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In this lecture, we will primarily focus on the following paper:

• “Ashish Goel, Michael Kapralov, Sanjeev Khanna, On the communication and streaming complexity
of maximum bipartite matching. In SODA 2012.”

1 The Maximum Bipartite Matching Problem

A matching in an undirected graph G = (V,E) is a collection of edges that share no endpoints. A perfect
matching is then a matching that matches all vertices (not every graph has a perfect matching). In the
maximum matching problem, we are interested in finding a largest size matching in a given graph.

Figure 1: An example of a matching.

Matching problem is a fundamental problem in TCS and graph theory with a wide range of applications. A
particularly important special case of this problem is bipartite matching on bipartite graphs G = (L,R,E)
which capture many natural applications of matching problem, for instance, matching items to buyers or
clients to servers. Throughout this lecture (and this course in general), we mostly focus on the bipartite
matching problem for simplicity although many of the ideas discussed will generalize to general graphs as
well (and some do not).

The maximum bipartite matching problem has been studied extensively starting as early as the work of
König [14] over a century ago, and continues to be an excellent testbed for development of fundamental
algorithmic tools and ideas. This problem can be solved easily via a reduction to maximum flow in O(mn)
time1 (this is a standard undergraduate algorithm exercise). There is also a simple elegant algorithm due to
Hopcroft and Karp [12] for solving this problem in O(m

√
n) time (see also [18] for a very recent and exciting

breakthrough on this problem that improves this runtime to Õ(m+ n
√
n)2).

1Throughout the course, n and m denote the number of vertices and edges, respectively.
2This algorithm however is not really simple to put it mildly.

1



In this lecture, we study the bipartite matching problem in single-pass streams and one-way communication
model; we will revisit this problem multiple times in this course in other settings as well. Before moving on
from this section, let us set up some notation and also recall a fundamental result about bipartite matchings.

Notation. We use µ(G) to denote the size of a maximum matching of the graph G. Throughout, we will
always assume |L| = |R| = n/2 (which can be obtained by a simple padding). For any subset of vertices S,
N(S) denotes the neighborset of S and E(S) is the set of edges incident on S; when working with more than
one graphs on the same vertices with subscript these with the corresponding graph to avoid confusion.

Hall’s Marriage Theorem. A classical result in graph theory is Hall’s marriage theorem of [11] that
characterize bipartite graphs that admit a perfect matching.

Proposition 1 (Hall’s theorem [11]). A bipartite graph G = (L,R,E) has a perfect matching iff:

∀S ⊆ L : |S| ≤ |N(S)| and ∀T ⊆ R : |T | ≤ |N(T )|,

where N(A) is the set of neighbors of the set A in G.

Proof. A simple way of proving this is to write the max-flow reduction for bipartite matching and apply the
max-flow min-cut duality (although more elementary proofs by induction are also possible).

Figure 2: An illustration of Hall’s theorem and its extension.

This theorem can be easily extended to characterize the size of a maximum matching in bipartite graphs.

Proposition 2 (Extended Hall’s theorem (folklore)). For any bipartite graph G = (L,R,E),

µ(G) =
n

2
−max

S
(|S| − |N(S)|),

where S ranges over all subsets of L and R (separately)—any arg max above is called a witness set.

Proof. Let k := maxS(|S|− |N(S)|) and S be any witness set to it and by symmetry assume S belongs to L.

We first have that µ(G) ≤ n/2 − k: this is because at least k vertices of S cannot be matched as size of
neighborhood of S is |S| − k. As such, even if all other vertices of L gets matched in G, size of the matching
would be |L \ S|+ |S| − k = n/2− k.

Let us now prove that µ(G) ≥ n/2−k. Consider the graph G′ obtained by copying G, adding k new vertices
to each side of the bipartition, and connecting those vertices to all original vertices of G in G′. We can verify
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that in this new graph, for any subset T of vertices in each bipartition (separately), |T | ≤ |N(T )| (as we
“removed the deficit” in |S| − |N(S)| for every set S in G). As such, by Hall’s theorem in Proposition 1,
G′ has a perfect matching M ′ with size n/2 + k. As the new 2k vertices in G′ can only match 2k edges
in M ′, this means that there is a matching M ⊆ M ′ that do not use any of the new vertices and has size
n/2 + k − 2k = n/2 − k. Since M ⊆ G, we get that µ(G) ≥ n/2 − k. The two parts above imply that
µ(G) = n/2− k = maxS(|S| − |N(S)|), finalizing the proof.

Remark. A similar-in-spirit but considerably more involved characterization for size of maximum
matchings in general (not necessarily bipartite) graphs is the Tutte-Berge formula: It states that in
any graph G = (V,E), size of the maximum matching is:

µ(G) = n+
1

2
min
U⊆V

(|U | − odd(V \ U)) ,

where odd(V \U) counts how many connected components of the subgraph V \U have an odd number of
vertices. We will not work with this formula in this course as our focus is primarily on bipartite graphs
(if you want to familiarize yourself a bit with this formula, use it to give a short proof of Proposition 2).

2 Bipartite Matching in Single-Pass Streams

Perfect Matchings and Exact Algorithms

Let us start by proving that no single-pass streaming algorithm can decide whether a graph has a perfect
matching or not in o(n2). This lower bound was first proved by Feigenbaum et.al. [7].

Theorem 3. Single-pass streaming algorithms for finding a perfect matching require Ω(n2) space.

Proof. The proof is by a simple reduction from the Index problem on the domain {0, 1}N where N = Θ(n2)
where n is the number of vertices of the graph. The reduction is as follows:

(i) The players set the vertices of the graph to be L := L1∪L2 and R := R1∪R2, where |L1| = |R1| =
√
N

and |L2| = |R2| =
√
N − 1 (thus G has n = Θ(

√
N) vertices). Define σ : [N ] → [

√
N ] × [

√
N ] to be

any fixed bijective mapping, e.g., σ(i)→ (i/
√
N, i mod

√
N).

(ii) Given x ∈ {0, 1}N , for all xi = 1, Alice adds an edge between `p ∈ L1 and rq ∈ R1 where σ(i) = (p, q).

(iii) Given i ∈ [N ] with σ(i) = (p, q), Bob adds a perfect matching M21 between L2 and R1 \ {q} and
another one M12 between R2 and L1 \ {p}.

Figure 3: An illustration of the reduction in Theorem 3.

We claim that the resulting graph G has a perfect matching iff Ind(x, i) = xi = 1 as follows:
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(i) If Ind(x, i) = xi = 1, there is a perfect matching in G consists of M21 ∪M12 ∪ {(`p, rq)} for `p ∈ L1,
rq ∈ R1 and (p, q) = σ(i).

(ii) If Ind(x, i) = xi = 0, there is no perfect matching in G. Consider the set S = L2∪{`p} for (p, q) = σ(i);
then N(S) = R1\{rq} as vertices of L2 have no edge to rq by the choice of Bob and `p has no edge to rq
as xi = 0. This mean |S| > |N(S)| and G has no perfect matching by Hall’s theorem (Proposition 1).

As such any one-way communication protocol for bipartite matching requires Ω(n2) communication. Com-
bining this with the connection to streaming algorithms implies the theorem.

Remark. The lower bound of Theorem 3 is the prototypical example of an Ω(n2) lower bound based
on Index, wherein Alice has a bipartite graph and input of Bob makes exactly one pairs of vertices
“important” for solving the problem—thus, we need to figure out whether or not that edge existed in
Alice’s input. As an exercise, you can use this to also prove that any single-pass streaming algorithm
for directed s-t reachability or undirected shortest path requires Ω(n2) space.

Theorem 3 indicates the we cannot hope to achieve any non-trivial streaming algorithm for perfect matching
or maximum matching (even determining their size and not necessarily their edges) in a single pass; all we
can do is to basically use the trivial algorithm that stores the entire input graph. This lower bound was
very recently extended to two pass algorithms in [3]; we also know that any semi-streaming algorithm for
this problem requires Ω(log n/ log log n) passes [10]. We will study these lower bounds later in this course.

A Simple 2-Approximation

Let us now show that there is a very simple algorithm for obtaining a 2-approximation to matching in a single
pass. The algorithm goes over the edges and greedily pick any edge that can be inserted to the currently
maintained matching, and ignores the rest.

Algorithm 1. A single-pass semi-streaming algorithm for 2-approximation of matching.

(i) Let M ← ∅;

(ii) For any edge e = (u, v) in the stream, add e to M if both of u, v are unmatched by M .

(iii) Return M .

We define a matching to be maximal (as opposed to maximum) if it is not a proper subset of any other
matching. In other words, a maximal matching cannot be extended to a larger matching by just directly
adding some other edges of the graph to it. It is easy to verify that, by construction, Algorithm 1 always
outputs a maximal matching. We now prove that any maximal matching is a 2-approximation to the
maximum matching which proves the correctness of the algorithm (the space of the algorithm is clearly O(n)
as it only stores a matching).

Lemma 4. Any maximal matching M of a graph G has size |M | ≥ µ(G)/2.

Proof. Let M∗ be a maximum matching in G. For every edge (u, v) in M∗ at least one of its endpoints is
matched by M ; otherwise, we could add (u, v) directly to M , violating its maximality. This means that the
number of vertices matched by M is at least as large as the number of edges in M∗, i.e., µ(G). Since number
of matched vertices is twice the edges, we get |M | ≥ µ(G)/2.

This algorithm is pretty standard and was first observed by Feigenbaum et.al. [7] who introduced the semi-
streaming model for graph problems. Almost two decades later, we still do not know any better semi-
streaming algorithms for this problem! On the lower bound front, Goel, Kapralov, and Khanna [9] proved
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that no semi-streaming algorithm can achieve a better than 3/2-approximation (we will see this result later in
this lecture); this was subsequently improved by Kapralov to a better-than ( e

e−1 ) ∼ 1.58-approximation [13].
Closing the gap between the trivial 2-approximation upper bound and these lower bounds remains one of the
most longstanding open problems in the graph streaming literature. To make progress on this fascinating
question, several relaxations have been studied, such as:

• Studying the one-way communication complexity of bipartite matching; we will consider this in depth
in the rest of this lecture.

• Considering random-arrival streams: Konrad, Maginez, and Mathieu [16] showed that one can beat the
factor of 2 and achieved a 1.98-approximation. This setting was since studied extensively, culminating
in a very recent semi-streaming algorithm of Bernstein [4] that achieves an almost (3/2)-approximation.

• Considering algorithms with one more pass: Here also, Konrad, Maginez, and Mathieu [16] showed
that one can beat the factor of 2 and achieved a 1.92-approximation. These results has since been
improved in a series of work, leading to an 1.71-approximation by [15]

3 One-Way Communication Complexity of Bipartite Matching

In order to understand single-pass semi-streaming algorithms for bipartite matching, Goel, Kapralov, and
Khanna [9] initiated the study of bipartite matching in the one-way communication model. Recall that
in this model, the edges of a bipartite graph G = (L,R,E) are partitioned between Alice and Bob as EA

and EB , respectively. Then, Alice sends a single message to Bob based on her input and Bob outputs an
approximate maximum matching of G; what is the tradeoff between the size of messages and approximation
ratio of the protocols? In particular, what is the best approximation ratio achievable by algorithms that
communicate Õ(n) size messages. A lower bound in this model immediately imply a space lower bound for
streaming algorithms and an upper bound gives insights and ideas for designing semi-streaming algorithms.

The main results of [9] are as follows: (i) there is a protocol that achieves a (3/2)-approximation to bi-
partite matching using O(n) communication; and (ii) any better-than-(3/2)-approximation protocol re-
quires n1+Ω(1/ log log n) communication3. This implies that there is no semi-streaming algorithm for (3/2)-
approximation of bipartite matching and at the same time, proving stronger lower bounds requires other
techniques that just one-way (two-player) communication complexity4.

In the rest of this section, we go over the proof of each these results. For the upper bound part however,
we present the algorithm of Assadi and Bernstein [2] instead that give a significantly simpler proof of this
result (which unlike [9] also generalizes to general graphs) at a cost of increasing the approximation ratio to
(3/2 + ε) instead for any constant ε > 0.

3.1 A Communication Upper Bound for Bipartite Matching

We prove the following theorem.

Theorem 5 ([2]). There is a one-way protocol for bipartite matching that for any ε > 0, achieves a (3/2+ε)-
approximation using O(n/ε) communication.

The proof of this theorem is by showing that a particular sparse subgraph of Alice’s input EA, referred to
as edge-degree-constrained-subgraph (EDCS), can preserve “large” matchings approximately in a way that
Bob can recover a large matching of EA ∪EB , given the EDCS and EB instead. We start by presenting the
required background on EDCS.

3The latter bound is larger than any n · polylog (n) as n1/ log logn = 2logn/ log logn, while polylog (n) = 2O(log logn).
4The follow-up work of Kapralov [13] proves the ( e

e−1
)-approximation lower bound by considering one-way communication

complexity of matching when we have more than two-players; we will discuss multi-party communication models later in the
course.
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Edge-Degree-Constrained-Subgraphs (EDCS)

EDCS was defined first by Bernstein and Stein [5, 6] in the context of dynamic graph algorithms as follows:

Definition 6 ([5]). For any graph G = (V,E) and parameters β ≥ 1, ε ∈ (0, 1), we define a (β, ε)-EDCS of
G as any subgraph H satisfying the following two properties:

(i) For any (u, v) ∈ H, degH(u) + degH(v) ≤ β ;

(ii) For any (u, v) ∈ G \H, degH(u) + degH(v) ≥ (1− ε)β.

Informally, edges in the EDCS should have a “low” edge-degree, while the edges missing from the EDCS
should not have a “too low” edge degree.

Let us first prove that every graph admits an EDCS (with proper parameters)—this is non-trivial as the
conditions of the EDCS are somewhat at odd with each other and thus a priori it is not clear whether one
can satisfy both simultaneously5.

Proposition 7 ([6]). For any ε > 0 and β ≥ 1
ε , any graph G = (V,E) (not necessarily bipartite) admits a

(β, ε)-EDCS.

Proof. Start with the empty graph H. While there exists an edge in H or G \H that violates properties (i)
or (ii) of EDCS, respectively, fix this edge by removing it from H for the former or inserting it to H for the
latter. We argue that this process terminates in a bounded number of steps. Define the potential function:

Φ = Φ(H) := (1− ε/2) · β ·
∑
u∈V

degH (u)−
∑

(u,v)∈H

(degH(u) + degH (v)) .

Figure 4: An illustration of the proof of existence of EDCS in Proposition 7.

After removing an edge (u, v) due to part (i), we have:

1. The first term decreases by 2β − εβ as two vertices lose a degree of one.

2. The second term (including the minus sign) increases by at least β + 1 (as an edge of degree ≥ β + 1
is removed) plus another β − 1 (as each of the ≥ β − 1 edges neighboring to (u, v) loses one degree).

Thus, in this case Φ increases by εβ. Similarly, after inserting an edge (u, v) due to part (ii), we have:

5In fact, not every graph admits a (β, 0)-EDCS (e.g., a star with two petals).
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1. The first term increases by 2β − εβ as two vertices gained a degree of one.

2. The second term (including the minus sign) decreases by at most (1 − ε)β + 1 (as an edge of prior
degree < (1−ε)β is inserted) plus another (1−ε)β−1 (as each of the ≤ (1−ε)β−1 edges neighboring
to (u, v) gain one degree).

Thus, in this case also Φ increases by εβ. Considering Φ starts from 0 and can only increase to O(nβ2), this
algorithm terminates in an EDCS after O(nβ/ε) fixing steps (the condition on β, ε ensures that ε·β ≥ 1).

We now prove the main property of EDCS in preserving matchings of the original graph approximately. This
was first proved in [5] and was later simplified in [2]—we present the simpler proof here.

Proposition 8 ([5, 2]). For any bipartite graph G and (β, ε)-EDCS H of G for ε ∈ (0, 1/2] and β ≥ 1
ε ,

µ(G) ≤ (3/2 + 2ε) · µ(H).

Proof. Consider any Hall’s theorem witness set A in H from Proposition 2 and assume A ⊆ L by symmetry.
We have |A| − |NH(A)| = n/2− µ(H). At the same time, in G, we have |A| − |NG(A)| ≤ n/2− µ(G) (again
by Proposition 2 otherwise maximum matching of G will be smaller than µ(G)). Thus,

|NG(A)| − |NH(A)| ≥ µ(G)− µ(H).

As NH(A) ⊆ NG(A), the above bound means that there is a matching M in G \ H of size µ(G) − µ(H)
between A and R \ NH(A) (the fact that this is a matching and not an arbitrary set of edges is because
we can consider only the maximum matching of G in calculations above to the same effect). Let S be the
endpoints of this matching. The following claim relates the size of S and NH(S).

Figure 5: An illustration of the proof that EDCS preserves a large matching in Proposition 8.

Claim 9. |S| ≤ (1 + 4ε) · |NH(S)|.

Proof. Let Ẽ := EH(S). We have,

|Ẽ| =
∑
w∈S

degH(w) (as no edge of Ẽ = EH(S) has both endpoints in S)

=
∑

(u,v)∈M

degH(u) + degH(v) (by definition of S being vertices of the matching M)

≥ (1− ε)β · |M |. (by property (ii) of EDCS for each edge of M ⊆ G \H)

= (1− ε)β · |S|
2
. (1)
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On the other hand,

|Ẽ| · β ≥
∑

(u,v)∈Ẽ

degH(u) + degH(v) (by property (i) of EDCS for each edge of Ẽ = EH(S) ⊆ H)

≥
∑
u∈S

degẼ(u)2 +
∑

v∈NH(S)

degẼ(v)2

(as each vertex u contributes degẼ(u) terms to the sum each with a value of degẼ(u))

≥ |S| ·

(
|Ẽ|
|S|

)2

+ |NH(S)| ·

(
|Ẽ|

|NH(S)|

)2

(
∑

u∈S degẼ(u) =
∑

v∈NH(S) degẼ(u) = |Ẽ| and quadratic terms are minimized when all values are the same)

≥ |Ẽ| · (1− ε)β
2

+ |Ẽ| · |Ẽ|
|NH(S)|

. (by Eq (1))

By reorganizing these terms, we obtain that,

|NH(S)| ≥ |Ẽ|
(1 + ε)β/2

≥ (1− ε)β/2 · |S|
(1 + ε)β/2

≥ 1

(1 + 4ε)
· |S|,

(by Eq (1) for second inequality and ε ≤ 1/2 for the last)

as desired. Claim 9

We can now conclude the proof as follows. As A was a Hall’s theorem witness in H, NH(S) ⊆ NH(A)∪L\A.
Morever,

|NH(A) ∪ L \A| = |L| − (|A| − |NH(A)|) = n/2− (n/2− µ(H)) = µ(H).

Thus, |NH(S)| ≤ µ(H). On the other hand, |S| = 2 · (µ(G)− µ(H)) and by Claim 9, we have,

2(µ(G)− µ(H)) ≤ (1 + 4ε) · µ(H),

implying that µ(G) ≤ (3/2 + 2ε) · µ(H) as desired.

Remark. Let us briefly give an intuitive explanation of the proof of Proposition 8:

1. The Hall’s theorem witness approach shows that there is a set S of 2(µ(G)− µ(H)) vertices that
are unmatched in H while there is a matching of this size between them in G. Property (ii) of
EDCS implies that average degree of these vertices is at least (1− ε)β/2 in H.

2. Now this is where the “magic” of EDCS happens: for intuition, suppose all these vertices of S had
degree exactly (1− ε)β/2 (instead of on average); then, the neighbors of these vertices in H, i.e.,
NH(S) should all have degree at most (1+ε)β/2 to satisfy property (i) of EDCS. This necessarily
means that size of NH(S) can only be slightly smaller than S or informally |S| .ε |NH(S)|.

3. As all vertices in NH(S) are part of the matching µ(H), we get 2(µ(G)− µ(H)) .ε µ(H), which
gives us the almost (3/2)-approximation.

The reader is strongly encouraged to consider applying this proof when H is instead a maximal or even
maximum β-matching in G—a maximal/maximum subgraph of G with degree of every vertex bounded
by β—and see why the same proof only gives a 2-approximation (which is also tight). Hint: Check
what happens to the “magic” step above when working with vertex degrees instead of edge degrees.

Before moving on from this section, let us mention that Proposition 8 also holds for general graphs when
β = Θ(1/ε2 log (1/ε)); this was first proved in [6] and was simplified considerably in [2] (with slightly
improved parameters).
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The Protocol for Bipartite Matching

We are now ready to present our protocol in Theorem 5. The protocol basically involves Alice sending an
EDCS of her input and Bob computing a maximum matching of this EDCS plus his own edges.

Algorithm 2. A one-way communication protocol for bipartite matching.

(i) Given EA as input, Alice computes a (β, ε/4)-EDCS of EA for the given parameter ε and β =
⌈

4
ε

⌉
and sends it to Bob.

(ii) Given EB as as input and H as the message of Alice, Bob outputs a maximum matching of H ∪EB .

Algorithm 2 only communicates O(n/ε) edges as EDCS H can only have O(nβ) = O(n/ε) edges by the
property (i) of EDCS. The following lemma proves the correctness of this protocol.

Lemma 10. Algorithm 2 outputs a (3/2 + ε)-approximation to the maximum matching of G.

Proof. Let M∗ be a maximum matching of G and M∗B be the part of this matching that belongs to Bob’s
input (of course, this is unknown to the algorithm but this is only used for the analysis). Let M̃ be the
following subset of M∗B :

M̃ := {(u, v) ∈M∗B | degH(u) + degH(v) ≤ β} .

We will prove that H ∪ M̃ is a (β + 2, ε/2)-EDCS for EA ∪M∗B . This immediately concludes the proof as:

µ(H ∪ EB) ≥ µ(H ∪ M̃) ≥ (3/2 + ε) · µ(EA ∪M∗B) = (3/2 + ε) · µ(G),

which hold because: (i) H ∪EB ⊇ H ∪ M̃ , (ii) by Proposition 8, and (iii) M∗ ⊆ EA ∪M∗B . It thus remains
to prove that H̃ := H ∪ M̃ is indeed a (β + 2, ε/2)-EDCS for EA ∪M∗B . We do so by checking all EDCS
properties (in the following, recall that H was a (β, ε/4)-EDCS of EA):

Figure 6: An illustration of the proof of Lemma 10.

• For any (u, v) ∈ EA:

(i) If (u, v) ∈ H, then degH̃(u) + degH̃(v) ≤ β + 2 because degrees of vertices in H can only increase

by one in H̃ and by property (i) of EDCS H;

(ii) If (u, v) /∈ H, then degH̃(u) + degH̃(v) ≥ (1− ε/4)β ≥ (1− ε/2)(β+ 2) by property (ii) of EDCS.

• For any (u, v) ∈M∗B :
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(i) If (u, v) ∈ M̃ , then degH̃(u) + degH̃(v) ≤ β+ 2 because degrees of vertices in H can only increase

by one in H̃ and by the definition of M̃ ;

(ii) If (u, v) /∈ M̃ , then degH̃(u) + degH̃(v) > β > (1− ε/2)(β + 2), again by the definition of M̃ .

This means H̃ satisfies all properties of an (β + 2, ε/2)-EDCS for EA ∪M∗B , finalizing the proof.

This concludes the proof of Theorem 5. We again remark that Theorem 5 even holds for general graphs (by
increasing the communication to O((n/ε2) · log (1/ε)); see [2].

3.2 A Communication Lower Bound for Bipartite Matching

Let us now switch to proving a tight lower bound on the approximation ratio achievable by protocols that
use Õ(n) size messages. In particular, we prove the following theorem.

Theorem 11 ([9]). For any constant ε > 0, any one-way protocol for bipartite matching with approximation
ratio of (3/2− ε) requires n1+Ωε(1/ log log n) communication.

The proof of this theorem is based on using a remarkable family of graphs that we define below.

Ruzsa-Szemerédi (RS) Graphs

A matching M in a graph G = (V,E) is called an induced matching if there are no other edges between the
vertices of this matching; in other words, the subgraph of G induced on vertices of M only consists of M .

Definition 12 (Ruzsa-Szemerédi (RS) Graphs [17]). We call a graph G = (V,E) an (r, t)-RS graphs if
its edges can be partitioned into t induced matchings M1, . . . ,Mt, each of size r.

There is a trivial way of creating a bipartite (r, t)-RS graph with t = (n/2r)2, and thus r · t = Θ(n2/r) edges:

(i) Let L := L1 ∪ · · · ∪ Ln/2r and R := R1 ∪ · · · ∪R2n/r, with each component of size r.

(ii) Add a perfect matching Mij of size r between any two Li and Rj .

This graph forms an (r, t)-RS graph as there are no other edges between Li×Rj beside the matching Mij of
size r and t = (n/2r)2. For our application, we are interested in the case when r = Θ(n); this construction,
at this point, only gives a very sparse (r, t)-RS graph with Θ(n) edges. Let us first see that we can create a
bipartite (r, t)-RS graph with r = n/4 (so half the size of a perfect matching) and Θ(n log n) edges.

A slightly non-trivial RS graph. Consider the following graph:

(i) Let L := {0, 1}k and R := {0, 1}k for k = log (n/2) = log n− 1 (so |L| = |R| = n/2). We identify the
vertices on each side of the bipartition by a k-bit string x1x2 . . . xk.

(ii) For any i ∈ [k], add a matching Mi defined as follows to the graph:

Mi :=

(u, v) | u = x1x2 · · · 0︸︷︷︸
i

· · ·xk−1xk ∈ L and v = x1x2 · · · 1︸︷︷︸
i

· · ·xk−1xk ∈ R

 .

This graph has n vertices and (log n− 1) matchings of size n/4 each (as each Mi matches half of L to a half
of R). To see that these matchings are induced, consider two edges (u1, v1), (u2, v2) ∈ Mi; we claim that
there is no other matching Mj such that (u1, v2) ∈Mj . Suppose this is not the case by way of contradiction.
Since u1 ∈ L is matched by both Mi and Mj , we have that both i-th index and j-th index of its string is 0.
On the other hand, since v2 ∈ R is also matched by both Mi and Mj , we have that both its i-th index and
j-th index are 1. By then Mj cannot have the edge (u1, v2) as any edge in the matchings of this graph only
change one index of the endpoint vertices’ strings.
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Figure 7: An illustration of the trivial (left) and the slightly non-trivial (right) RS graphs.

A much more sophisticated RS graph. It turns out that one can do much better than this construction
in terms of the density of the RS graphs. In particular, Fischer et.al. [8] designed an (r, t)-RS graph
with r = n/6 and t = nΩ(1/ log log n); this was strengthened in [9] to parameters r = (1/4 − ε)n and
t = nΩε(1/ log log n), leading to the following proposition.

Proposition 13 ([9, 8]). For any constant ε > 0, there is a bipartite (r, t)-RS graph with r = (1/4 − ε)n
and t = nΩε(1/ log log n), hence n1+Ω(1/ log log n) edges.

We will not go over the details of this construction in this lecture and instead simply use it directly to prove
the communication lower bound.

Remark. (Dense) RS graphs are in general highly fascinating objects: they are locally sparse as they
are formed via induced matchingsa, while being globally dense. For some range of parameters, there are
surprising construction of these graphs: for instance, Alon, Moitra, and Sudakov [1] proved that there
are (r, t)-RS graphs with r = n1−o(1) and

(
n
2

)
− o(n2) edges! (compare this with the bounds obtained

by the trivial RS graph). We refer the interested reader to [1] for more background on RS graphs.

aFor any induced matching of size r, there are roughly r2 edges that can no longer belong to the graph.

The Lower Bound for Matching based on RS Graphs

We now prove Theorem 11. The proof uses Yao’s minimax principle by analyzing deterministic algorithms
over a fixed distribution of inputs. The input distribution is informally as follows: Alice is given an RS
graph and Bob is given a matching; they are chosen in a way that only one induced matchings of Alice is
“important” for getting a better than (3/2)-approximation (using the fact that the matchings are induced);
however, Alice is oblivious to this matching and thus needs to communicate about all her edges in order to
communicate about the special one as well. We now formalize this as follows.

A hard distribution µ. Let Grs := (Lrs, Rrs, Ers) an (r, t)-RS graph with N vertices, r = (N/4− εN) and
t = NΩε(1/ log log N), and induced matchings M rs

1 , . . . ,M
rs
t (guaranteed to exists by Proposition 13). This RS

graph is known to both players.

(i) From every induced matching M rs
i , we remove ε ·N edges independently and uniformly at random and

given the remaining edges as Mi to Alice. (So, EA := M1 ∪ · · · ∪Mt).

(ii) We pick one induced matching M rs
j independently and uniformly at random (called the special match-

ing). Bob gets a perfect matching between two new sets of vertices LB and RB , each of size (N/4+εN)
and the vertices of Grs that are not in M rs

j .

11



Figure 8: An illustration of the graphs in the hard distribution µ.

We note that the graphs constructed in µ have n = N +N/2 + 2εN vertices (N vertices from the RS graph
and N/2 + 2εN from the extra vertices that only Bob has an edge to). The following lemma identifies the
“main task” of protocols when for approximating bipartite matching on graphs sampled from µ.

Lemma 14. In every graph G sampled from µ:

(i) There is a matching of size µ(G) ≥ 3N/4;

(ii) Any matching M of size N/2 + 2εN + b edges in G has b edges from the special matching Mj.

Proof. We prove each part separately as follows:

(i) We can pick N/2 + 2εN edges of Bob plus N/4− 2εN edge of Alice in Mj ⊂M rs
j in every graph of µ

to form a matching of the desired size.

(ii) Without loss of generality, we can assume M consists of all edges of Bob of size N/2 + 2εN edges
(as vertices in LA and LB only have degree one) and thus the remaining unmatched vertices are only
between endpoints of M rs

j ; since this is an induced matching, the extra b edges picked by M should
belong to Mj .

The lemma now follows from the two parts above.

Now consider a deterministic protocol π for matching on graphs of µ and suppose its communication cost
is c = o(r · t). We assume that π never outputs an edge in the matching that does not belong to the input
graph (thus it may err by only outputting a not-large-enough matching but not a “wrong” one)6. Lemma 14
suggests that the task of π is simply to convey which edges of M rs

j actually belong to the matching Mj of
Alice so that Bob can output them. However, as Alice is oblivious to the identity of j, she effectively needs
to communicate such information about all matchings M rs

1 , . . . ,M
rs
t . We now formalize this as follows.

Definition 15. For a message Π sent by the protocol π, we use G(Π) to denote the set of all graphs of Alice
that are mapped to the same message Π. We say that an edge e belongs to G(Π) if e ∈ G for all G ∈ G(Π).
For every i ∈ [t], we use M(Π)i to denote the set of all edges in M rs

i that belong to Π.

The discussion earlier about the correctness of π implies that Bob, given message Π, can only output an
edge e in the final matching if e belongs to G(Π). Combined with Lemma 14, this implies that ratio of the

6This is a natural assumption made in [9] but it is not without loss of generality. However, one can easily lift this assumption
using a slightly more careful analysis (or alternatively a reduction from Index) and thus we ignore this issue for now.
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size of the matching output by Bob to maximum matching of G is at most

N/2 + 2εN + |M(Π)j |
3N/4

≤ 2/3 + 3ε+
|M(Π)j |

N
. (2)

The following lemma is the main part of the proof that bounds the last term in the RHS above.

Lemma 16. W.p. 0.8, |M(Π)j | ≤ εN .

Proof. We start by claiming that with high probability, G(Π) is going to be “large”.

Claim 17. With probability 1− o(1) over Π, |G(Π)| ≥
(

r
εN

)t
/22c, where c is the communication cost of π.

Proof. The total number of input edges to Alice is
(

r
εN

)t
and these are partitioned into 2c different sets

G(Π) for all the 2c choices of Π. Moreover, the probability that a message Π is sent by Alice is exactly

|G(Π)|/
(

r
εN

)t
as the distribution of inputs are uniform. As such, by a union bound over the 2c choices of Π,

Pr
Π

(
|G(Π)| <

(
r
εN

)t
22c

)
≤ 2c ·

(
r
εN

)t
22c ·

(
r
εN

)t = o(1),

as desired. Claim 17

We refer to any Π that satisfies the event of Claim 17 as a large message. We now prove that for any large
message Π, M(Π)i for “most” indices i is “very small”.

Claim 18. For any large message Π, the number of indices i ∈ [t] such that M(Π)i < εN is at least 0.9 · t.

Proof. Suppose towards a contradiction that for more that 0.1 · t indices i ∈ [t], we have M(Π)i ≥ εN . Then,

|G(Π)| ≤
(
r

εN

)0.9t

·
(
r − εN
εN

)0.1t

(because edges of M(Π)i cannot be part of the εN edges removed from M rs
i in Mi)

≤
(
r

εN

)t

· 2−Ω(N ·t) (because
(
a−b
c

)
≤ 2−Θ(b)

(
a
c

)
for c = Θ(a))

But this is smaller than the lower bound on size of |G(Π)| guaranteed by Claim 17 whenever c = o(r · t) =
o(N · t), a contradiction.

We are now done because the choice of the special index j ∈ [t] as input to Bob is independent of the choice
of the graph given to Alice and thus her message Π. As such, by Claim 17, w.p. 1 − o(1), we will have a
large Π and by Claim 18, w.p. 0.9 over the choice of j, M(Π)i < εN ; a union bound, finalizes the proof.

By Lemma 16 and Eq (2), w.p. at least 4/5 > 2/3, the approximation ratio of the protocol is at least
(2/3 + 4ε)−1 ≥ (3/2− 12ε). By re-parameterizing ε with ε′ = ε/12 in the arguments above, we obtain that
any (3/2− ε′)-approximation requires n1+Ω(1/ log log n), finalizing the proof of Theorem 11.
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