
CS 671: Graph Streaming Algorithms and Lower Bounds Rutgers: Fall 2020

Lecture 1
September 1, 2020

Instructor: Sepehr Assadi Scribe: Sepehr Assadi

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Graph Streaming

Motivation

Massive graphs appear in most application domains nowadays: web-pages and hyperlinks, neurons and
synapses, papers and citations, or social networks and friendship links are just a few examples. Many of
the computing tasks in processing these graphs, at their core, correspond to classical problems such as
reachability, shortest path, or maximum matching—problems that have been studied extensively for almost
a century now. However, the traditional algorithmic approaches to these problems do not accurately capture
the challenges of processing massive graphs. For instance, we can no longer assume a random access to the
entire input on these graphs, as their sheer size prevents us from loading them into the main memory.

To handle these challenges, there is a rapidly growing interest in developing algorithms that explicitly
account for the restrictions of processing massive graphs. Graph streaming algorithms have been particularly
successful in this regard; these are algorithms that process input graphs by making one or few sequential
passes over their edges while using a small memory. Not only streaming algorithms can be directly used
to address various challenges in processing massive graphs such as I/O-efficiency or monitoring evolving
graphs in realtime, they are also closely connected to other models of computation for massive graphs
and often lead to efficient algorithms in those models as well. Another remarkable advantage of graph
streaming algorithms is that we have an extremely powerful tool at our disposal for proving lower bounds
on their capabilities: communication complexity. These lower bounds can provide invaluable insights into
the problems at hand and guide us in designing better algorithms or adjusting our expectations by making
more realistic assumptions.

(Semi-)Formal Definition of the Model

Suppose G = (V,E) is a graph with n vertices (in general, G can be undirected or directed, unweighted or
weighted, and so on). We assume that V := {1, . . . , n} and so the only unknown about G is the set of its
edges E. A graph stream σ is then an arbitrarily-ordered sequence of edges of G, i.e., σ := 〈e1, . . . , em〉 for
ei ∈ E. A streaming algorithm can make one or a few passes over this stream (in the same order), and at
the end of the last pass, should output the solution to some problem on G.

Of course, naively, the streaming algorithm can simply store the entire edges of the graph in the stream and
solve the problem at the end using any offline algorithm; this however may require up to Θ(n2) space which

is prohibitively large. As such, we are interested in algorithms that use much smaller space, typically Õ(n)
space1—these algorithms are called semi-streaming algorithms and were introduced by Feigenbaum et.al. [10]
who initiated the systematic study of graph streams2. We shall note however that both regimes when memory
is � n, but o(n2), and when it is � n, typically polylog(n), are also gaining increasing attention; we will
discuss such algorithms later in this course.

1Throughout the course, we use the notation Õ(f) := O(f · polylog(f)) to hide poly-log factors.
2It should be noted that there are some work prior to [10] that considered graphs in the streaming model, for instance [4, 13].

1

In the graph streaming model, the two main resources are the space complexity of the algorithm and the
number of passes—for the latter, one almost always considers single-pass algorithms much more favorable
than multi-pass algorithms, but even with more number of passes, optimizing the number of passes is a
priority often down to the last constant3.

Different variants. The above only describes the most vanilla version of the graph streaming model.
There are various extensions that one may want to consider:

• Order of arrival of edges: The definition of graph streams given above leads to a “doubly worst
case” analysis of streaming algorithms: adversarial graphs and adversarial stream orderings. However,
one can also consider models such as random-arrival where the stream is a random permutation of
edges (see, e.g. [14]) or adjacency-arrival where edges of a single vertex appear next to each other (see,
e.g. [17]); note that in the latter model, each edge appears twice.

• Dynamic graphs: Another popular extension of graph streams is to consider the case when edges
can be deleted from the stream as well. For instance, this can be in form of a dynamic graph stream
in which each entry of the stream either inserts a new edge or delete a previously inserted edge [1] or
in a sliding window model where the goal is to compute the solution only over the last W edges seen
in the stream [9].

• Verifiable graph stream computation: Another line of work considers verification problems in the
context of graph streaming problems. These algorithms capture the scenario when a “computationally
weak” verifier outsources the storage and processing of the input graph to a powerful but untrusted
prover; here, the verifier needs only to verify the solution returned by an all knowing prover in a
streaming fashion as opposed to solving the problem entirely from the scratch. Several variants of
verifiable graph streams have been studied such as annotated data streams [7], Artur-Merlin streaming
algorithms [12], and streaming interactive proofs [8].

We will discuss some of these variants throughout this course.

2 Warm-Up: Some Simple Graph Streaming Algorithms

We start by describing several simple graph (semi-)streaming algorithms. These results are presented first
in the work of Feigenbaum et.al. [10] or are otherwise folklore (see [16]).

Undirected Connectivity

Problem 1. Given an undirected graph G = (V,E), decide whether or not G is connected.

The algorithm for this problem is to simply maintain a forest and add each arriving edge if it does not create
a cycle, i.e., introduces a “new connectivity information”. Formally,

Algorithm 1. A single-pass semi-streaming algorithm for connectivity.

(i) Let F ← ∅;

(ii) For any edge e in the stream, add e to F if F ∪ {e} does not have a cycle.

(iii) Return G is connected iff F is connected.

3In certain cases, one also tries to minimize the runtime of the algorithm, in particular, the update time per each element
of the stream. However, in this course, we primarily focus on space- and pass-complexity of the algorithms and may even use
algorithms with exponential (or larger) runtime.

2

Algorithm 1 uses O(n) space4 as F at every point is a forest and hence contains at most n− 1 edges. It thus
remains to prove its correctness (see Figure 1 for an illustration).

Lemma 1. The forest F in Algorithm 1 is connected iff the input graph G is connected.

Proof. Since F is a subgraph of G, F being connected immediately implies that G is also connected. For the
other direction, suppose towards a contradiction that G is connected but F is not. Since F is not connected,
there exists a cut (S, V \ S) of vertices where F has no edges crossing this cut. At the same time, since G is
connected, there should be an edge e in the cut (S, V \S). Now consider the time e arrived in the stream. At
that point, F ∪{e} cannot form a cycle as e = (u, v) is the unique cut-edge of (S, V \S) and thus there is no
other path from u ∈ S to v ∈ V \S in F ∪{e}. As such, e should have been added to F also by Algorithm 1,
a contradiction that (S, V \ S) has no cut edge in the final F .

Figure 1: A simple illustration of the proof of Lemma 1. If e = (u, v) is the unique cut edge of (S, V \ S) in
F ∪ {e}, then e cannot be a part of any cycle.

Optimality? Any single-pass semi-streaming algorithm for connectivity requires Ω(n log n) bits of space
(Ω(n) space in the language of this course) by a result of Sun and Woodruff [21] (we will prove a slightly
weaker version of this by the end of this note). As such, Algorithm 1 is asymptotically optimal.

Edge Connectivity

Problem 2. Given an undirected graph G = (V,E) and an integer k ≥ 1, decide whether or not G is
k-edge-connected, i.e., at least k edges needs to be removed from G to make it disconnected.

The algorithm is similar to the previous part by trying to maintain a “certificate” for k-connectivity, namely,
a sparser subgraph of G which preserves the k-connectivity property of G. We shall note that the algorithm
we present is not necessarily semi-streaming (when k � polylog (n)); we will revisit this problem of designing
semi-streaming algorithms for edge connectivity later in this course.

Algorithm 2. A single-pass streaming algorithm for k-edge-connectivity.

(i) Let F1, F2, . . . , Fk ← ∅;

(ii) For any edge e in the stream, if there is any Fi such that Fi ∪ {e} has no cycle, add e to this Fi.

(iii) Return G is k-connected iff F := F1 ∪ . . . ∪ Fk is k-connected.

4For simplicity and to follow the graph streaming convention, we typically measure the space in terms of machine words of
size Θ(logn) as opposed to bits which is more common in the traditional streaming model and communication complexity.

3

Algorithm 2 uses O(nk) space as it maintains k spanning forests at all times. We now prove that it outputs
a correct answer (see Figure 2 for an illustration).

Lemma 2. The subgraph F = F1∪ . . .∪Fk in Algorithm 2 is connected iff the input graph G is k-connected.

Proof. Since F is a subgraph of G, F being k-connected immediately implies that G is also k-connected. We
now prove the other direction.

Suppose towards a contradiction that G is k-connected but F is not. Since F is not k-connected, there exists
a cut (S, V \S) of vertices where F has less than k edges crossing this cut. This in particular means that at
least one of the forests Fi in Algorithm 2 has no edge in this cut as the edges across Fi’s are disjoint. But
then adding e to Fi does not create a cycle and thus e should have been part of Fi, a contradiction.

Figure 2: A simple illustration of the proof of Lemma 2. An edge e ∈ G \ F cannot form a cycle with every
one of F1, . . . , Fk if less than k edges in F belong to the cut (S, V \ S).

Optimality? Sun and Woodruff [21] also proved that any deterministic single-pass algorithm for k-
connectivity requires Ω(nk log n) bits; the bound degrades to Ω(nk) for randomized algorithms [21]. As
such, Algorithm 1 is also optimal up to constant factor and Θ(log n)-factor for deterministic and randomized
algorithms, respectively.

Shortest Path

Problem 3. Given an undirected graph G = (V,E) and s, t ∈ V , find a shortest path from s to t in G.

Let us first point out that the knowledge of s and t in this problem is in some sense irrelevant. Consider
any stream that inserts an arbitrary graph between vertices in V \ {s, t} and at the very end, inserts two
edges (s, s′) and (t′, t) for two arbitrary s′, t′ ∈ V \ {s, t}. At this point, the algorithm is forced to return a
shortest path from s′ to t′ as the shortest s-t path is certainly of the form s → s′ P t′ → t where P is a
shortest s′-t′ path.

The above observation means that any streaming algorithm for s-t shortest path on n vertex graphs, can be
turned into a data structure from which we can recover a shortest path between any two pairs of vertices
in a graph on n− 2 vertices: simply run the streaming algorithm on the (n− 2)-vertex graph and store the
content of the memory of the streaming algorithm as a data structure; then, given a query s′, t′ to the data
structure, continue running the algorithm on the two last edges of the stream which are (s, s′) and (t′, t).
This immediately means that the memory content of the streaming algorithm has to be of size Ω(n2) (take
the (n− 2)-vertex graph for the data structure to be a clique).

So far, we established that we cannot obtain an exact solution to the shortest path problem and have to
settle for approximation. Moreover, we learned that we effectively need to solve an all-pairs shortest problem
and not a single-source one. This motivates us to find a graph spanner defined as follows:

4

Definition 3. For a graph G = (V,E) and parameter α ≥ 1, we say that a subgraph H = (V,EH) for
EH ⊆ E is an α-spanner iff for all pairs of vertices u, v ∈ V :

distG(u, v) ≤ distH(u, v) ≤ α · distG(u, v), 5

where dist∗(u, v) denote the length of the shortest path between u and v in the corresponding graph ∗.

We are going to design a streaming algorithm for finding an α-spanner to approximate shortest path problem
(think of spanners as “certificate” for shortest path similar to k-spanning forests for k-connectivity). The
algorithm is simply go over the edges of the stream and include an edge if it does not create a “short” cycle
and hence cannot “help” in reducing the distance of its endpoints by much (think of this as a generalization
of Algorithm 1). Again, this algorithm is not always semi-streaming (depending on the choice of α); we will
revisit semi-streaming algorithms for shortest path later in this course.

Algorithm 3. A single-pass streaming (2k − 1)-approximation algorithm for s-t shortest path.

(i) Let F ← ∅;

(ii) For any edge e in the stream, add e to F if F ∪ {e} does not have a cycle of length ≤ 2k.

(iii) Return the s-t shortest path in F .

Let us first prove that F is (2k − 1)-spanner of G. This will immediately imply the correctness of the
algorithm by the definition of spanner as distF (s, t) ≤ (2k − 1) · distG(s, t).

Lemma 4. The subgraph F in Algorithm 3 is a (2k − 1)-spanner of the input graph G.

Proof. We say that an edge (u, v) ∈ G is stretched by α iff distF (u, v) = α, i.e., in place of the edge (u, v) in
F , we now have a path of length α. Any edge (u, v) ∈ G \ F is stretched by at most (2k − 1) because the
reason we did not add (u, v) to F was existence of a cycle of length ≤ 2k in F (that inevitably includes both
u and v); but this means that there is a path of length ≤ 2k − 1 between u and v in F .

Consider a pair of vertices x, y ∈ V and the shortest path x = w0 → w1 → w2 . . . w` → y = w`+1 in G with
length `. Every edge in this path is stretched by at most (2k − 1) in F and thus there is a walk of length
(2k−1) · ` in F between x, y. This immediately implies also that distF (x, y) ≤ (2k−1) ·distG(x, y) as well as
we can shortcut the edges of the walk into a path. Hence, F is a (2k− 1)-spanner, concluding the proof.

Figure 3: A simple illustration of the proof of Lemma 4. As we only remove skip edge of G in G that are
part of a ≤ 2k cycle, every edge of a shortest path between two vertices x, y in G is stretched by at most
(2k − 1) in F ; this means that the length of x-y shortest path in F is at most (2k − 1) times larger than G.

5Notice that the interesting inequality is the right one; since H ⊆ G, the left inequality always hold.

5

It only remains to analyze the space complexity of Algorithm 3. For this, we can use a classical result
in graph theory referred to as the Moore Bound: any graph with no cycle of length ≤ 2k can only have
O(n1+1/k) edges [6] (see also [2, 3] for sharper bounds for irregular graphs). This can be proven as follows
(this proof is mostly an exercise in graph theory and has not much to do with streaming algorithms; thus,
the reader may decide to skip it entirely).

Proposition 5 (Moore Bound). Any graph G with m ≥ 2 · n1+1/k edges contain a cycle of length ≤ 2k.

Proof. We first claim that G has an induced subgraph H with minimum degree δ(H) > m/n (at least half
the average degree). This can be proven as follows: if δ(G) > m/n we are done already; if not, pick any
vertex v ∈ G with deg(v) ≤ m/n and remove it from the graph. As removing a vertex of degree ≤ m/n
reduces number of edges by ≤ 2m/n, this will reduce the average degree of the remaining graph to:

≥
∑
u∈V deg(u)− 2m/n

n− 1
=

2m · (1− 1/n)

n · (1− 1/n)
= 2m/n.

As such, this process never decreases the average degree and hence needs to terminate in a non-empty
subgraph H with δ(H) > m/n.

We now have a subgraph H with minimum degree d > 2n1/k over at most n vertices. Suppose towards a
contradiction that H has no cycle of length ≤ 2k. Now, consider growing a BFS tree of depth k from any
vertex v of H. The vertices of this tree cannot be visited in more than one path from v as otherwise any
vertex x reachable from v via more than 2 paths of length ≤ k, creates a cycle of length ≤ 2k already. But
this means that we should visit

1 + d+ d · (d− 1) + d · (d− 1)2 + · · ·+ d · (d− 1)k−1 ≥ (d− 1)k

distinct vertices in this BFS tree. But since (d − 1) > n1/k, we need to visit more than n vertices, a
contradiction. This means H has ≤ 2k-length cycle, concluding the proof.

Figure 4: A simple illustration of the proof of Proposition 5. The vertices in the first k layer of the BFS tree
from v are distinct, i.e., only have one path from v—otherwise, we will find a cycle of length ≤ 2k already.

Remark. The Erdős-Girth conjecture states that for every k, there are graphs with Ω(n1+1/k) edges
with no cycle of length ≤ 2k, meaning that Moore bound is tight. This conjecture is widely believed
and is known to be true for several small choices of k. However, the general conjecture is still open and
the best known construction imply a lower bound of Ω(n1+1/2k−1) edges (a random graph of average
degree Θ(n1/2k−1) satisfy this).

6

Back to Algorithm 3: considering that the subgraph F maintained by Algorithm 3 has no ≤ 2k-cycle, we
obtain that its space is O(n1+1/k) by Proposition 5. This in particular means that for k = Θ(log n), we
obtain a semi-streaming O(log n)-approximation to s-t shortest path (and all-pairs shortest path).

Optimality? Feigenbaum et.al. [11] proved that no semi-streaming algorithm can output an o(log n)-
approximation to s-t shortest path in a single pass, implying the optimality of the above semi-streaming
algorithm. See [11] for more on the space-approximation tradeoffs for this problem.

3 Communication Complexity (for Graph Streams)

Motivation

We now start the second part of this note, communication complexity, which is the second main component
of this course. The problem we are interested in is the following: Suppose we have a graph G = (V,E) and
we partition its edges between Alice and Bob, as EA and EB , respectively. How many bits of communication
is needed between Alice and Bob to solve some problem on G, say, find a spanning forest of G?6

Why do we care about this in this course? Well, as we shall see soon, any graph streaming algorithm will also
imply a communication protocol with communication proportional to the space of the streaming algorithm
times its number of passes. Put differently, communication complexity lower bounds will also imply lower
bounds for streaming algorithms; in fact, this is the de facto method for proving streaming lower bounds.

Before continuing however, a disclaimer is in order: Communication complexity is a highly general branch
of theoretical computer science (TCS) with various aspects way beyond graph streaming; however, in this
course, we are primarily focused on this model in the context of graph streaming and as such by necessity
have to ignore numerous other fascinating aspects of this model. We refer the interested reader to the
following excellent textbooks by Kushilevitz and Nisan [15], and by Rao and Yehudayoff [19] on basics
of communication complexity, and by Roughgarden [20] for implications of communication complexity in
proving lower bounds in algorithmic models.

(Semi-)Formal Definition of the Model

Let us now define communication complexity more generally for arbitrary functions/relations (and not only

on graphs). Suppose we have a Boolean function f : {0, 1}N × {0, 1}N → {0, 1} (one can consider different
domains for the function, different ranges, relations instead of Boolean functions, or even functions with
more than two arguments corresponding to multi-party communication models–for brevity, we stick to the
most basic setting in this lecture but will consider other settings as well throughout the course). Function
f defines a communication problem as follows: there are two players, say Alice and Bob, who get inputs
x ∈ {0, 1}N and y ∈ {0, 1}N , respectively, and their goal is to compute f(x, y).

Considering neither Alice nor Bob has the entire input on their own, the players need to communicate with
each other to determine the value of f(x, y). The communication happens according to a protocol and is done
as follows: Alice sends a single message m1 to Bob based solely on her input x; after receiving this message,
Bob responds back with a message m2 of his own which is a function of his input y and the message m1

of Alice; the players continue this throughout the protocol; eventually, the last player receiving a message
outputs the solution to f(x, y).

The main measure of efficiency in this model is the communication cost of the protocols, defined as follows.

Definition 6 (Communication cost). The communication cost of a protocol π, denoted by ‖π‖, is the
worst-case number of bits communicated between Alice and Bob in π over any choice of inputs x, y.

Definition 7 (Deterministic communication complexity). The deterministic communication complex-
ity of function f is defined as D(f) = minπ ‖π‖, where π ranges over all protocols that can solve f .

6The answer to this particular question is O(n logn) bits—Alice sends a spanning forest of her input to Bob. Does this
remind you of an algorithm we saw in this lecture?

7

Figure 5: Alice and Bob computing f(x, y).

Note that D(f) = O(N) for any function f : {0, 1}N ×{0, 1}N → {0, 1} as Alice can send all her N -bit input
to Bob and Bob can compute the solution on its own.

Randomized Communication Complexity. We can also consider randomized communication complex-
ity setting wherein Alice and Bob have access to random bits. There are two ways of introducing random
bits to the communication model: the private coin/randomness model where Alice and Bob have access to
separate sources of randomness on their own, and the public coin/randomness model, where players have
access to a shared source of randomness. We require that a randomized protocol for a problem f to output
the correct answer to f(x, y) for any given x, y to Alice and Bob, with probability at least 2/3 (or some other
constant strictly more than half7).

At first glance, the notion of public coin may sound rather strange. However, there are multiple reasons that
motivate considering public coins in addition to (or instead of) private coins. One particularly important
reason is that public coin protocols are somewhat “mathematically nicer” to work with as they can be
considered as distributions over deterministic protocols. But an important question remains still: can it be
that by allowing public coins, we give “too much power” to the protocols? The answer, perhaps surprisingly
at first, is No! (this proof is again mostly an exercise in probabilistic analysis and has not much to do with
streaming algorithms and thus can be skipped by the reader).

Proposition 8 (Newman’s Theorem [18]). Any public coin protocol π for a communication problem f with

domain {0, 1}N ×{0, 1}N with probability of success at least 1− ε can be simulated by a private coin protocol
θ such that ‖θ‖ ≤ ‖π‖+O(logN + log(1/δ)) and θ outputs the correct answer to f w.p. at least 1− ε− δ.

Proof. Recall the following additive chernoff bound (or Hoeffding inequality). Given t independent random
variables Z1, . . . , Zt ∈ [0, 1] and Z̄ =

∑t
i Zi/t, for any α > 0, we have

Pr(Z̄ − E
[
Z̄
]
> α) ≤ exp

(
−2α2t

)
. (1)

Let π(x, y, r) denote the deterministic output of the protocol π on inputs x and y, and public randomness r.
Define the indicator random variable Z(x, y, r) ∈ {0, 1} which is 1 iff π(x, y, r) 6= f(x, y), i.e., the protocol
outputs errs in the answer. By the guarantee of the protocol π, we have that for any x, y:

E
r

[Z(x, y, r)] = Pr (π errs on (x, y)) ≤ ε.

Now, suppose we sample public coins r1, . . . , rt for t =
⌈
2N/δ2

⌉
. By the additive Chernoff bound, we have:

Pr
r1,...,rt

(∑t
i=1 Z(x, y, ri)

t
≥ ε+ δ

)
≤ Pr
r1,...,rt

(∑t
i=1 Z(x, y, ri)

t
− E

[∑t
i=1 Z(x, y, ri)

t

]
≥ δ

)
≤ exp

(
−2δ2t

)
≤ exp (−4N) .

7This is because we can always boost the probability of success of the algorithm by running it multiple times in parallel and
using majority/median trick; this only increases the communication by a constant factor.

8

As such, by union bound over all choices of (x, y) ∈ {0, 1}N × {0, 1}N , we have,

Pr
r1,...,rt

(
exists (x, y) s.t.

∑t
i=1 Z(x, y, ri)

t
≥ ε+ δ

)
≤ 22N · exp (−4N) < 1.

Thus, one can find a collection of t choices of public coins r1, . . . , rt such that
∑t

i=1 Z(x,y,ri)

t < ε + δ for all
possible inputs x, y. In the following we fix such choice of r1, . . . , rt.

The protocol θ works as follows. Alice first privately samples r′ ∈ {r1, . . . , rt} uniformly at random and
sends it to Bob using O(log t) = O(logN + log (1/δ)) bits. The players then together run the deterministic
protocol π(x, y, r) from now on and output the same answer.

The communication cost of this protocol is clearly at most O(logN+log (1/δ)) more than the communication
cost of π. Moreover, for any input (x, y):

Pr
r′

(θ(x, y, r′) errs) = Pr
r′∈{r1,...,rt}

(π(x, y, r′) errs) =
1

t
·

t∑
i=1

Pr (π(x, y, ri) errs) =
1

t

t∑
i=1

Z(x, y, ri) ≤ ε+ δ,

by the definition of r1, . . . , rt. This concludes the proof.

Remark. Newman’s theorem can be seen as a very basic pseudo-random number generator (PSG): We
were able to reduce the entire random bits needed by π to only O(logN + log (1/δ)) bits (and thus
communicate it between the players) at the cost of only paying an additive factor of δ in the algorithm.
Note that aside from transforming public coins to private coins, this theorem also implies that any
constant-error protocol can be made to work with only O(logN) bits of randomness.

Equipped with Newman’s theorem, we can henceforth only focus on public coin protocols and present our
definitions only for such protocols (and if needed, one can infer the results for private coin protocols by
applying Newman’s theorem and “pay” a minimal penalty in the bounds). In the following, by randomized
protocols, we always mean public coin protocols (note that a public coin protocol does not need access to
private coins in this setting)8.

Definition 9 (Communication cost). The communication cost of a randomized protocol π is the worst-
case number of bits communicated between Alice and Bob in π over any choice of inputs x, y and the
randomness of the protocol.

Remark: Throughout this course, we always assume that the length of messages communicated in every
protocol is always equal to its communication cost by padding each message to a fixed length; this can only
increase the cost of protocols by a constant factor.

We can view a public coin protocol as a distribution over deterministic protocols obtained by first using the
public coins to sample the deterministic protocol and then running the deterministic protocol on the input.
As such, we can alternatively define the communication cost of π as the maximum communication cost of
any deterministic protocol in the support of this distribution.

Definition 10 (Randomized communication complexity). The randomized communication complexity
of function f is defined as R(f) = minπ ‖π‖, where π ranges over all randomized protocols that can solve f
with probability of success at least 2/3.

We will also define a distributional version of communication complexity.

8At some point in the course, we will study information complexity wherein interestingly, public coins are obsolete but
private coins are (seemingly) necessary.

9

Definition 11. Let µ be a distribution on inputs (x, y). We define the distributional communication
complexity of f over distribution µ as Dµ(f) = minπ ‖π‖ where π ranges over all deterministic protocols
that output the correct answer on inputs sampled from µ with probability at least 2/3.

The celebrated Yao’s minimax principle [22] relates distributional and randomized communication complexity
(we also refer the interested reader to [5] for a very recent and exciting development on this result).

Proposition 12 (Yao’s minimax principle [22]). For any problem f : {0, 1}n × {0, 1}n → {0, 1},

(i) Dµ(f) ≤ R(f) for all input distributions µ; and,

(ii) Dµ(f) = R(f) for some input distribution µ.

Yao’s minimax principle gives us a way of proving lower bounds for randomized protocols by instead consid-
ering deterministic ones on random inputs (we typically only use the first part which follows from a simple
averaging argument—the second part implies that this approach can always gives us the tightest possible
bound if we are able to find the “right” distribution µ).

We prove this proposition in the following. The first part, called the “easy direction” has a one line proof
and will be necessary for the rest of this course (so that we can see how easily it can be extended to other
settings). The second part, called the “hard direction” has a more interesting proof which we include here
for completeness; however, the reader can safely skip this part.

Proof of Proposition 12. We prove each part as follows.

Part (i) – the easy direction: Let π be a randomized protocol for f with ‖π‖ = R(f). Note that π can
be seen as first sampling random bits r and then running the deterministic protocol πr over the input. By
the guarantee of the protocol:

2/3 ≤ Pr
(x,y)∼µ,r

(πr(x, y) is correct) = E
r

Pr
(x,y)∼µ

(πr(x, y) is correct) .

(because r is chosen independent of x, y)

As maximum is at least as large as expectation, there is some r∗ such that

Pr
(x,y)∼µ

(
πr
∗
(x, y) is correct

)
≥ 2/3.

But now πr
∗

is a deterministic protocol with ‖πr∗‖ ≤ ‖π‖ (by worst-case definition of communication cost)
and probability of success more than 2/3 on µ. As such,

Dµ(f) ≤ ‖πr
∗
‖ ≤ ‖π‖ = R(f),

as desired.

Part (ii) – the hard direction: Let C := maxµDµ(f). We are going to prove that R(f) = C also which
implies the second part.

Consider a game9 between two players called the Input player and the Algorithm player. The set of strategies
of the Input player are all inputs on Ω := {0, 1}N ×{0, 1}N and the set of strategies of the Algorithm player
are all deterministic protocols with communication cost at most C, denoted by Π; for fixed N ,C, both sets
are finite.

For any (x, y) ∈ Ω as a strategy of the Input player and any deterministic protocol π ∈ Π as the strategy of
the Algorithm player, we define:

9This is a game-theoretic notation of a game.

10

• v((x, y), π): the outcome of the game which is 1 if π(x, y) = f(x, y) (protocol is correct) and is 0 if
π(x, y) 6= f(x, y) (protocol errs).

On a choice of (pure) strategies (x, y), π by the players, we define the payoff of the Algorithm player as
v((x, y), π) and for the Input player as −v((x, y), π). As such, the Algorithm player would like to maximize
v((x, y), π) (by choosing π), while the Input player tries to minimize it (by choosing x, y). Notice that this
is a zero-sum game.

Let ∆Ω denote the set of all distributions on strategies (inputs) of the Input player and ∆Π denote the set
of all distributions on strategies (deterministic protocols) of the Algorithm player. This way, ∆Ω and ∆Π

denote the set of all mixed strategies for the Input player and Algorithm player, respectively. Considering
this is a zero-sum game, Von Neumann’s Minimax Theorem asserts that,

min
µ∈∆Ω

max
π∈∆Π

E
(x,y)∼µ

[v((x, y), π)] = max
πr∈∆Π

min
(x,y)∈Ω

E
π∈πr

[v((x, y), π)] . (2)

The LHS in Eq (2) corresponds to picking any possible distribution on inputs and then running the “best”
deterministic protocol on this distribution and measuring the probability of success of the protocol. As
Dµ(f) ≤ C for all µ, and by definition, the LHS is at least 2/3.

The RHS in Eq (2) corresponds to picking any distribution over deterministic protocols, i.e., a (public-coin)
randomized protocol, and then running this protocol on “worst” input and measure the probability of the
success of the protocol. By the lower bound on LHS and Eq (2), this is at least 2/3. This means that there
exists a randomized protocol πr

∗
with communication cost C (the arg max of RHS in Eq (2)) that achieves

a probability of success at least 2/3 on any input chosen for Alice and Bob. Hence, R(f) ≤ ‖πr∗‖ ≤ C as
desired, concluding the proof.

Figure 6: A simple illustration of the game in Yao’s minimax principle proof. Here, we have a toy setting:
each player gets a single bit and the function to compute is XOR. We also focus only on zero-error protocols:
the one that outputs 0 all the time and the one that outputs 1. In this game, any pure strategy of each
player has a counter move that allows the second player to win. However, the best mixed strategy for both
Input player and Algorithm player is the uniform distribution, leading to value of 1/2 for this game, which
is the best probability of success for zero-communication protocols.

Application to Graph Streaming Lower Bounds

Let us now formalize the connection between graph streaming and communication complexity lower bounds.

Proposition 13. Suppose Alg is a p(n)-pass s(n)-space streaming algorithm for some problem P (G) on
n-vertex graphs G. Then, there is a communication protocol for the communication problem associated with
P that uses 2 · p(n)− 1 messages between Alice and Bob, and O(p(n) · s(n)) communication,

11

Proof. Let EA and EB be the partitioning of edges of Alice and Bob and define the stream σ = 〈EA ◦ EB〉
where the ordering of edges inside each EA and EB can be anything. Alice will run the streaming algorithm
Alg on the first part of the stream and once finished will send the content of memory to Bob. Bob then
continues to run the algorithm on the second part of the stream and send the memory at the end to Alice.
This requires 2 messages each of size at most s(n) and allows the players to simulate one pass of the
streaming algorithm entirely. The players continue doing this except that in the last pass, instead of Bob
sending a message to Alice, he simply outputs the solution. This means that in total 2p(n)− 1 messages get
communicated leading to a protocol with O(p(n) · s(n)) communication.

The takeaway message of Proposition 13 is clear: communication complexity lower bounds imply graph
streaming lower bounds. We will use this repeatedly throughout the course. However, an important remark
is in order.

Remark. Even though communication complexity lower bounds imply graph streaming lower bounds,
often times we cannot hope to use them directly to prove “interesting” lower bounds for graph streams.
The communication model is much more stronger than streaming and there are numerous cases when
we may have an efficient communication protocol for a problem but no graph streaming algorithms.

Fortunately, the connection between the two models is deeper than this. For instance, Proposition 13
shows that if our goal was to prove a streaming lower bound for single-pass algorithms, then we can focus
our attention to communication protocols that only involve Alice sending a single message to Bob and
Bob outputting the solution; such protocols are much weaker than general communication protocols,
allowing us to prove stronger lower bounds (we will see an example of this by the end of this note)—this
connection holds for p-pass streaming algorithm and (2p− 1)-round communication protocols.

Throughout the course, we shall see several natural restrictions that we can put on communication
protocols that allows us to prove stronger lower bounds and extend them to lower bounds for graph
streaming algorithms as well.

4 One Way Communication Complexity: The Index Problem

We are now going to look at one of the most important communication problems in the context of streaming
algorithms, the Index problem.

Problem 4. In the index communication problem Ind, Alice gets a string x ∈ {0, 1}N and Bob gets an
index i ∈ [N]; the goal for the players is to output xi, i.e., Ind(x, i) = xi.

Before studying the communication complexity of this problem, let us see how it can be used to prove
streaming lower bounds for the connectivity problem.

Theorem 14. Any p-pass streaming algorithm for deciding whether an n-vertex graph is connected or not
requires Ω(R(IndN)/p) bits of space, where Ind is the index problem on {0, 1}N for N = n− 2.

Proof. We are going to prove that R(connectivityn) ≥ R(IndN) where connectivityn is the communication
problem on an n-vertex graph whose edges are partitioned between Alice and Bob. The theorem then follows
from Proposition 13. The proof is via the following reduction:

(i) The players set the vertices of the graph to be s, t, v1, . . . , vN (so N + 2 = n vertices).

(ii) Given x ∈ {0, 1}N , Alice adds an edge in EA between s and vi for every i ∈ [N] such that xi = 1.

(iii) Given i ∈ [N], Bob adds an edge in EB between t and s and t and all vj with j 6= i.

12

We claim that the graph G in this reduction is connected iff Ind(x, i) = xi = 1. This is simply because all
vertices other than vi are connected to t by an edge of Bob and if xi = 1, vi has an edge to s, hence G is
connected, while when xi = 0, vi is a singleton vertex, making G disconnected.

As this reduction can be done without any communication between the players, Alice and Bob can create G
and run a protocol for connectivityn on G to solve IndN as well. Thus, any protocol for the former problem
would also solve the latter with the same communication, implying that R(connectivityn) ≥ R(IndN).

Remark. The type of reduction from Index in Theorem 14 is quite common in the (graph) streaming
model and allows one to prove numerous lower bounds for the problems at hand. We shall see several
such reductions throughout the course. However, it should also be noted that not every graph streaming
lower bound can be proven this easily (including some highly sophisticated reductions from Index).

The above theorem suggests that we can prove a lower bound for space complexity of the connectivity problem
by lower bounding R(Ind) instead. Alas, it is easy to see that even D(Ind) = O(log n) as Bob can simply
sends his index to Alice and Alice solves the problem. This will not allows us to prove any meaningful lower
bound for the streaming connectivity problem. This is precisely what was remarked after Proposition 13: to
prove lower bounds for single-pass algorithms, we can focus solely on protocols that involve Alice sending a
single message to Bob. This brings us to the final topic of this lecture.

One-way Communication Complexity. In the one-way communication model, we only allow Alice to
send a single message to Bob and Bob then needs to output the answer. We again define the communication
cost of the protocol as the worst-case bit-length of the message of Alice.

Figure 7: Illustration of a one way protocol.

We can then define:

• One-way deterministic communication complexity –
−→
D(f) := minπ ‖π‖ where π ranges over all deter-

ministic one-way protocols for f ;

• One-way randomized communication complexity –
−→
R (f) := minπ ‖π‖ where π ranges over all random-

ized one-way protocols for f with probability of success at least 2/3;

• One-way distributional communication complexity –
−→
Dµ(f) := minπ ‖π‖ where π ranges over all de-

terministic one-way protocols for f with probability of success at least 2/3 over the distribution µ;

Let us examine the one-way communication complexity of Ind. It is easy to prove that
−→
D(Ind) ≥ n as

follows: By pigeonhole principle, if the message of Alice has size less than n, then at least two different
strings x 6= y ∈ {0, 1}N , are mapped to the same message M . Now let i be an index where xi 6= yi. The
output of Bob is a deterministic function of M and i and is thus wrong for one of xi and yi, a contradiction.

13

This argument however does not work for randomized algorithms when the answer is allowed to be wrong

with probability 1/3 (in fact, it is easy to see that
−→
R (Ind) ≤ 2N/3). In the following, we are going to use

a more general argument to prove that
−→
R (Ind) = Ω(N). This will the allows us to apply Theorem 14 and

prove the desired lower bound for single-pass streaming algorithms of connectivity without proving any lower
bound on R(connectivity) directly10.

Theorem 15. The one-way randomized communication complexity of Index is
−→
R (Ind) = Ω(N).

Proof of Theorem 15. We prove the lower bound for protocols of Ind that output the correct answer with
probability of success at least 1 − δ for any δ < 0.1 as opposed to 2/3; this is without loss of generality as
the communication cost of these protocols are within a constant factor of “standard” protocols by simply
running the 1/3-error protocol in parallel O(1) time independently and taking the majority answer.

We will use Yao’s minimax principle in part (i) of Proposition 12 by showing that there is a distribution

µ where
−→
Dδ
µ(Ind) = Ω(N) where

−→
Dδ
µ(Ind) here is the distributional complexity of protocols over µ that

output the correct answer with probability ≥ 1− δ. The distribution µ is as follows:

• Distribution µ: Sample x ∈ {0, 1}N and i ∈ {0, 1}N independently and uniformly at random.

Now consider any deterministic one-way protocol π for Ind on the distribution µ with probability of success
at least 1− δ. By definition,

Pr
x∈{0,1}N

Pr
i∈[N]

(π errs on input (x, i)) ≤ δ; (3)

Let X be the subset of {0, 1}N defined as follows:

X :=

{
x ∈ {0, 1}N | Pr

i∈[N]
(π errs on input (x, i)) < 2δ

}
.

We claim that |X | ≥ 2N−1; otherwise (recall that choices of i and x in µ are independent and uniform):

Pr
x∈{0,1}N

Pr
i∈[N]

(π errs on input (x, i)) = Pr
x∈X

Pr
i∈[N]

(π errs on input (x, i)) + Pr
x∈X

Pr
i∈[N]

(π errs on input (x, i))

≥ Pr
x∈X

Pr
i∈[N]

(π errs on input (x, i))

≥ |X |
2N
· 2δ

(by the definition of x /∈ X , Pri∈[N] (π errs on input (x, i)) ≥ 2δ)

>
2N−1

2N
· 2δ = δ,

(by the contradicting assumption on size of X , we have |X | > 2N−1)

which contradicts Eq (3). Additionally, for any x ∈ X , we define:

E(x) := {i ∈ N such that π(x, i) errs} .

By definition, for any x ∈ X , |E(x)| < 2δN . Because of this, across all x ∈ X , the number of choices for
E(x) is at most:

of (< 2δN)-subsets of [N] =

2δN−1∑
k=0

(
N

k

)
≤ (

1

2δ
)2δN = 22δ·log (1/2δ)N .

(as
(
a
b

)
≤ (e · a/b)b and that

(
a
b

)
≤
(
a
b+1

)
for b+ 1 ≤ a/2)

10Strictly speaking, connectivityn is not the best example of proving one-way lower bounds in place two-way ones since one
can even prove that R(connectivityn) = Ω(n) (as we shall see later in the course); if you want a “real” example, consider

directed s-t reachability problem: R(s-t-reachability) = Õ(n) but
−→
R (s-t-reachability) = Ω(n2); you are strongly encourage to

prove both statements on your own (the first one uses BFS and the second is a reduction from Index).

14

Combined with the lower bound of 2N−1 on the size of X and pigeon hole principle, this implies that there
is a set X ∗ such that for all x, y ∈ X ∗, E(x) = E(y) and

|X ∗| ≥ 2N−1

22δ·log (1/2δ)N
= 2(1−2δ·log (1/2δ))N−1.

We are now done by a similar argument as in the deterministic case. We claim that any x ∈ X ∗ should be
mapped to a distinct message M(x); this is simple because we can recover x from M(x) by simply computing
the string y = π(x, 1), π(x, 2), . . . , π(x, n) which is a function of M(x) only and then flip every bit in E(x)
which is a function of X ∗ and not x. This implies that:

‖π‖ ≥ log |X ∗| ≥ (1− 2δ · log (1/2δ))N − 1 = Ω(N),

for any δ ≤ 0.1.

Plugging the bound in Theorem 15 in Theorem 14 (for p = 1 and after replacing R(Ind) by
−→
R (Ind) in the

theorem statement), we obtain a lower bound of Ω(n) bits on the space needed by single-pass streaming
algorithms for connectivity (this is within an O(log n) factor of the optimal bounds proven in [21]).

References

[1] K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear measurements. In Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto,
Japan, January 17-19, 2012, pages 459–467, 2012. 2

[2] N. Alon, S. Hoory, and N. Linial. The Moore bound for irregular graphs. Graphs Comb., 18(1):53–57,
2002. 6

[3] A. Babu and J. Radhakrishnan. An entropy based proof of the Moore bound for irregular graphs.
CoRR, abs/1011.1058, 2010. 6

[4] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algorithms, with an application
to counting triangles in graphs. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA, pages 623–632, 2002. 1

[5] S. Ben-David and E. Blais. A new minimax theorem for randomized algorithms. CoRR, abs/2002.10802.
To appear in FOCS 2020, 2020. 10

[6] B. Bollobás. Extremal graph theory. Courier Corporation, 2004. 6

[7] A. Chakrabarti, G. Cormode, and A. McGregor. Annotations in data streams. In Automata, Languages
and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Pro-
ceedings, Part I, pages 222–234, 2009. 2

[8] G. Cormode, J. Thaler, and K. Yi. Verifying computations with streaming interactive proofs. Proc.
VLDB Endow., 5(1):25–36, 2011. 2

[9] M. S. Crouch, A. McGregor, and D. Stubbs. Dynamic graphs in the sliding-window model. In Algo-
rithms - ESA 2013 - 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013.
Proceedings, pages 337–348, 2013. 2

[10] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a semi-streaming
model. In Automata, Languages and Programming: 31st International Colloquium, ICALP 2004, Turku,
Finland, July 12-16, 2004. Proceedings, pages 531–543, 2004. 1, 2

[11] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. Graph distances in the data-stream
model. SIAM J. Comput., 38(5):1709–1727, 2008. 7

15

[12] T. Gur and R. Raz. Arthur-merlin streaming complexity. In Automata, Languages, and Programming -
40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, pages
528–539, 2013. 2

[13] M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. In External Memory
Algorithms, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, May 20-22, 1998,
pages 107–118, 1998. 1

[14] C. Konrad, F. Magniez, and C. Mathieu. Maximum matching in semi-streaming with few passes. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 15th In-
ternational Workshop, APPROX 2012, and 16th International Workshop, RANDOM 2012, Cambridge,
MA, USA, August 15-17, 2012. Proceedings, pages 231–242, 2012. 2

[15] E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University Press, 1997. 7

[16] A. McGregor. Graph stream algorithms: a survey. SIGMOD Rec., 43(1):9–20, 2014. 2

[17] A. McGregor, S. Vorotnikova, and H. T. Vu. Better algorithms for counting triangles in data streams. In
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 401–411, 2016. 2

[18] I. Newman. Private vs. common random bits in communication complexity. Inf. Process. Lett., 39(2):67–
71, 1991. 8

[19] A. Rao and A. Yehudayoff. Communication Complexity: and Applications. Cambridge University Press,
2020. 7

[20] T. Roughgarden. Communication complexity (for algorithm designers). Found. Trends Theor. Comput.
Sci., 11(3-4):217–404, 2016. 7

[21] X. Sun and D. P. Woodruff. Tight bounds for graph problems in insertion streams. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2015, August 24-26, 2015, Princeton, NJ, USA, pages 435–448, 2015. 3, 4, 15

[22] A. C. Yao. Probabilistic computations: Toward a unified measure of complexity (extended abstract).
In 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977, pages 222–227, 1977. 10

16

	1 Graph Streaming
	2 Warm-Up: Some Simple Graph Streaming Algorithms
	3 Communication Complexity (for Graph Streams)
	4 One Way Communication Complexity: The Index Problem

