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1 More Background on Convexity

We introduced basics of convexity in the previous lecture, and saw how it plays an important role in linear
programming. In this lecture, we start our study of cutting plane methods that form a general family of
algorithms for linear programming and more generally convex optimization. We start by reviewing basic
definitions from convex optimization first and then introduce a very simple cutting plane method, the center
of gravity algorithm.

1.1 Convex Optimization

Recall the definition of convex functions and convex sets from the previous lecture. A convex optimization
problem is defined as follows.

Definition 1. Let f : Rn → R a convex function and K be a convex set. Return:

min
x∈Rn

f(x)

subject to x ∈ K.

Since any (convex) polyhedra is a convex set and a linear objective function is a convex function, linear
programming is a special case of convex optimization. In this lecture, we will see a cutting plane method for
solving this general optimization problem. But before that, we need to review gradients and in particular
their properties for convex functions briefly.
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1.2 Gradients

The gradient of a function at a point x ∈ Rn is a vector that, roughly speaking, captures the “speed” or
“direction and rate of increase” of the function on that point. In other words, moving in the direction of the
gradient vector at this point results in the largest increase in the value of the function.

Formally, the gradient is defined as follows.

Definition 2. The gradient of a function f : Rn → R at a point x = (x1, . . . , xn) ∈ Rn is a vector
∇f(x) ∈ Rn defined as:

∇f(x) = [
∂f

∂x1
(x) ,

∂f

∂x2
(x) , · · · , ∂f

∂xn
(x)],

where ∂f
∂xi

(x) is the partial derivative of f(x) at point x with respect to xi for i ∈ [n].

As a quick reminder, the partial derivative of f(x) at a point x with respect to xi is:

∂f

∂xi
(x) = lim

t→0

f(x+ t · ei)− f(x)

t
,

where ei = (0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · 0) is the standard vector. As such, we have the following fact.

Fact 3. For any f : Rn → R, a point x ∈ Rn and a vector v ∈ Rn, we have,

lim
t→0

f(x+ t · v)− f(x)

t
= 〈∇f(x) , v〉.

For example, consider the function f(x) = x1x
2
2 + 2x2. Then, its gradient at any point x is the vector

∇f(x) = [x22 , 2x1x2 + 2].

Gradients play a crucial role in convex optimization. In this lecture however, we only work with the
following simple property of gradients for convex functions.

Proposition 4. For any convex function f : Rn → R and two points x, y ∈ R, we have,

f(y) > f(x) + 〈∇f(x) , y − x〉.

Proof. For any λ ∈ [0, 1], by the convexity of f , we have,

λf(y) + (1− λ)f(x) > f(λy + (1− λ)x) = f(x+ λ(y − x)).

By re-ordering the terms in the above equation, we have that

f(y)− f(x) >
f(x+ λ(y − x))− f(x)

λ
.

Now, taking the limit of λ→ 0 in the above equation and using Fact 3, we have that

f(y)− f(x) > lim
λ→0

f(x+ λ(y − x))− f(x)

λ
= 〈∇f(x) , y − x〉,

concluding the proof.

It is worth mentioning that the inverse of the above proposition is also true: any function that satisfies
the given property for all x, y ∈ Rn is a convex function (we leave the proof as a simple exercise for the
reader). Goemeterically, Proposition 4 states that the tangent line on any point x of a convex function
always remain below the function. See Figure 1 for an illustration.
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Figure 1: An illustration of Proposition 4: tangent lines of convex function remain below the function.

1.3 Volume of Convex Sets and Center of Gravity

One can define the volume of a convex set in any dimension similar to what we mean by volume in the
three-dimensional space.

Definition 5. For any convex set K ⊆ Rn, we define the volume of K as:

Volume(K) :=

∫
x∈k

dx.

As an example, the volume of the n-dimensional box B = [0, b]n is

Volume(B) =

∫
x∈B

dx =

∫ b

x1=0

∫ b

x2=0

· · ·
∫ b

xn=0

dx = bn.

Fact 6. Let K be any convex set in Rn, γ > 0 be a parameter, and define Kγ = {γ · x | x ∈ K}. Then,

Volume(Kγ) = γn ·Volume(K).

The center of gravity of a convex set is then defined as an “average” of the points in the set. Intuitively,
this is the unique point in the convex set where the weighted relative position of the distributed mass of the
points in the set sums to zero. Formally,

Definition 7. The center of gravity of a convex set K ⊆ Rn is a point in Rn defined as:

Center(K) :=

∫
x∈K x dx

Volume(K)
;

specifically, the i-th coordinate of Center(K) = (c1, . . . , cn) is obtained as:

ci :=

∫
x∈K〈x , ei〉 dx
Volume(K)
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As an example, the center of gravity of the n-dimensional box B = [0, b]n is:

Center(B) = b−n ·
∫
x∈B

x dx = b−n ·
∫ b

x1=0

∫ b

x2=0

· · ·
∫ b

xn=0

[x1, . . . , xn] dx

= b−n · [bn−1 · b
2

2
, . . . , bn−1 · b

2

2
] = [

b

2
, . . . ,

b

2
].

We use the following important result from convex geometry due to Grünbaum [3] in this lecture. In
words, this proposition states that no matter how we “cut” a convex set through its center of gravity via a
hyperplane, the remaining piece has a constant fraction of the volume of the original set. Formally,

Proposition 8 (Grünbaum’s theorem [3]). Let K ⊆ Rn be any convex set and c := Center(K) be its center
of gravity. For any vector h ∈ Rn and hyperplane H := {x ∈ Rn | 〈h , x〉 6 〈h , c〉}, we have,

1

e
·Volume(K) 6 Volume(K ∩H) 6

(
1− 1

e

)
·Volume(K).

The proof of this result is beyond the scope of this course and thus we do not provide it here. But
see Figure 2 below for an illustration.

c

(a) Any hyperplane cutting the center of gravity par-
titions the triangle into almost-same size subsets.

c′

(b) However, for a point far from the center of gravity,
it is possible that some hyperplanes lead to highly
unbalanced subsets, although some others may not.

Figure 2: Illustration of Grünbaum’s theorem in Proposition 8.

We now have all the tools needed to present our algorithms in this lecture.

2 Center of Gravity Method

In this lecture, we present a simple strategy—somewhat in spirit of binary search—for solving convex opti-
mization problems, referred to as the center of gravity method. This method was discovered independently
on both sides of the Iron Curtain by Levin [4] and Newman [5].

We start by presenting a version of the algorithm for solving the convex optimization problem in Defini-
tion 1 and then show a specialization of the algorithm for solving LPs separately.

2.1 Center of Gravity Method for (General) Convex Optimization

Consider the following iterative algorithm for the convex optimization problem of Definition 1. We start
by picking the center of gravity of K. We then compute the gradient of f at this point, which gives us a
direction to minimize the value of f over K at the highest rate. Thus, we can now “cut” the parts of K that
are above this direction and focus on the remaining part (which by Proposition 8 has become sufficiently
smaller). We then continue like this the remaining part of K by computing its center of gravity and do as
follows. Eventually, we have narrowed down K to the extent that only (near) optimal points remain and we
can return those. We now formalize this algorithm (and slightly deviate from the given strategy for technical
reasons that will become clear later).
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Center of Gravity Method: An algorithm for minimizing a convex function f over a convex set K.

(i) Let K1 = K be the original convex set.

(ii) For t = 1 to T iterations:

(a) Let ct := Center(Kt) be the center of gravity of Kt.

(b) Compute ∇f(ct) and let Ht := {x ∈ Rn | 〈∇f(ct) , x〉 6 〈∇f(ct) , ct〉}.
(c) Let Kt+1 = Kt ∩Ht.

(iii) Return argmin
t∈[T ]

f(ct) as the final answer.

Theorem 9. For any ε > 0, the center of gravity method on a function f : Rn → [−U,U ] over a convex set
K ⊆ Rn, in T = O(n log (U/ε)) iterations returns a point x̃ satisfying

f(x̃) 6 f(x∗) + ε,

where x∗ is the minimum of f over K.

Proof. By Proposition 8, for any iteration t ∈ [T ], we have,

Volume(Kt+1) 6 (1− 1

e
) ·Volume(Kt) 6 (1− 1

e
)t ·Volume(K), (1)

where the second inequality is by the repeated application of first one.

For any γ ∈ (0, 1), define
Kγ := {(1− γ) · x∗ + γ · x | x ∈ K} .

By Fact 6, we have that Volume(Kγ) = γn ·Volume(K).

Consider the first iteration t ∈ [T ] such that Kγ ⊆ Kt but Kγ 6⊆ Kt+1. Such an iteration would happen
as long as T > e · n ln (1/γ) because Kγ ⊆ K = K1 by convexity and by Eq (1), we have,

Volume(KT ) 6 (1− 1/e)T−1 ·Volume(K) = (1− 1/e)e·n ln (1/γ) · ( 1

γ
)n ·Volume(Kγ) < Volume(Kγ);

thus, KT cannot contain Kγ and so in some iteration before that we should have “cut” some part of Kγ .

Now, let ct be the center of Kt computed in this particular iteration t. We claim that f(ct) 6 f(x∗)+2ε·U ,
which we prove as follows.

Let y be any point in Kγ \Kt+1. By Proposition 4,

f(y) > f(ct) + 〈∇f(ct) , y − ct〉 = f(ct) + (〈∇f(ct) , y〉 − 〈∇f(ct) , ct〉) > f(ct),

where the last inequality is because y /∈ Ht.

On the other hand, y ∈ Kγ can be written as y = (1− γ) · x∗ + γ · x for some x ∈ K. Thus,

f(y) = f((1− γ) · x∗ + γ · x) 6 (1− γ) · f(x∗) + γ · f(x) (by the convexity of f)

6 f(x∗) + γ · |f(x∗)|+ γ · |f(x)| 6 f(x∗) + 2γ · U.

Setting γ = ε/2U now concludes the proof as in this case T = O(n log (U/ε)) also holds.
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Remark. In order to be able to run the center of gravity method, we need to be able to (i) compute
the gradient of f at a given point, and (ii) compute the center of gravity of a convex set. Among these
two, the second requirement is quite strong since computing center of gravity (even for polytopes) is
a #P-hard problema. As a result, this method, despite its simplicity and (relatively) small number of
iterations it needs, rarely leads to time-efficient algorithms for convex optimization due to its requirement
of computing the center of gravityb (although it may lead to efficiency in other metrics as we shall see
in the last part of this lecture).

aThis means that this problem is at least as hard as counting the number of satisfying assignments to a SAT instance
(recall that even finding one satisfying assignment to SAT is NP-hard already).

bThere are algorithms known for finding an approximate center of gravity that can be made to work in this framework;
see [1] for more on this topic.

2.2 Center of Gravity Method for Linear Programs

We now show a specific instantiation of the center of gravity method for solving linear programs. As is
typical in this course, our focus will be on solving the feasibility problem: Given a polytope (P) defined as
{x ∈ Rn | Ax 6 b} for m constraints defined by ai ∈ Rn , bi ∈ R, determine whether or not (P) is empty. In
fact, for the center of gravity method to work, we need an extra assumption on the problem:

Assumption 10. The polytope (P) is a subset of the n-dimensional box [−R,R]n for some R > 1. Moreover,
if (P) is non-empty, then it fully contains an n-dimensional box z + [−r, r]n for some z ∈ Rn and r > 0.

The first part of Assumption 10 is rather benign because whenever we have a polytope (P), it by definition
belongs to some finite n-dimensional box; we are only assuming we know a “good” bound on the dimension
of this box. The second part of the assumption is more strong which ensures that the polytope, whenever
non-empty, is actually full-dimensional with a “non-trivial” volume. These assumptions are standard when
using cutting plane methods and in the case of LPs are, to some extent, without loss of generality – we will
see this in the context of an example later in this lecture, and then in full details later in the course.

We are now ready to present the algorithm.

Center of Gravity Method for LPs: An algorithm for testing LP feasibility under Assumption 10.

(i) Let P1 = [−R,R]n be the box that is promised to contain (P) if it is non-empty.

(ii) For t = 1 to T = 3n · ln (R/r) iterations:

(a) Let ct := Center(Pt) be the center of gravity of the polytope Pt.

(b) Check if ct belongs to (P); if so, return ct and terminate. Otherwise, let ai ∈ A, bi ∈ b for
i ∈ [m] be a violated constraint, i.e., 〈ai , ct〉 > bi.

(c) Let Ht := {x ∈ Rn | 〈ai , x〉 6 〈ai , ct〉} and Pt+1 = Pt ∩Ht be the polytope for next iteration.

(iii) If the algorithm never terminated so far, return (P) is empty.

Theorem 11. The center of gravity method for LPs, given any polytope (P) defined as {x ∈ Rn | Ax 6 b}
under Assumption 10, correctly decides whether (P) is empty and if not outputs a point x ∈ P .

Proof. Firstly, the algorithm only outputs a point in (P) if it finds a feasible point and thus never makes an
error on this part. In other words, whenever (P) is empty, the algorithm correctly outputs that.

We now argue that if (P) is non-empty and has a non-trivial volume under Assumption 10, the algorithm
outputs a point in (P). By induction, we have that in every iteration t ∈ [T ] of the algorithm, P ⊆ Pt since
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the only points x ∈ Rn discarded from Pt+1 compared to Pt all have

〈ai , x〉 > 〈ai , ci〉 > bi,

which also violated the i-th constraint of (P). This implies that in every iteration of the algorithm before
termination, we have

Volume(Pt) > Volume(P ) > (2r)n,

where the second inequality is by Assumption 10 and since volume of n-dimensional box [−r, r]n is (2r)n as
calculated earlier. On the other hand, by Proposition 8, we also have,

Volume(Pt) 6 (1− 1/e)t−1 ·Volume(P1) = (1− 1/e)t−1 · (2R)n.

For t = 3n · ln (R/r), this become

Volume(Pt) 6 exp (−1.1n · ln (R/r)) · (2R)
n
< rn,

which means that in this case, the algorithm should have terminated before the given iteration. This
concludes the proof.

The following figure gives an illustration of the algorithm.

c1

Figure 3: The first iteration of the center of gravity method for LP feasibility. The second polytope chosen
by the algorithm is specified by the dashed region.

Remark. It is worth examining the interaction of this algorithm with the input linear program more
carefully. The only step of the algorithm that needs access to the polytope (P) is in Line ((ii)b). Even
this step does not necessarily requires having full access to (P). Instead we need the following:

• Separation Oracle: Given a point y ∈ Rn, either correctly output y belongs to (P) or return a
constraint ai ∈ A, bi ∈ b that is violated by y, i.e., 〈ai , y〉 > bi.

While a separation oracle can be trivially obtained by plugging in the vector y in every single constraint of
(P), in many cases, one can do this more efficiently (which even allows for solving LPs with exponentially-
many constraints). This is a general property of (most) cutting plane methods and we will revisit this
in more details later in the course.

We conclude this section by recalling that computing the center of gravity of polytopes is a “hard”
computational task and thus the center of gravity method typically does not lead to an efficient algorithm
for solving LPs. We will see a (somewhat) remedy for this using another cutting plane algorithm, the
Ellipsoid algorithm in the next lecture.
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3 Communication Complexity of Bipartite Matching

Before concluding this lecture, we show a perhaps surprising application of the center of gravity method,
when the focus is on another notion of efficiency beside time complexity. Consider the following problem.

Problem 1. We have a bipartite graph G = (V,E) with n vertices on each side whose edges are partitioned
between two players Alice and Bob, who receive subgraphs GA and GB, respectively. The players want to
compute a perfect matching in G, namely, a matching that matches all the vertices, or output that G does
not have a perfect matching.

Since neither player has the entire graph, the players need to communicate with each other, by sending
messages to each other (which are arbitrary strings). The goal is to design a protocol for this problem with
minimal communication, namely, the worst-case total length of messages between the players.

This problem admits a trivial protocol by players communicating all their inputs with each other; but
this requires O(n2) bits of communication which is considered too much. On the other hand, there is also
a trivial lower bound of Ω(n log n) bits for this problem because if Alice has one of the n! possible perfect
matchings and Bob has no edges, Alice still needs to communicate log (n!) = Θ(n log n) bits to Bob for him
to know the matching also. The question now is which of these two bounds is closer to the right answer?

A very recent elegant result by [2] shows that the lower bound above is much closer to the right answer
than the trivial upper bound. Formally, they prove the following result.

Theorem 12 ([2]). There is a deterministic protocol for Problem 1 that requires players to communicate
O(n log2 n) bits in total.

As we shall see, the proof of this theorem turns out to be quite elegant and simple if one looks at the
problem the “right way” and use the center of gravity method. However, this problem was open for about
three decades and asked frequently in the literature, without much progress. This result thus acts as a
perfect example of the power of these (quite simple) continuous optimization methods in solving classical
combinatorial problems.

Proof of Theorem 12. Recall the following primal dual pair for the bipartite maximum matching and mini-
mum vertex cover problems:

Bipartite matching LP:

max
e∈RE

∑
e∈E

xe

subject to
∑
e3v

xe 6 1 ∀v ∈ V

xe > 0 ∀e ∈ E.

Bipartite vertex cover LP:

min
y∈RV

∑
v∈V

yv

subject to yu + yv > 1 ∀(u, v) ∈ E
∑
v

yv > 0 ∀v ∈ V.

As we proved in earlier lectures, the integrality gap of both these LPs is one, or in other words, the
optimal solutions to these LPs can be rounded without any loss in the value to integral matchings and
vertex covers, respectively (even though the LPs allow fractional values).

For reasons that will become clear shortly, we will focus on solving the vertex cover LP instead (a brief
intuition is that in this LP, each constraint is given fully to either Alice or Bob). In particular, we will run
the center of gravity method for the vertex cover LP to check whether it has a vertex cover of size n− 1 or
not (by strong duality, this is equivalent to checking if G has a perfect matching or not). However, to run
the center of gravity method, we need to satisfy Assumption 10 which may not happen for the LP above.
We consider the following relaxation:
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(D1): Bipartite vertex cover LP:∑
v∈V

yv 6 n− 1

yu + yv > 1 ∀(u, v) ∈ E
yv > 0 ∀v ∈ V.

(D2): Relaxed vertex cover LP:∑
v∈V

yv 6 n− 1

2

yu + yv > 1 ∀(u, v) ∈ E
yv > 0 ∀v ∈ V.

Notice that the only difference between the two LPs is the first constraint. The following claims show
that this change does not affect the feasibility of these LPs, while establishing the required properties for
satisfying Assumption 10 by (D2).

Claim 13. (D1) is feasible iff (D2) is feasible.

Proof. Since (D1) is a subset of (D2), if (D1) is feasible, then so is (D2). We now prove the converse. Let y
be a point in (D2). By the randomized rounding method of Lecture 4, we obtain that there exists an integral

z ∈ {0, 1}V such that z is also in (D2). But since z is integral, we have that
∑
v zv 6 n − 1/2 < n implies

that
∑
v zv 6 n− 1. Thus, z also belong to (D1) proving that (D1) is also feasible.

Claim 14. If (D2) is feasible, then it contains an n-dimensional box with width r = 1/8n.

Proof. By Claim 13, if (D2) is feasible, so is (D1). Let y be a feasible point in (D1) and define:

Z :=

{
z ∈ RV | yv 6 zv 6 yv +

1

4n
for all v ∈ V

}
.

For any point z ∈ Z, we have that∑
v

zv 6
∑
v

(yv +
1

4n
) 6 1/2 +

∑
v

yv 6 1/2 + (n− 1) = n− 1/2,

where the second inequality is because G has 2n vertices in total, and the next one is because y is in (D1).
This implies that Z ⊆ (D2) which implies the claim.

Claim 15. (D2) is always a subset of the n-dimensional box [0, n]n.

Proof. The variables yv for v ∈ V cannot receive a value > n−1/2 without violating the first constraint.

At this point, we have all we need to run the center of gravity method. The protocol will be as follows:

A protocol for bipartite perfect matching:

(i) Alice and Bob let P1 = [0, n]n. For t = 1 to T = 3n · ln (R/r) iterations for R = n and r = 1/8n:

(a) The players on their own compute the center of gravity of the polytope Pt, i.e., ct := Center(Pt).

(b) Both players check if ct violates any of the constraints in their inputs. The first and last
constraint of (D2) is known to both players and they can do this without any communication.
The second constraints are partitioned between Alice and Bob: if there is a violated constraint,
i.e., an edge (u, v) ∈ G, one of the players can communicate it to the other using O(log n) bits.

If there is no violating constraints, the players can verify this with O(1) communication between
themselves, and both have ct as the answer.

(c) Let Ht :=
{
y ∈ RV | yu + yv > ctu + ctv

}
and Pt+1 = Pt∩Ht be the polytope for next iteration.

(ii) If the algorithm terminated, return G has no perfect matching. Otherwise, the players return a
perfect matching among the set of communicated edges (which is known to both of them).
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By construction, this algorithm is running the center of the gravity method described in Section 2.2.
Thus, by Theorem 11 (and by Claim 14 and Claim 15 that ensure Assumption 10 is satisfied), whenever
(D2) is feasible, it returns a point in (D2) and otherwise, correctly outputs (D2) is infeasible.

First, suppose (D2) is feasible. Then, by Claim 13, it implies that (D1) is also feasible, which, by the
strong duality, implies the maximum matching in G has size n − 1 – in other words, G does not have a
perfect matching.

Now, suppose (D2) is infeasible. Consider the graph H = (V,EH) where EH is the set of all communicated
edges between Alice and Bob. The infeasibility of (D2) implies that EH does not have a vertex cover of
size less than n. Again, by the strong duality, this implies that EH has a matching of size n, i.e., a perfect
matching. Thus, the players can indeed return a perfect matching of H in the last step of the protocol,
implying the correctness of the protocol.

Finally, the number of iterations of the algorithm is O(n log (R/r)) = O(n log n) and each iteration
involves communicating O(log n) bits. This gives an O(n log2 n) bit protocol for bipartite perfect matching
as desired.
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