
DRAFT

CS 671: Graph Streaming Algorithms and Lower Bounds Rutgers: Fall 2020

Lecture 10
November 10, 2020

Instructor: Sepehr Assadi Scribe: Vishwas Bhargava

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Introduction

In this lecture we will study an approach for solving transshipment problem and Single Source Short-
est Path(SSSP) problem. This approach basically adapts the straight-forward LP formalization of the
problem, but finds the optimal solution smartly so that it can be used in various other models like semi-
streaming(multi-pass). The smart approach is to reach for the optimal solution via Gradient decent.

In the transshipment problem, we seek to find a cheapest routing for sending units of a single good from
sources to sinks along the edges of a graph meeting the nodes demands. Equivalently, we want to find the
minimum-cost flow in a graph where edges have unlimited capacity. The special case of SSSP can be modeled
as a transshipment problem by setting the demand of the source to -n + 1 (thus supplying -n + 1 units) and
the demand of every other node to 1. Unfortunately, this relation breaks when we consider approximation
schemes: A (1 + ε)-approximate solution to the transshipment problem merely yields (1 + ε)-approximations
to the distances on average. In the special case of SSSP, however, one is interested in obtaining a (1 + ε)-
approximation to the distance for each single node and we show how to extend our algorithm to provide
such a guarantee as well.

Problem 1 (transshipment Problem). Consider a bidirected graph G = (V,E,w) where V is the set of n
nodes, E is the set of directed arcs, and w assigns a positive integer weight w(u,v) to every arc (u, v) ∈ E. Let
W denote the 2m×2m diagonal matrix containing the forward and backward weights and let b 6= 0 ∈ Zn be
a vector of demands s.t. bT1 = 0, that is the positive demands equal the negative demands a.k.a supplies.
Also, let A be the incidence matrix of a directed graph contains a row for every node and a column for every
arc and Ai,j is 1 if the j-th arc enters the i-th node, −1 if it leaves the node, and 0 otherwise. As an exercise,
observe that AT1 = 0.

The transshipment problem can then be written as a primal/dual pair of linear programs:

min{1Wx : Ax = b,x ≥ 0} = max{bTy : (W−1ATy)max ≤ 1}. (1)

The dual (right) program asks for node potentials y such that for each arc(u, v) ∈ E, yuyv ≤ w(u, v),

maximizing bTy. Note that, because bT1 = 0, shifting the potential by r · 1 for any r ∈ R does neither
change bTy nor yu−yv for any u, v ∈ V . The goal of the dual is thus to maximize the differences in potential
of sources and sinks (weighted according to b), subject to the constraint that the potential of u does not
exceed the potential of v by more than w(u,v) for any neighbor v of u.

Another related problem to the transshipment problem and also very important on its own is the problem
of single source shortest path(SSSP). The aim here is to find shortest path from a given note (source s) to
all other vertices of the graph. Note that, SSSP is a special instance of transshipment problem where source
node has demand −(n − 1) and every other node has demand +1. The approximate version of SSSP asks
us to approximate each optimal path from source to other other vertices. Note that, running approximate
version of transshipment algorithm on special case of SSSP will not guarantee an approximate solution to
SSSP. It will just approximate upper bounds on the distances from the source s on average. The two main
results discussed in this lecture are the following:

1

DRAFT

1. A polynomial time O(log n)-pass streaming algorithm for (1 + ε)-approximation of Transshipment
problem.

2. A polynomial time O(log n)-pass streaming algorithm for (1+ε)-approximation of Single source shortest
path problem.

We will now describe Gradient descent basic principle which we will use later to give good semi-streaming
algorithm for transshipment/SSSP problems that computes a near-optimal solution.

1.1 An Efficient Oracle for O(log n)-Approximate Solutions

In this section we will show that we can simply compute an optimal solution to (1) on an α-spanner which
in-turn will be O(α) approximate to optimal solution of (1). Think of α as O(log n), note that we can
compute an optimal solution to (1) on O(α) spanner just by saving the full spanner in our memory and
apply LP based methods. The next lemma proves the aforementioned claim.

Lemma 1. Given an α-spanner S of G, let x and y be optimal solutions to (1) on the spanner. Then α−1y
is feasible on G with objective is by factor α smaller than that of y.

Proof. Let {u, v} = e ∈ E be an edge in G. By the definition of a spanner, there is a path Puv of weight at
most αwe from u to v in S. We have,

|(W−1AT y)(u, v)| = |yu − yv|
we

≤
∑

(u′,v′)∈Puv
|yu′ − yv′ |

we
Telescoping via path and applying ∆-inequality

≤
∑

(u′,v′)∈Puv
|yu′ − yv′ |

we

=

∑
(u′,v′)=e′∈Puv

w′e|(w−1
e′ A

T y)(u, v)|
we

≤
∑

(u′,v′)=e′∈Puv
w′e

we
≤ α

Thus, α−1y is feasible on G.

Thus, an α-approximate primal-dual pair of solutions to (1) with demands b can be computed (without
further knowledge of G).

1.2 Generic Gradient Descent Algorithm

1. Pick a differentiable potential function that reflects your objective.

2. Find a good starting point.

3. While: You are not sufficiently close to the optimum solution.

(a) Determine the gradient of the potential function at the current solution.

(b) Determine a direction for the update in which the gradient indicates that the potential reduces
quickly.

(c) Choose a large step width, under the constraint that the gradient does not change too much
along the way, and update the solution according to direction and step width.

2

DRAFT

Note that our LP formulation doesn’t directly yield a good objective function as both the primal and dual
program in (1) have constraints. Thus, we can’t start apply any gradient descent based approach on these
objective functions. We will instead work with a slightly different objective function which has just one
constraint instead of O(n) in(1) and turns out to be equivalent and the equivalence continue to hold in the
approximate setting as well.

min{(W−1ATπ)max : bTπ = 1}. (2)

Lemma 2. 1. If π is a feasible solution of (2) then ψ(π) := π
(W−1ATπ)max

defines a feasible solution of

the dual in (1). If y is a feasible dual solution of(1) satisfying bT y > 0, then χ(y) := y
bT y

defines a

feasible solution of (2).

2. The map ψ(·) preserves the approximation ratio. Namely, for any γ ≥ 1, if π is a solution of (2)
within factor γ of the optimum, i.e. (W−1ATπ)max ≤ γ(W−1ATπ∗)max then ψ(π) is feasible for (1)
and within factor γ of the optimum, i.e. bTψ(π) ≥ γ−1bty∗.

Proof. See [1] lemma 2.5

In other words, it is sufficient to determine a (1 + ε)-approximation to (2) in order to obtain a (1 + ε)-
approximation to (1).

We will apply the adopt the following strategy to maintain the constraint of bTπ = 1: Our initial solution
π will satisfy bTπ = 1 and we will ensure our updates π′ ← π − h satisfy bTh = 0, so overall bT (π′) =
bT (π)− bT (h) = 1. Also, note that feasible primal solutions of (2) on a spanner are still feasible on G. Hence
the same arguments as before yield that an α-approximate pair can be computed based on an α-spanner of
G.

Now, we have ensured that we have a good objective function with just one constraint(and a strategy to
deal with that constraint) but we are still not done, as our potential function is not differentiable! Indeed,
max of a bunch of linear functions is not differentiable(but it is continuous nonetheless). In the next section
we use some standard approach of smoothing the gradient function to overcome this obstacle.

1.3 Making our objective function “smooth”

For the maximum value of a vector, a suitable candidate is given by the log-sum-exponent function.

Definition 3 (log-sum-exponent). For any vectors z ∈ Rd , it is defined as

lseβ(z) :=
1

β
ln
(

Σi∈[d]e
βzi
)

where the parameter β > 0 determines the trade-off between accuracy of approximation and smoothness.

Properties of lseβ(z) that we will be needing in our anlysis,

1. (z)max ≤ lse(z) ≤ (z)max + ln d
β . Follows directly from definition.

2.
∇lseβ(z)−∇lseβ(z’)||1 ≤ β||z− z′||∞. [2] (3)

Define new potential function,
Φβ(π) := lseβ(W−1ATπ).

3

DRAFT

Note that Φβ(·) is convex for any β, as it is constructed by composing lseβ(), which is convex for any β with
linear functions. To show that Φβ(π) differentiable, we examine the gradient of the potential function. By
chain rule and since multiplication with matrices W−1 and AT is a linear function, we get that

∇Φβ(π) = AW−1∇lseβ
(
W−1ATπ

)
(4)

Now, we will show that Φβ(π) is differentiable or equivalently, ∇Φβ(π) is continuous.
Concretely we will show that,

Claim 4.
∀π, h ∈ Rn, |∇Φβ(π)Th−∇Φβ(π − h)Th| ≤ β(W−1ATh)2

max. (5)

Proof.

π, h ∈ Rn :|∇Φβ(π)Th−∇Φβ(π − h)Th|

=
∣∣AW−1∇lseβ

(
W−1ATπ

)T
h−AW−1∇lseβ

(
W−1AT (π − h)

)T
h
∣∣ by (4)

=
∣∣ (∇lseβ (W−1ATπ

)
−∇lseβ ((π − h))

)T ·W−1ATh
∣∣

=
∣∣∣∣ (∇lseβ (W−1ATπ

)
−∇lseβ ((π − h))

)T ∣∣∣∣
1
||W−1ATh

∣∣|∞ Holder

=
∣∣∣∣ (∇lseβ (W−1ATπ

)
−∇lseβ ((π − h))

)T ∣∣∣∣
1
||W−1ATh

∣∣|∞ by (3)

= β(W−1ATh)2
max.

Now that our objective function is differentiable we will focus our concern to the approximation guarantee,
our target of a (1 + ε)-approximation entails that the potential must be a more accurate approximation to
the objective. Accordingly, we will ensure that

Φβ(π) ≤
(
1 +

ε

4

)
(W−1ATπ)max. (6)

By point 1 of properties of lse, ensuring this condition suffices, 4 ln (2m) ≤ εβ(W−1ATπ)max.

2 Algorithm for Transhipment problem

Our algorithm will start with initial O(log n) approximate solution to (2). Our next lemma shows how does
the our approximation improves, in other words our potential decreases, when we proceed in our gradient
decent algorithm. That is, how does φβ(π) changes when we change π to π − h.

Lemma 5. Suppose π, h ∈ Rn satisfy, ∇Φβ(π)Th > 0 and (W−1ATh)max ≤ 1. Then for δ := ∇Φβ(π)Th it
holds that

Φβ
(
π − δh

2β

)
≤ Φβ(π)− δ2

4β
.

Proof. Let us denote h̃ := δh
2β . Recall that Φβ(·) is convex and thus Φβ(π) ≥ Φβ(π − h̃) +∇Φβ(π − h̃)T h̃.

This gives

Φβ(π − h̃)− Φβ(π) ≤ ∇Φβ(π − h̃)T h̃+ Φβ(π)T h̃− Φβ(π)T h̃

≤ β(W−1AT h̃)2
max − Φβ(π)T h̃ Claim 1.3

≤ − δ
2

4β
.

4

DRAFT

As this lemma suggests, we will try to ensure large progress by making δ = ∇Φβ(π)Th as large as possible and
β as small as possible. Now observe that, for a fixed β, maximizing δ under the constraint (W−1ATh)max ≤ 1
is another instance of the transshipment problem with demand vector ∇Φβ(π). Our algorithm will determine
its step direction h by computing an α-approximation to this transshipment instance. Regarding the incen-
tive of minimizing β, note that progress with respect to Φβ is meaningless if it does not provide a sufficiently
accurate approximation of the true objective (W−1AT (·))max , so we will increase β only when it becomes
necessary to ensure (6). Bounding β from above turns the additive progress guarantee into a relative one.

Corollary 6. Suppose π, h ∈ Rn satisfy ∇Φβ(π)Th > 0, (W−1ATh)max ≤ 1, and εβΦβ(π) ≤ 10 ln 2m.
Then for δ = ∇Φβ(π)Th it holds that

Φβ
(
π − δh

2β

)
≤
(

1− εδ2

40 ln (2m)

)
Φβ(π).

2.1 How to minimize the number of iterations

As mentioned before reducing the number of iterations is linked with determining a direction for the update
in which the gradient indicates that the potential reduces quickly. And that this boils down to solving
another instance of the transshipment problem with demand vector Φβ(π). (Exercise: verify that for this
demand vector demand = supply).

We now present the pseudocode of the generic gradient descent algorithm for a (1 + ε)-approximate solution
to (1).

Algorithm: Gradient Transshipment(G, b, ε).

1. compute α-approximation π to (2).

2. While δ > ε
6α :

(a) Compute ∇Φβ(π).

(b) Compute an α-approximate solution h to max{∇Φβ(π)T h̃ : (W−1AT h̃)max ≤ 1) ∧ bT h̃ = 0}.
(c) Set δ := ∇Φβ(π)Th.

(d) π ← π − δh
2β .

(e) While: β < 4 ln (2m)
ε(W−1ATπ)max

do β ← 2β

Output: π, dual (1 + ε)-approximate solution of (1).

There are two steps which needs explanations. Firstly, why do we stop when δ = ∇ΦTβ h becomes small

enough. This is due to the fact that ∇ΦTβ h = 0 at minima, so when δ is sufficiently small this means that we
are already close enough to the optimal solution. Secondly, why are we doubling β? To ensure smoothness and
good approximation to our objective, we have maintained an invariant that 4 ln 2m ≤ εβ(W−1ATπ)max ≤
εβΦβ(π) ≤ 10 ln 2m. However, when we update π in step (2d) that might violate this, thus we increase β.

Now, we will bound the number of iterations, and later discuss how to discuss each iteration efficiently in
streaming setting.

Recall, aim is to minimize potential: Φβ(π) = lse(W−1ATπ).

• If inner loop doesn’t terminate, then potential decreases by a factor of
(

1− εiδ
2

40 ln (2m)

)
.

• Potential can increase when we double β. The potential can increase by a factor of atmost
(
1 + εi

4

)
.

Also, this won’t happen when i > 1 and when i = 1, number of times β doubles is bounded by logα.

5

DRAFT

• Using above two insights, we can bound the number of iterations by O
(
(ε−2 + logα)α2 log n

)
. For

details, see [1] Lemma 2.13

Remark. Although we have given some intuitive reason why the output of the aforementioned algorithm
is a (1 + ε)-approximation algorithm its not a formal proof. See lemma 2.11 of [1]. Also, note that we
just output a dual solution instead of primal. The authors of [1] overcome this and can compute primal
solution as well see observation 2.8 and 2.9.

2.2 Efficient implementation in streaming setting

Note that the only two steps which require adaptation in streaming setting are computing (W−1ATπ)max
and ∇Φβ(π). To implement these, define se(π) := πu−πv

w(e) for every arc e ∈ E, both
∑
e∈E e

βse(π) and

(W−1ATπ)max = max{se(π) : e = (u, v) ∈ E} can be computed in a single pass with O(1) temporary
space as summation and maximum are associative and commutative operators: Before the pass, we create
temporary variables s and m, both initialized to 0. During the pass, every time we read an arc e of weight
we from the stream, we first compute se(π) and then update s to s +eβse(π) and m to max{m, se(π)}. After
the pass, we have s =

∑
e∈E e

βse(π) and m = (W−1ATπ)max. Since each component ∇φβ(π) is given by

∇φβ(π)v = (AW−1∇lseβ(W−1ATπ))v

=
∑

e=(u,v)∈E

eβse(π)

we ·
∑
e′∈E e

βse′ (π)
−

∑
e=(v,u)∈E

eβse(π)

we ·
∑
e′∈E e

βse′ (π)

the same idea can be used to compute ∇Φβ(π) in a single pass with O(1) temporary space, once s =∑
e∈E e

βse(π) is known.

3 Single-Source Shortest Paths

We start this section with the following lemma.

Lemma 7. (1) has an optimal primal solution that sends flow only along the arcs of a forest.

What this means is that optimal primal solution is respresentable in O(n) space, justying that we can infact
output/store the solution in streaming setting. For a proof of this statement see Lemma 3.1 of [1].

As discussed in the introduction, SSSP is a special case of Transshipment problem with single source node
with negative demand and the demand on every non-source node is either 0 or 1. However, there are two
issues with using the transshipment algorithm directly. Firstly, if a primal solution is computed, there is no
guarantee that it induces a tree, and thus it is not clear which arc one should traverse from v when searching
for a short path to s. Secondly, approximating the optimal solution guarantees only that the computed upper
bounds on the distances from the source s are a (1 + ε)-approximation on average. We will discuss how to
fix these issues below.

3.1 Sampling Tree solution

We construct a (primal) tree solution that is good on average. We assume in the following that there is a
single source node with negative demand and the demand on every non-source node is either 0 or 1. The
idea, which relies on our specific choice of a spanner-based oracle, is as follows:

1. Run Algorithm for transshipment problem, let x the returned primal solution.

2. Partition its incoming arcs into classes in which arc weights differ by factor at most 2.

6

DRAFT

3. Sample (u, v) with probability f−1
(u,v)(2α+ 1)x(u,v), where f(u,v) denotes the sum of flows of arcs in the

class of (u, v).

4. We can get (1 + ε)-approximation of an optimal solution using only sampled arcs and spanner edges
is a with high probability.

5. we can bound the number of arcs sampled by the procedure by O(αn log n) with high probability.

In order to prove the correctness of the above procedure, conceptually decompose x =: x∆ + xo, where the
arcs with non-zero flow in x∆ form a directed acyclic graph (DAG). For details and proof of correctness see
section 3.1 of [1].

3.2 Computing an Approximate Shortest-Path Tree

The approach here is simple:

1. Solve a single-source transshipment instance.

2. Mark nodes which have found a suitable approximate shortest path in the current tree as ”done”.

3. Set demand of done node to zero and repeat.

Again, for details and proof of correctness see section 3.2 of [1].

References

[1] R. Becker, A. Karrenbauer, S. Krinninger, and C. Lenzen. Near-optimal approximate shortest paths
and transshipment in distributed and streaming models. In 31st International Symposium on Distributed
Computing, DISC 2017, October 16-20, 2017, Vienna, Austria, pages 7:1–7:16, 2017. 3, 6, 7

[2] J. Sherman. Nearly maximum flows in nearly linear time. In 54th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 263–269. IEEE
Computer Society, 2013. 3

7

	1 Introduction
	1.1 An Efficient Oracle for O(log n)-Approximate Solutions
	1.2 Generic Gradient Descent Algorithm
	1.3 Making our objective function ``smooth"

	2 Algorithm for Transhipment problem
	2.1 How to minimize the number of iterations
	2.2 Efficient implementation in streaming setting

	3 Single-Source Shortest Paths
	3.1 Sampling Tree solution
	3.2 Computing an Approximate Shortest-Path Tree

