of this pair that also sampled the color, hence not allowing one of them to retain it). They are also both
Θ(1)-Lipschitz: changing choice of one color for a vertex can only affect the two colors involved (the original
one and the changed one). As such, we can apply Talagrand’s inequality (Proposition 11) to obtain that (we
only write the bound for W ; the same exact argument works also for Z):

Pr (|W − E [W ] | ≥ E [X] /10) ≤ exp

(
−Θ(1) · (E [X]−Θ(1)

√
∆)2

∆

)
(W ≤ ∆/2 always)

≤ exp
(
−Θ(ε4) ·∆

)
� n−10.

(by Claim 10 on expected value of X and since we can assume ∆ to be � ε−4 · lnn)

As such, we obtain that w.h.p. both W and Z are concentrated and thus also w.h.p.,

X = W − Z ≥ E [W ]− E [X] /10− (Z + E [X] /10) = E [X]− E [X] /5 = (4/5) · E [X] .

Plugging in this and Claim 10 in Eq (1) implies that |A1(v)| ≥ deg(v) + e−7 · ε2∆ with high probability. A
union bound over all vertices finalizes the proof as e7 < 104.

Part One-(B): Finalizing the Coloring of Vsparse

In the following, we condition on the high probability event of Lemma 9. We can now use the same greedy
algorithm in Algorithm 1 to finalize the coloring of vertices in Vsparse.

Algorithm 4. An algorithm for finalizing the list-coloring of Vsparse from the sampled lists.

(i) Go over uncolored vertices v in Vsparse in some arbitrary order;

(ii) For any vertex v, if L(v) = ∅ output FAIL; otherwise, color v from any color c in L(v) and remove
the color c from L(u) for any u ∈ N(v).

Lemma 12. With high probability, Algorithm 4 does not output FAIL.
Proof. Suppose we are at the step of coloring a vertex v ∈ Vsparse. Recall that at the beginning of Algo-
rithm 4, the list of available colors to v were A1(v) and by the time we get to process v, at most deg1(v)
other colors have been removed from A1(v), leaving us with at least 10−4 · ε2∆ choices by Lemma 9.

Now, if L(v) contains any of these colors, we will be able to color v and no need to output FAIL at this
point. By the independence of the choice of lists, we can think of L(v)− c(v) (where c(v) is the color used
in Algorithm 3) as being sampled only now. As such, by considering the s − 1 random colors remained in
L(v) at this point, we have,

Pr (L(v) has no color for coloring v) ≤ (1− 10−4 · ε2∆

∆ + 1
)(s−1) ≤ exp

(
−10−4 · ε−2(s− 1)/2

)
≤ n−5.

(by sampling s ≥ 10−5 · ε2 log n colors in L(v) which is O(log n) still)

A union bound over all v ∈ Vsparse implies that the algorithm does not output FAIL with high probability.

Lemmas 9 and 12 now imply that we can list-color all vertices in Vsparse from the lists L(v) with high
probability, finishing the first part of the proof of Theorem 7.
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4.3 Part Two: Coloring Almost-Cliques One by One

We now start the main part of the proof of Theorem 7 which concerns coloring each almost-clique. Our
approach would be to go over each almost-clique C one by one, assume that every vertex outside C is
colored (even adversarially), and show that the randomness in the choice of L(v) for v ∈ C is still enough
to list-color C in a way that it is also consistent with the coloring of outside vertices. The main idea is to
use a generalization of the random graph theory approach used in Lemma 5. However, this can be tricky
when working with an almost-clique that contains “many” non-edges inside9. As a result, the first step of
our approach here is a pre-processing step for almost-cliques with a “‘large” number of non-edges.

Throughout this section, we fix an almost-clique C in the decomposition of Proposition 8; fix the choice of
all lists L(v) for v /∈ C, and assume that the subgraph G−C is already colored, even adversarially. We then
show that with high probability, we can still color C from the sampled lists L(v) for v ∈ C in a way that it
is consistent with the coloring of G − C. Having achieved this, we can go over almost-cliques of G one by
one and use this approach to color them.

A note on sampling the lists. We are going to make one simplifying assumption: instead of each
vertex sampling Θ(log n) colors from {1, . . . ,∆ + 1}, we think of each vertex v as having k := Θ(log n) lists
L1(v), . . . , Lk(v) where in each one, we sample each color of {1, . . . ,∆ + 1} with probability q := 1

100·
√
ε∆

and another list L∗(v) wherein we sample each color with probability p := Θ(logn)
∆ (we specify the constant

of Θ-notation in Lemma 19); we then think of

L(v) := L1(v) ∪ . . . ∪ Lk(v) ∪ L∗(v).

The latter process still samples lists of size O(log n) colors with high probability for each vertex and thus
proving the result for the latter process also implies the former (with a polynomially small loss on the success
probability and a constant factor larger list sizes). This assumption, while being without loss of generality,
is quite helpful for us to maintain the (much) needed independence between the variables.

Part Two-(A): Pre-Processing the Almost-Clique C

We follow a similar high level strategy as Part One-(A), by trying to color two vertices in the almost-clique
C with the same color, hence “buying” ourselves some extra colors for the main part of the argument.
However, the way this coloring is obtained and its properties are entirely different from that of Algorithm 3.
In particular, this time we need to able to exploit the case when we have only ≈ ε∆ non-edge in an almost-
clique compared to the case of Part One-(A) that worked with ≈ ε2∆2 non-edges. On the other hand, the
structure of almost-cliques allows us to do this more efficiently than the random coloring of Algorithm 3.

The general idea of the algorithm is to find a matching among the non-edges of C such that both endpoints of
this non-edge can be colored the same (from a color shared in the list of both endpoints which also does not
appear in the neighborhood of either outside C), while using a different color for each of its edges, namely,
a colorful non-edge matching. Such an approach would reduces the number of vertices of C at twice the rate
of the number of used colors, hence preparing C for the last step of our algorithm10

Let us briefly go over the intuition behind the algorithm first. Let t denote the number of non-edges in C
and suppose t & ∆ (this is the regime we need the preprocessing for). For us to be able to include a non-edge
f̄ = (u, v) in M̄ we need L(u)∩L(v) 6= ∅—moreover, this intersection should be on a color c not used in the
neighborhood of each vertex; considering out-degrees of u, v is ≈ ε∆ by the decomposition of Proposition 8,

9Among other challenges, such an almost-clique may even have more than ∆ + 1 vertices. In Lemma 5, we modeled the
problem as a matching problem—when number of vertices is > ∆ + 1 we certainly cannot hope to get a matching as some
colors need to be assigned to at least two vertices; the vertices that are colored the same should also be an independent set in
the original graph, a constraint that makes using the random graph theory approach rather infeasible.

10Again, for intuition, consider the case when |C| = ∆+2 and thus originally we cannot hope to get a matching of all vertices
in C to the ∆ + 1 colors. However, such an almost-clique C necessarily has ≥ ∆ non-edges and so Part Two-(B) will be able
to find a non-edge matching of size at least 1 inside C; by coloring the endpoints of this non-edge we will have ∆ + 2− 2 = ∆
remaining vertices to be colored and ∆ + 1− 1 = ∆ available colors; thus, at least finding a matching of remaining vertices to
the colors is not completely out of the question.
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we still have that L(u) ∩ L(v) is non-empty with probability ≈ 1/∆ (as we calculated in Lemma 3; here,
we are omitting the O(log n) factor as it is not relevant). Thus, we expect ≈ t/∆ non-edges to be readily
available to be added to M̄ . Moreover, considering the non-edge degree of vertices in C is ≈ ε∆ by the
decomposition of Proposition 8, after considering the non-edges with intersecting lists, we expect that there
is a non-edge matching of size ≈ t/∆. Finally, we need this matching to be colorful as well but one expects
that the randomness in the choices of lists and their intersection over the non-edges of the matching already
takes care of that, leading us to a non-edge matching of size ≈ t/∆, which is sufficient for us.

Turning this intuition into an actual proof is tricky however considering the non-trivial correlations in the
events above, and in particular as (i) the randomness is over the vertices of the graph (or rather their lists),
while we would like to work with the non-edges, (ii) including some non-edge into the matching prohibits
inclusion of several others due to the matching constraint, and (iii) the set of colors that can be used across
non-edges is correlated due to the coloring of vertices outside the almost-clique. As a result, we turn the
above intuition to an actual proof in a rather indirect way (this is also the reason we partitioned the lists
of each vertex into Θ(log n) parts and focused on each one individually for this step). In the following, we
define our algorithm for each of the lists Li(v) for i ∈ [k] and show that each list can “succeed” with constant
probability; considering we have Θ(log n) lists, at least one of them succeeds with high probability.

Algorithm 5. An algorithm for finding a “colorful non-edge matching” in the almost-clique C using only
the lists {Li(v) | v ∈ V }.

1. Let F̄ := f̄1, . . . , f̄t be the set of non-edges in C, i.e., pairs (u, v) in C with no edge between u and v.

2. Iterate over colors c ∈ {1, . . . ,∆ + 1} in an arbitrary order:

(a) If there is f̄ := (u, v) ∈ F̄ s.t. c ∈ Li(u) ∩ Li(v) and c is not assigned to any neighbor of u, v
yet: add f̄ to M̄ , remove all non-edges incident on u, v from F̄ , and continue to the next color.

Figure 7: An illustration of a colorful non-edge matching in Algorithm 5: in this example, the matching
contains a single non-edge marked in purple.
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Let M̄ denote the non-edge matching returned by Algorithm 5. We can use this non-edge matching to color
endpoints of any f̄ ∈ M̄ with the color c assigned to f̄ when we added it to M̄ ; as each color is given only
for one non-edge and these colors both belong to the lists of the endpoints and at the same time have not
been used in the neighborhood of either, this would be a consistent coloring with the rest of the graph. As
such, after this step, if we define Remain(C) as the set of remaining uncolored vertices in C and Colors(C)
as the set of colors not used inside C still, we will have:

|Remain(C)| = |C| − 2 · |M̄ | , |Colors(C)| = ∆ + 1− |M̄ |. (2)

We will only need Algorithm 5 for almost-cliques with a “non-trivial number” of non-edges which is & ε∆.
In that case, the following lemma shows that we can find a colorful non-edge matching which is smaller than
the number of non-edges by roughly ≈ ε∆.

Lemma 13. Suppose C has at least t ≥ 107 ·ε∆ non-edges in F̄ . Then, Algorithm 5 finds a colorful non-edge
matching of size at least ` := 10−6 · t/ε∆ with probability at least 1/2.

Proof. In the following, we assume that the algorithm right away terminates if it finds a non-edge matching
of size `. For any color c when considered in Line (ii) of Algorithm 5, we define:

• Present(c): the set of non-edges in F̄ at the time of processing c such that c is not used in the
neighborhood of either endpoints, i.e.,

Present(c) :=
{

(u, v) ∈ F̄ | no neighbors of u or v is colored with c
}

;

let pre(c) := |Present(c)|.

• We say that a color c is successful if we add a non-edge to M̄ when iterating c in Algorithm 5; as such,
|M̄ | is equal to the number of successful colors.

We first show that for most colors, pre(c) is sufficiently large. We say a color c is heavy iff pre(c) ≥ t/2 and
otherwise it is light. We first prove that at least half the colors are heavy.

Claim 14. We have at least ∆/2 heavy colors.

Proof. For f̄ = (u, v), let B(f̄) be the set of colors used in the neighborhood of either u or v outside C.
Since out-degree of any vertex in C is at most 10ε∆ by Proposition 8, |B(f̄)| ≤ 20ε∆. As a result, at the
beginning of the algorithm, ∑

f̄∈F̄

|B(f̄)| ≤ t · 20ε∆.

This means that an average color appears in B(f̄) for at most 20εt non-edges f̄ ; an application of Markov
bound now implies that for at least ∆/2 colors c, the color c ∈ B(f̄) for at most 40εt non-edges f̄ . This
implies that at least ∆/2 colors are “present” in at least t− 80εt ≥ 0.9 · t non-edges.

Additionally, whenever we add a non-edge (u, v) to M̄ , we remove all non-edge neighbors of u, v from F̄ ;
considering the in-non-degree of any vertex in C is at most 10ε∆ by Proposition 8, we may delete up to
` · 20ε∆ = (0.1) · t non-edges from F̄ ever. As such, for each of the ∆/2 colors c found above, c can be used
to color ≥ 0.9t− (0.1)t non-edges, thus pre(c) ≥ t/2 for these ∆/2 colors, making them heavy. Claim 14

We now use the above claim to say that whenever we are processing a heavy color, there is a “good”
probability that we add a new edge to M̄ .

Claim 15. For any heavy color c, Pr (c is successful) ≥ 10−5 · t/ε∆2.
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Proof. The color c is successful if at least one non-edge (u, v) ∈ Present(c) have c ∈ Li(u) ∩ Li(v). By a
simple application of the inclusion-exclusion principle,

Pr (c is successful) ≥ Pr (at least one (u, v) ∈ Present(c) have c ∈ Li(u) ∩ Li(v))

≥
∑

(u,v)∈
Present(c)

Pr (c ∈ Li(u) ∩ Li(v))−
∑

(u,v),(u′,v′)∈
Present(c)

Pr (c ∈ Li(u) ∩ Li(v) ∩ Li(u′) ∩ Li(v′)) . (3)

The first term above is easy to bound as each c belongs to Li(u) ∩ Li(v) w.p. q2, hence,∑
(u,v)∈

Present(c)

Pr (c ∈ Li(u) ∩ Li(v)) = pre(c) · q2.

For the second term of Eq (3), there are two types of pairs of (distinct) non-edges (u, v), (u′, v′) that we need
to take into account: the ones that share exactly one endpoint and the ones that do not share any endpoint.
There are at most pre(c) · 10ε∆ many edges of the first type as maximum non-degree of any vertex is at
most 10ε∆ by Proposition 8; there are also at most pre(c)2 many edges of the second type. Hence,∑

(u,v),(u′,v′)∈
Present(c)

Pr (c ∈ Li(u) ∩ Li(v) ∩ Li(u′) ∩ Li(v′)) ≤ pre(c) · 10ε∆ · q3 + pre(c)2 · q4.

We can plugin the above two bounds in Eq (3), and have,

Pr (c is successful) ≥ pre(c) · q2 − pre(c) · 10ε∆ · q3 − pre(c)2 · q4

≥ (0.9) · pre(c) · q2 − pre(c)2 · q4

(as q = (1/100
√
ε∆ and thus 10ε∆ · q < (0.1) for ε < 1)

= (0.9) · pre(c) · q2 · (1− 20ε∆2 · q2)
(as pre(c) ≤ |F̄ | ≤ 20ε∆2 by the decomposition of Proposition 8)

≥ (0.8) · pre(c) · q2 (as q = (1/100
√
ε∆) and thus (1− 20ε∆2 · q2 = 0.998))

≥ t

105 · ε∆2
.

as desired. Claim 15

We are now ready to conclude the proof of Lemma 13. Let θ := 10−5 · t/ε∆2 (the RHS of Claim 15); note
that θ < 1 because t ≤ |F̄ | ≤ 20ε∆2 by the decomposition of Proposition 8. Let Z be a random variable
sampled from binomial distribution B(∆/2, θ). By Claim 15 and the fact that there are ∆/2 heavy colors,
plus a straightforward coupling argument, for every `′ ≤ `:

Pr
(
|M̄ | ≥ `′

)
≥ Pr (Z ≥ `′) . (4)

On the other hand, E [Z] = ∆/2 · θ = 10−5 · t/2ε∆. By Chernoff bound (Proposition 2),

Pr

(
Z <

1

2
· E [Z]

)
≤ exp

(
−E [Z]

6

)
= exp

(
− t

12 · 105 · ε∆

)
≤ exp

(
− 107 · ε∆

12 · 105 · ε∆

)
(as t ≥ 107 · ε∆)

= exp (−5) < 1/2.

As such, with probability at least 1/2,

Z ≥ 10−5 · t/4ε∆ > 10−6 · t/ε∆.

proving the lemma by Eq (4).
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Now, considering we can run Algorithm 5 for Θ(log n) choices of lists {Li(v) | v ∈ V }, we obtain that with
high probability, there is a colorful non-edge matching M̄ of size ` = t/ε∆ in the almost-clique C. We can
thus color the vertices of M̄ accordingly, and by Eq (2), obtain the following lemma as a direct corollary.

Lemma 16. Suppose the number of non-edges of C is t ≥ 107 · ε∆. Then, with high probability, we can
color a subset of vertices in C without using {L∗(v) | v ∈ C} such that:

|Remain(C)| = |C| − 2 · t

106 · ε∆
, |Colors(C)| = ∆ + 1− t

106 · ε∆
,

where Remain(C) is the set of uncolored vertices in C and Colors(C) is the set of colors not used in C.

This concludes the first part of coloring the almost-clique C. We emphasize that we only run Algorithm 5
when the preconditions of Lemma 16 are satisfied and otherwise directly go to the next step.

Part Two-(B): Final Coloring of the Almost-Clique C

The final part of coloring the almost-clique C is to use a similar random graph theory type argument in the
spirit of the case for cliques in Lemma 5. Define the following bipartite graph Gbase := (L,R, Ebase), called
the base palette graph, for the almost-clique C:

• L := Remain(C), i.e., the set of vertices yet to be colored in C; we will use vertices of Remain(C)
and vertices of L interchangeably;

• R := Colors(C), i.e., the set of colors that are yet to be used inside C; we will use colors of Colors(C)
and vertices of R interchangeably;

• Ebase: any vertex v ∈ L has an edge to any color c ∈ R iff c is not used to color any neighbor of v in
G outside C.

Similarly, define the palette graph of the almost-clique C as the bipartite graph G := (L,R, E) on the same
set of vertices as Gbase with the following edges:

• E ⊆ Ebase: we only include an edge (v, c) ∈ Ebase inside E as well if c ∈ L∗(v).

As a result, G is a subgraph of Gbase obtained by sampling each edge of Gbase with probability p.

Figure 8: An illustration of the base palette graph—we note that in the figure above, the depicted edges are
the ones missing from the base palette graph (i.e., the figure shows the complement of the graph).
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In the following, we shall list several key properties of the base palette graph. To start, let us show that L
is always at most as large as R or alternatively, the number of remaining vertices to be colored is at most
the number of available colors.

Claim 17. In Gbase and G, |L| ≤ |R|.

Proof. Suppose first that the number of non-edges t in C is < 107 · ε∆ which is < ∆. Then, |Remain(C)| =
|C| ≤ (∆ + 1) (because when |C| > ∆ + 1, we right away have t > ∆ by just the bound on maximum degree)
and |Colors(C)| = ∆ + 1 (because we do not even run Algorithm 5 in this case). Thus, |L| ≤ |R|.

Now suppose |C| = ∆+1+k for some k > 1 which necessarily implies t ≥ ∆ > 107 ·ε∆ and thus Algorithm 5
was used in this case. We have t ≥ k ·∆, which, by Lemma 16, implies that we will find a non-edge matching
of size 10−6 · k ·∆/ε∆ = 10−6 · k/ε > 2k. As a result, we have,

|L| = |Remain(C)| = ∆ + 1 + k − 4k = ∆ + 1− 3k and |R| = |Colors(C)| = ∆ + 1− 2k,

which concludes the proof.

The fact that |L| ≤ |R| suggests that that possibility of finding a L-perfect matching M in G that matches
all vertices of L is not entirely out of the question. Assuming such a matching exists in G, we will be done
as in Lemma 5: we can color each vertex v of C with the color ofM(v) and obtain a coloring of C from lists
{L∗(v) | v ∈ C} (by definition of G) which is consistent with outside coloring as well (by definition of Gbase).

Of course, the fact that |L| ≤ |R| by no means implies that G (or even Gbase) has a L-perfect matching. In the
following, we list further properties of Gbase, which are consequences of the decomposition in Proposition 8
and the preprocessing step in Lemma 16. We then use these to prove the existence of the required matching.

Properties of Gbase. Let m denote the number of vertices in L, i.e. m := |L| in Gbase. Conditioned on
the high probability event of Lemma 16, Gbase satisfies the following properties:

(i) m ≥ (2/3) ·∆;

Proof: the maximum value of t, the number of non-edges in C is at most 20ε∆2 by Proposition 8. As

such, the minimum possible size of C is at least (1− 5ε)∆− 40ε∆2

106·ε∆ which is at least (2/3) ·∆.

(ii) m ≤ |R| ≤ 2m;

Proof: by part (i) and the fact that |R| ≤ ∆ + 1.

(iii) minimum degree of vertices in L is at least 2m/3, i.e., minv∈L degGbase
(v) ≥ 2m/3.

Proof: any vertex v ∈ Remain(C) has up to 10ε∆ edges out of C by Proposition 8 which implies that
up to 10ε∆ colors in R may be “blocked” for v meaning that v has no edges to them in R. All the
other colors are available to v making the degree of v at least |R| − 10ε∆ > 2m/3 by parts (i), (ii).

(iv) for any vertex v ∈ L,
degGbase

(v) ≥ |R| − (∆ + 1) + |C| − degC(v),

where degC(v) is the number of non-neighbors of v in C;

Proof: degGbase
(v) is equal to the number of colors in Colors(c) that are not blocked for v, i.e., do

not appear in the neighborhood of v outside C. Thus, we only need to count the number of neighbors
of v outside C which are most ∆− (|C| − 1− degC(v)) as degree of v is at most ∆ and it is neighbor
to all but degC(v) + 1 vertices in C (including itself). Thus, |Colors(C)| minus this many colors are
not blocked for v, implying the result.
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(v) for any set S ⊆ L of size |S| ≥ m/2,∑
v∈S

degGbase
(v) ≥ (|S| ·m)−m/4.11

Proof: Suppose first that t < 107 ·ε∆ and thus |L| = |C| and |R| = ∆+1 (as also argued in Claim 17).
By part (iv), and since

∑
v∈S degC(v) ≤ 2t, we can write:∑

v∈S
degGbase

(v) ≥
∑
v∈S

(
|L| − degC(v)

)
≥ |S| ·m− 2t ≥ |S| ·m− 107 · 2ε∆ ≥ |S| ·m−m/4,

as ∆ ≤ (3/2)m by part (i).

Now, consider the other case when t ≥ 107 · ε∆ and let T := 10−6 · t/ε∆. Thus |L| = |C| − 2 · T and
|R| = ∆ + 1− T by Lemma 16. By part (iv),∑

v∈S
degGbase

(v) ≥
∑
v∈S

( ∆ + 1− T︸ ︷︷ ︸
|R|

−(∆ + 1) + |L|+ 2T︸ ︷︷ ︸
|C|

−degC(v))

≥ |S| · |L|+ |S| · T − 2t ≥ |S| ·m+ (2/3) ·∆ · 10−6 · t/ε∆− 2t > |S| ·m,

by the choice of T and part (i) for the second to last inequality.

The above are all the properties of Gbase we need for the rest of the proof, i.e., to show that a random
subgraph G of Gbase wherein each edge is sampled w.p. q has a L-perfect matching. As a warm-up, let us
first quickly argue that Gbase itself has a L-perfect matching (we actually do not need this claim for the proof
but it will provide a basic intuition).

Claim 18. Any graph Gbase satisfying the properties (i) to (v) above has a L-perfect matching.

Proof. By Hall’s theorem, we only need to show that any set S ⊆ L has |NGbase
(S)| ≥ |S|. This is true for

any set S of ≤ m/2 as by property (iii), the minimum degree of any vertex in S is already 2m/3 > |S|. For
any set S of size ≥ m/2, by property (v), there are at least |S|m−m/4 edges going out of S. As each vertex
in R can have at most |S| edges to S, there should be at least m neighbors for S in R as otherwise the total
number of edges between the two sets would be (m − 1) · |S| < |S|m −m/4. As such, by Hall’s theorem,
Gbase has a L-perfect matching.

It is worth pointing out that for Claim 18 to hold, we need the RHS of property (v) to be strictly larger
than |S|m−m (which is indeed true as it is |S|m−m/4). This is a necessary condition as otherwise Gbase
maybe a bipartite clique between L and m− 1 vertices in R hence not having any L-perfect matching.

The very last step of the proof is now to show that random subgraphs of Gbase (or rather any graph satisfying
properties (i) to (v)) also have a perfect matching with high probability. This can be seen as some form of
generalization of typical random graph theory arguments. In (truly) random graphs, we work with random
subgraphs of a clique (or a bipartite clique)—here instead, our “base” graph Gbase from which the sampling
is done is not a clique any more (and in fact can have up to Ω(m2) edges missing from a (lopsided) bipartite
clique). As such, the argument needs to take care of these differences explicitly.

Lemma 19. The subgraph G of Gbase obtained by sampling each edge of Gbase independently and with
probability p := 100 lnn

m (corresponding to (v, c) pairs where c ∈ L(c) and since m = Θ(∆)), with high
probability has a L-perfect matching.

Proof. Similar to the proof of Lemma 5 (and Claim 18), we only need to show that for every set S ⊆ L,
|NG(S)| ≥ |S|. We prove this in the following by considering two different cases based on the size of S.

11Notice that the guarantee provided by this property is much stronger than applying property (ii) to each vertex of S and
this is crucial for the proof; see Claim 18 for the importance of this property.
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Case 1: When S is “small”, i.e., |S| ≤ m/2. In this case, we can simply use the fact that minimum
degree of L-vertices in Gbase is quite large to argue that |NG(S)| should be large also. The proof of this part
is almost identical to that of Lemma 5. Let us formalize this as follows.

Fix a set S ⊆ L of size at most m/2 and a set T ⊆ R of size |S| − 1. By property (iii) on the min-degree of
vertices in S ⊆ L, there at at least |S| · (2m/3− |T |) ≥ |S| ·m/6 edges that are going from S to outside of
T in Gbase. As each of these edges appears in G with probability p = 100 · lnn/m independently, we have,

Pr (NG(S) ⊆ T ) ≤ (1− p)|S|·(m/6) ≤ exp (−|S| · (m/6) · 100 · lnn/m) ≤ n−10|S|.

We can now do a union bound over all choices of S, T and have that,

Pr (there is a set S ⊆ L of size ≤ m/2 with |NG(S)| < |S|) ≤
m/2∑
k=1

(
m

k

)2

· n−10k ≤ n−9,

as m ≤ n. As such, we proved that there is no Hall’s theorem witness set S with |S| ≤ m/2.

Figure 9: An illustration of the two cases in the proof of Lemma 19: the first case is handled by the simple
bound on the minimum degree in property (iii) and the second case is handled by considering the “worst
case” graph based on the property (v).

Case 2: When S is “large”, i.e., |S| > m/2. This is the main part of the proof. For this case, we can
no longer only rely on the property (ii) of Gbase and instead have to use property (v) crucially.

For the rest of the proof, let us set up the following notation. Fix a set S of size ` ≥ m/2. By property (v)
of Gbase, there are at least ` ·m−m/4 edges incident on S. Let us define the following:

• We pick a exactly ` ·m−m/4 edges incident on S and denote them by ES ;

• For any vertex ci ∈ R, we define di as the degree of ci in ES ;

• For any vertex ci ∈ R, we define an indicator random variable Xi where Xi = 1 iff ci does not belong
to NG(S) and otherwise Xi = 0. Finally, define X :=

∑
iXi.

Note that by this definition X denotes the number of vertices in R not in NG(S) and so |NG(S)| = r −X.
As such, we are interested in bounding the probability:

Pr (|NG(S)| < |S|) = Pr (X > r − `) . (5)
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Moreover, by their definition and the definition of G as a random subgraph of Gbase, the random variables
X1, . . . , Xr and corresponding d1, . . . , dr satisfy the following properties:

X1, . . . , Xr are independent;

for i ∈ [r] Pr (Xi = 1) = (1− p)di ;
for i ∈ [r] di ≤ `;

and

r∑
i=1

di = (` ·m)−m/4. (6)

It turns out bounding these probabilities directly is rather hard. Instead, in the following, we first show
the “worst case” possible values for these variables (corresponding to a natural worst case graph) and then
bound the probability of Eq (5) under these variables. Formally,

Claim 20. Consider the following program on independent random variables Y1, . . . , Yr:

maximize{zi}ri=1
Pr

(
Y :=

∑
i

Yi > r − `

)
subject to

for any i ∈ [r] Pr (Yi = 1) = (1− p)zi and 0 ≤ zi ≤ `;
r∑
i=1

zi = (` ·m)−m/4;

(We emphasize that the only variables of this program are the integers (z1, . . . , zr)).

Then, an optimal solution is (z∗1 , . . . , z
∗
r ) = (`, `, · · · , `︸ ︷︷ ︸

m−1

, `−m/4, 0, . . . , 0).

Before getting to the proof of this claim, let us provide some further intuition. Consider the case when
the base graph Gbase is such that there are m − 1 vertices with degree ` to S, one vertex with degree
`−m/4, and all other vertices in R have degree zero to R (such a choice satisfies Eq (6)). Then, the random
variables Y1, . . . , Yr and variables z∗1 , . . . , z

∗
r in Claim 20 would correspond to random variables X1, . . . , Xr

and d1, . . . , dr in Eq (6). By Eq (5) and the optimality of z∗1 , . . . , z
∗
r , we obtain that Pr (|NG(S)| < |S|) is

maximized under such a graph, turning it a worst-case graph for proving the lemma in Case 2.

Another good intuition here is that in defining this worst-case graph, we simply moved degrees of all vertices
in R to a minimal set of m vertices while satisfying the degree requirements of Eq (6); one may expect this
to be the worst-case example as any deviation from this can only increase the chance of another vertex also
joining NG(S) while decreasing the chance of an original vertices to be in NG(S) by a lower amount12.

Proof of Claim 20. Consider any solution (z1, . . . , zr) to the program. We show that we can transform the
solution one variable at a time toward (z∗1 , . . . , z

∗
r ), without decreasing the value of the objective function.

This will imply the optimality of (z∗1 , . . . , z
∗
r ).

Without loss of generality assume z1 ≥ z2 ≥ · · · ≥ zr (as the objective function is symmetric in the variables).
If (z1, . . . , zr) 6= (z∗1 , . . . , z

∗
r ), then there is an index i such that zi < z∗i . Consider the intermediate solution13:

(z′1, . . . , z
′
r) = (z1, . . . , zi−1, zi + 1, zi+1 − 1, zi+2, . . . , zr),

which is a feasible solution because zi < z∗i ≤ ` and zi+1 > 0 as
∑
i zi =

∑
i z
∗
i and both sequences are

sorted. We now prove that this change of variables increase the value of the objective function. The change
above only affects the random variables Yi and Yi+1 in the objective function. As such, we only need to
prove that for any t ∈ {1, 2},

Pr
(
Yi + Yi+1 = t with variables z′i, z

′
i+1

)
≥ Pr (Yi + Yi+1 = t with variables zi, zi+1) .

12We note that all this is just for the intuition—after proving Claim 20, we can directly use the answer to upper bound Eq (6)
as the variables X1, . . . , Xr and d1, . . . , dr form a valid solution to the program of Claim 20.

13In the context of the worst-case graph intuition, here, we are moving one edge of the base graph from a lower degree vertex
vi+1 to a higher degree vertex vi without violating any constraint in Eq (6).
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For t = 1, this is true because:

Pr
(
Yi + Yi+1 = 1 with variables z′i, z

′
i+1

)
= (1− p)z

′
i + (1− p)z

′
i+1 − (1− p)z

′
i+z
′
i+1

= (1− p)zi+1 + (1− p)zi+1−1 − (1− p)zi+zi+1

= (1− p) · (1− p)zi + (1− p)−1 · (1− p)zi+1 − (1− p)zi+zi+1

≥ (1− p)zi + (1− p)zi+1 − (1− p)zi+zi+1

(as (1− p)zi ≤ (1− p)zi+1 and α · x+ 1
α · y ≥ x+ y for α ≤ 1 and x ≤ y)

= Pr (Yi + Yi+1 = 1 with variables zi, zi+1) .

For t = 2, this is true because:

Pr
(
Yi + Yi+1 = 2 with variables z′i, z

′
i+1

)
= (1− p)z

′
i+z
′
i+1

= (1− p)zi+zi+1

= Pr (Yi + Yi+1 = 2 with variables zi, zi+1) .

As such, the value of the objective function does not increase by this change of variables. We can thus
repeatedly apply such transformation to turn the original variables into (z∗1 , . . . , z

∗
r ) without ever decreasing

the objective value, implying the optimality of the latter solution. Claim 20

To upper bound the probability in Eq (5), we can instead upper bound the probability of the objective
value of the program in Claim 20 with the assignment (z∗1 , . . . , z

∗
r ). Notice that under this assignment,

Ym+1 = Ym+2 = . . . = Yr = 1 already as z∗m+1 = . . . = z∗r = 0, and so there is nothing to do for those
variables. As such, our goal is to bound the probability

Pr

(
Y :=

r∑
i=1

Yi > r − `

)
= Pr

(
Ỹ :=

m∑
i=1

Yi > m− `

)
. (7)

Now, fix a set T ⊆ [m] of size m− `+ 1. For Ỹ > m− ` to be true, there should exists at least one T such
that Yi = 1 for all i ∈ T . In the following, we bound this probability for every single T and then do a union
bound on all T . By the independence of variable Yi’s and the values of their marginals under (z∗1 , . . . , z

∗
r )

in Claim 20, we have,

Pr (for all i ∈ T , Yi = 1) =
∏
i∈T

Pr (Yi = 1) = (1− p)
∑

i∈T z
∗
i ≤ (1− p)|T |·`−m/4

(as at most one z∗i = `−m/4 and the rest are `)

≤ exp

(
−100 lnn

m
· ((m− `+ 1) · `−m/4)

)
(by the choice of p = 100 lnn

m and |T | = m− `+ 1)

≤ exp

(
−100 lnn

m
· ((m− `) · `+m/4)

)
(as ` = |S| > m/2 in Case 2)

≤ exp (−25 lnn · (m− `+ 1)) (again as ` > m/2)

= n−25·(m−`+1).

Applying a union bound over all choices of T ⊆ [m] and Eq (7) implies that:

Pr

(
Y :=

r∑
i=1

Yi > r − `

)
≤
(

m

m− `+ 1

)
· n−25·(m−`+1) ≤ n−24·(m−`+1),

as m ≤ n. By Plugging in this inside Eq (5) (by the worst-case guarantee provided by Claim 20), we obtain

Pr (|NG(S)| < |S)|) ≤ n−24·(m−|S|+1).
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Finally, we can do a union bound over all sets S ⊆ L of size ≥ m/2 and obtain that

Pr (there is a set S ⊆ L of size > m/2 with |NG(S)| < |S|) ≤
m∑

k=m/2

(
m

m− k

)
· n−24·(m−k+1)

≤
m∑

k=m/2

n(m−k) · n−24·(m−k+1) (as m ≤ n)

≤ n−20.

As such in Case 2 also there is no Hall’s theorem witness set in G with high probability. This implies that
G has a L-perfect matching with high probability, concluding the proof of the lemma.

By Lemma 19, there is a L-perfect matchingM in G with high probability and by the definition of the graph
G, we can use this matching to color any vertex v ∈ Remain(C) with the color c = M(v) which belongs
to L∗(v) (by the definition of G) and also has not appeared in the neighborhood of v outside C (by the
definition of Gbase) (and as M is a matching, c also does not appear elsewhere in C). This concludes Part
2-(B) of coloring almost-cliques and consequently the entire proof of Theorem 7.

Remark. Throughout the proof of Theorem 7, we introduced several algorithms. However, we should
emphasize that all these algorithms are for the purpose of proving the existence of the list-coloring of the
graph G and not necessarily an algorithm we actually run on the input. In particular, these algorithm
all assume the knowledge of the decomposition of G and also (at least naively) the edges of G as well,
an information that is not available to the streaming algorithm. Nonetheless, the streaming algorithm
simply assumes the existence of the list-coloring and at the end can use any algorithm, say a naive
exponential-time algorithm to find the coloring. That being said, the algorithms discussed plus some
additional ideas (including how to also find an “approximate” decomposition) are used in [2] to find the
list-coloring of G efficiently.
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