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1 Basics of Convexity

In this lecture, we introduce notions and applications of convexity in linear programming (or alternatively,
study linear programming from a geometric point of view). We start with basic definitions, and then
consider several canonical convex sets, and finally see a high level connection between convexity and linear
programming.

1.1 Basic Definitions

Convex set. We start with the definition of the convex set.

Definition 1 (Convex Set). A set S ⊆ Rn is convex if ∀x, y ∈ S, t ∈ [0, 1], we have tx+ (1− t)y ∈ S.

Geometrically, given two points x and y, we draw a line segment xy between them. We can obtain all the
points on xy by changing the value of t ∈ [0, 1] in tx+ (1− t)y. Thus, a set is convex if the segment joining
any two of its points is contained in the set. Figure 1 gives some examples.

There are also other ways to define a convex set, e.g., a convex set is a subset that intersects every line
into a single line segment (possibly empty).

Claim 2. The intersection of any collection of convex sets is also convex.

Proof. Let C be any collection of convex sets. If x, y ∈ ∩C, x, y ∈ C for each C ∈ C. Therefore, ∀t ∈
[0, 1], tx+ (1− t)y ∈ C for each C ∈ C, which means tx+ (1− t)y ∈ ∩C and C is a convex set.
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Figure 1: Sets S and P are convex, but set Q is not, because segment xy is not contained in Q

Convex function. Convex functions and convex sets are closely related and connected by the definition
of epigraphs (Figure 2). An epigraph or supergraph of a function f : Rn → R is the set

epi(f) = {(x, y) ∈ Rn+1 | f(x) ≤ y} with x ∈ Rn, y ∈ R.

Then we can define that a function f is convex if and only if its epigraph is a convex set.

Equivalently, f is convex if and only if the line segment between any two points on the graph of the
function lies above the graph between the two points. Thus,

Definition 3 (Convex Function). Let f : Rn → R be a real function,

(1) f is convex if and only if its epigraph epi(f) = {(x, y) ∈ Rn+1 | f(x) ≤ y} is a convex set.

(2) f is convex if and only if ∀x, y ∈ Rn, f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

f(x)

epi( f )

x

y

Figure 2: The epigraph of a function f is all points lying on or above its graph.

Convex combination. Recall that a linear combination is the weighted average of points:
∑
i λixi, with

constants λi ∈ R. A convex combination is similar, but with extra constraints on constants λi.

Definition 4 (Convex Combination). Convex combination for a set of points {x1, . . . , xm ∈ Rn} is

m∑
i=1

λixi s.t.
∑
i

λi = 1, λi ≥ 0.

Therefore, convex combination is a special type of linear combination: every convex combination is a linear
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combination, but the opposite is not true. We can also interpret the convex combination from another point
of view: It is an expectation of any probability distribution over points x1, ..., xm.

Convex combinations of two points x1 and x2 fill exactly the segment x1x2. It is also easy to see that all
convex combinations of three points x1, x2, x3 fill exactly the triangle x1x2x3; see Figure 3 for an illustration.
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Figure 3: Convex hull of sets containing different numbers of points.

Convex hull. Based on the definition of convex combination, we can define a convex hull as below.

Definition 5 (Convex Hull). The convex hull for a set of points S := {x1, . . . , xm ∈ Rn} is

ConvexHull(S) := {y ∈ Rn | y is a convex combination of x1, . . . , xm}.

The convex hull can also be described equivalently in Lemma 6 as the intersection of all convex sets that
contains the original points.

Lemma 6. The convex hull of points S := {x1, ..., xm} is convex and is a subset of any other convex set
that contains S (informally speaking, ConvexHull(S) is the “smallest” convex set containing all of S).

Proof. We shall prove the convex hull is a convex set and also the smallest. Let C := ConvexHull(S).

C is a convex set. Any two points y, z ∈ C can be represented by convex combinations of {x1, ..., xm},

y = λ1x1 + · · ·+ λmxm,

m∑
i=1

λi = 1, λi ≥ 0

z = λ′1x1 + · · ·+ λ′mxm,

m∑
i=1

λ′i = 1, λ′i ≥ 0.

Thus, for any t ∈ [0, 1], we have,

ty + (1− t)z =

m∑
i=1

(tλi + (1− t)λ′i) · xi.

As t, 1− t, λi, and λ′i are all greater than 0, and

m∑
i=1

[tλi + (1− t)λ′i] = t

m∑
i=1

λi + (1− t)
m∑
i=1

λ′i = t+ (1− t) = 1,

we have that ty + (1− t)z is also a convex combination of points in S and thus belongs to C. Therefore, C
is convex based on the definition of convex set.
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Any convex set C̃ containing x1, ..., xm, also contains C. C is composed of all convex combinations
y =

∑m
i=1 λixi of S. We prove that y belongs to C̃ as well. If m = 1, it is obviously that y ∈ C̃. If m = 2,

y = λx1 + (1− λ)x2, and thus since C̃ is a convex set, x1, x2 ∈ C̃, and λ ∈ [0, 1], then y ∈ C̃.

Now we shall prove the following proposition by induction: for all m > 3, y can be rewritten as

y =

m−1∑
i=1

λizm−2 +

(
1−

m−1∑
i=1

λi

)
xm ∈ C̃,

where

zm−2 =

∑m−2
i=1 λi∑m−1
i=1 λi

· zm−3 +
λm−1∑m−1
i=1 λi

· xm−1 ∈ C̃, z0 = x1.

When m = 3, y = λ1x1+λ2x2+(1−λ1−λ2)x3. Here we define z1 = λ1x1

λ1+λ2
+ λ2x2

λ1+λ2
. Since λ1

λ1+λ2
+ λ2

λ1+λ2
=

1 and all weights are greater than 0, we have z1 ∈ C̃. Then we can rewrite y as y = (λ1+λ2)z1+(1−λ1−λ2)x3.
As z1 and x3 all belong to C̃, y ∈ C̃. The proposition holds.

Assume that the proposition holds when m = k, i.e.,

y =

k−1∑
i=1

λizk−2 +

(
1−

k−1∑
i=1

λi

)
xk.

where

zk−2 =

∑k−2
i=1 λi∑k−1
i=1 λi

zk−3 +
λk−1∑k−1
i=1 λi

xk−1 ∈ C̃.

Then when m = k + 1,

y =

k−1∑
i=1

λizk−2 + λkxk +

(
1−

k∑
i=1

λi

)
xk+1.

Define zk−1 =
∑k−1

i=1 λi∑k
i=1 λi

zk−2 + λk∑k
i=1 λi

xk, then we can rewrite y as y =
∑k
i=1 λizk−1 +

(
1−

∑k
i=1 λi

)
xk+1.

Since zk−2, xk ∈ C̃, the sum of weights is 1, and all weights are greater than 0, we have zk−1 ∈ C̃, which
implies that y ∈ C̃, concluding the proof.

1.2 Half-spaces, Polyhedra, and Polytopes

Let us now consider several canonical examples of convex sets.

Definition 7 (Half-space). A half-space is a set {x ∈ Rn | a>x ≥ b}, with a ∈ Rn and b ∈ R.

Geometrically, a hyperplane
{
x ∈ Rn | a>x = b

}
divides the space Rn into two half-spaces. Algebraically,

a hyperplane corresponds to an equality constraint, and a half-space corresponds to an inequality constraint.

Definition 8 (Polyhedron). A polyhedron is the intersection of finite numbers of half-spaces.

Definition 9 (Polytope). A polytope is a bounded polyhedron. In other words, if a polyhedron can be
fitted into a finite-radius ball, it is also a polytope.
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Note that the above three geometries (half-space, polyhedron, polytope) are all convex sets, but not neces-
sarily vice versa, that is, we can have a convex set which is neither of these definitions. An example is a ball
(prove this formally, but intuitively note that a ball is the intersection of infinitely many half-spaces, since
a ball is very smooth).

Next, we show some examples of polyhedra.

Example 10. A box [−1, 1]n is a polyhedron. See Figure 4.

This is a hyper-box of width two in each dimension. We can easily check that it is a polyhedron with two
inequality constraints in each dimension: ∀i ∈ [n], xi ≤ 1, xi ≥ −1. In other words, it is the intersection of
2n half-spaces.

n = 1 n = 2 n = 3

Figure 4: The n-dimensional box [−1, 1]n

Example 11. A crosspolytope {x ∈ Rn |
∑n
i=1 |xi| ≤ 1} is a polyhedron. See Figure 5.

This example is less obvious. We can describe it as the intersection of 2n half-spaces:

∀S ⊆ [n],
∑
i∈S

xi −
∑
i 6∈S

xi ≤ 1.

Here a question arises: can we reduce the number of constraints to describe an n-dimensional crosspolytope
at a higher-dimensional space?

n = 1 n = 2 n = 3

Figure 5: The n-dimensional crosspolytope {x ∈ Rn |
∑n
i=1 |xi| ≤ 1}

The above examples are simple geometric polytopes. There is an entire field of combinatorial optimization,
called polyhedron tiling, where we seek polytopes associated with particular combinatorial objects. An
example is Birkhoff polytope, which corresponds to the feasible region of the bipartite perfect matching LP.

1.3 Relationship to Linear Programming

Based on the above definitions, we now revisit linear programming from a geometric point of view. Let P
be a general LP:

max
x∈Rn

c>x subject to Ax ≤ b,
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with c ∈ Rn, A ∈ Rm×n, and b ∈ Rn. Any inequality constraint a>i x ≤ bi is a half-space, which is of course a
convex set. The set of all feasible solutions of P is the intersection of m half-spaces, which by Claim 2 is also
a convex set, and particularly, a polyhedron. Thus, in LP we want to optimize a linear objective function
over the convex polyhedron.

Below we have another different interpretation of linear programming. One can show that any polytope
is a convex hull of a certain number of points. Thus, we can see linear programming as given a set of
points, optimize a linear function over their convex hull. In the more general case, convex optimization is
to optimize a convex function over a convex set. Linear programming is a special case of it. We will revisit
convex optimization later in this course as well.

2 Vertices, Extremal Points, and Basic Feasible Solutions

For any polyhedron S, we give the following three definitions of “corners” of the polyhedron S (note that
we expect a polyhedron to be “pointy”).

Definition 12 (Vertices, Extremal Points, and Basic Feasible Solutions).

(1) A vertex of a polyhedron S is a unique maximizer of some linear function over S.

Precisely, x ∈ S is a vertex if and only if there exists c ∈ Rn, such that ∀y 6= x ∈ S, c>x > c>y.

(2) x ∈ S is an extremal point if there does not exist y 6= z ∈ S and t ∈ (0, 1), s.t. x = ty+ (1− t)z.

(3) Let polyhedron S = {x ∈ Rn | Ax ≤ b} with A ∈ Rm×n and b ∈ Rm. Its basic feasible solutions
(BFSs) are x ∈ S that make n linearly independent constraints tight (i.e., hold with equality).a

aWe have defined BFSs previously in this course as well.

The above three definitions somehow capture the notion of “corner”, but it is not clear at all that they
should all refer to the same thing. The following proposition proves this important result.

Proposition 13. The three definitions in Definition 12 are equal.

Proof. We prove it by showing that (1) =⇒ (2), (2) =⇒ (3), and (3) =⇒ (1).

(1) =⇒ (2): We first show that if x is a vertex of S, then x is also an extremal point.

We prove by contradiction that there are two different points y 6= z ∈ S and t ∈ (0, 1) such that
x = ty + (1− t)z. We know from (1) that there is c ∈ Rn such that x is a unique maximizer over S. Thus,

c>x = t · c>y + (1− t) · c>z < t · c>x+ (1− t) · c>x = c>x,

a contradiction.

(2) =⇒ (3): Assuming x is an extremal point, we show that x is also a basic feasible solution.

Let T ⊆ [m] be the set of tight constraints of x, i.e., the set of rows of A such that ATx = bT . If the rank
of AT is n, then we are done by the definition of BFS. Let us assume that the rank of AT is less than n.

Since AT is not full rank, it has a non-empty kernel and thus there exists a vector w 6= 0n ∈ Rn such that
ATw = 0. Let ε > 0 be sufficiently small (the choice will become clear) and take y = x+ εw and z = x− εw.
Notice that x = (y + z)/2, namely, a convex combination of y and z. Thus, we only need to show that y, z
belong to the polyhedron S to say that x is not ax extremal point, a contradiction.

We have AT y = AT (x + εw) = bT + 0 = bT , and also AT z = bT . For the remaining part of A we have
A−T y = A−Tx+εA−T y ≤ b−T , since ε is small enough. Similarly, we get A−T z ≤ b−T . Combining together
we have Ay ≤ b and Az ≤ b, which implies that y, z ∈ S, which concludes the proof.
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(3) =⇒ (1): We now prove the last part. Let x be a BFS of S, then we show that x is also a vertex of S.

Let B be the set of tight linearly independent constraints in x (its basis). Set c = (
∑
i∈B ai), where

ai is the i-th row of A. Since x is tight for the constraints B, we have c>x =
∑
i∈B bi. And in the set

S = {x | Ax 6 b} all the points y have c>y 6
∑
i∈B bi. And as AB is full-ranked, x is the only solution

makes c>x 6
∑
i∈B bi tight. To make the statement formal, in order to show that c>y < c>x for all

y 6= x ∈ S, prove by contradiction that there exists c>y = c>x for some y 6= x ∈ S, which implies that
ABy = bB and AB(y − x) = 0. Then AB is not full-ranked and contradicts to the definition of BFSs.

Remark. It is worth noting that the definition of vertex and extremal point can be generalized to the
case S is any convex set. In this case, the proof of (1) ⇒ (2) still holds, i.e, a vertex is an extremal
point. But, the converse is not true, namely, we can have extremal points that are not vertices; see the
example below.

Figure 6: An example of a convex set (a circle attached to a rectangle) and a point (the connecting point
of circle and rectangle) which is an extremal point but is not a vertex (the only linear function on the circle
side that is uniquely maximized by this point is a tangent to the circle at that point; that line intersects the
side of the rectangle fully and thus cannot uniquely maximizes this point on the rectangle).

Having such a equivalence between three different definitions is quite helpful. In the rest of this lecture,
we use this equivalence to prove some new results about LPs.

2.1 Optimal Solutions and BFSs in General LPs

Recall that in Lecture 2, we saw that optimal solutions of LPs in the equational form happen on BFSs, and
in Lecture 5, we mentioned that this is true for general LPs as well, not only the ones in the equational form
(barring some “trivial” exceptions). We now prove this result.

Theorem 14 (Proposition 7 in Lecture 5). Consider a linear program in the general form P:

max
x∈Rn

c>x

subject to Ax ≤ b.

If P has an optimal solution and P has a BFS, then P has an optimal solution which is a BFS.

To prove this theorem we need the following geometric result (which we omit its proof for now).

Proposition 15. A polyhedron P has an extremal point iff P contains no infinite line inside. Here a line
is defined as {x+ ty | t ∈ R} where x ∈ P and y 6= 0n ∈ Rn.

Using Proposition 15, we can prove Theorem 14 easily as follows.

Proof of Theorem 14. Let v be the optimal value of P and Q = {x ∈ P | c>x = v} be the set of all optimal
solutions. By the assumption in the theorem, we know that Q is non-empty. Moreover, by Proposition 15 we
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know that since P has an extremal point (by Proposition 13 since it has a BFS which is an extremal point),
it cannot contain an infinite line inside. So, it means that its subset Q also has no infinite line, which, again
by proposition 15, implies that Q has an extremal point. By Proposition 13, this means that Q also has a
BFS. Let x be any BFS/extremal point in Q.

If x is also an extremal point of P we are done. Thus, let us assume toward a contradiction that P is
not an extremal point, which means, there exists y 6= z ∈ P and t ∈ (0, 1) such that x = ty + (1 − t)z.
By a similar argument in the proof of proposition 13, we know that c>x = t · c>y + (1 − t) · c>z and since
c>x = v is maximized, we should also have that c>y = c>z = v. But this implies that both y, z ∈ Q as well,
contradicting the fact that x was an extremal point of Q.

2.2 Integrality of the Bipartite Matching Polytope

Recall the bipartite matching polytope for a graph G = (V,E):

Bipartite Matching Polytope (P):∑
e3v

xe 6 1 ∀v ∈ V

xe > 0 ∀e ∈ E.

In the maximum matching problem, our goal is to find an x ∈ P that maximizes
∑
e xe. Similarly, in the

maximum weight matching problem, the goal is to find an x ∈ P that maximizes
∑
e we · xe where we is the

weight of the edge e ∈ E. In Lecture 1, we showed that in the integrality gap of the maximum matching
LP is 1, namely, any solution to that LP can be rounded to an integral matching without decreasing the
objective value. We now prove a stronger result that shows that BFSs of the polytope (P) are all integral ;
combined with Theorem 14, this implies that optimal solutions of any LP with constraints corresponding to
the polytope (P) are always integral1.

Proposition 16. Any vertex/extremal point/BFS of the bipartite matching polytope (P) is integral.

Proof. By Proposition 13 we know the equivalence between vertices, extremal points, and BFSs of (P). Let
x be an extremal point of (P) and suppose towards a contradiction that x has some fractional values. Let
F ⊆ E denote the set of edges in G with fractional values. We consider two cases.

A cycle C = e1, . . . , e2k in F . Since G is bipartite, any cycle in F can only be of even length. Let ε > 0
be sufficiently small and consider the vector w ∈ Rm defined such that wei = 1 for i ∈ {1, 3, . . . , 2k − 1} and
wej = −1 for j ∈ {2, 4, . . . , 2k}, and zero everywhere else. Define y = x + ε · w and z = x − ε · w and note
that x = (y + z)/2. We now show that y, z both belong to (P) which contradicts the fact that x was an
extremal point.

To see why y belongs to (P), note that we can take ε > 0 sufficiently small so that xe + ε 6 1 and
xe − ε > 0, since all the edges in F had fractional value and thus are away from 0 and 1. Moreover, for any
vertex v ∈ V , we have, ∑

e3v
ye =

∑
e3v

xe + ε ·
∑
e3v

we = (
∑
e3v

xe) + ε− ε 6 1

where the last inequality is because x is in (P) and the equality before that is because any vertex is incident
on either two consecutive edge of C (with +ε and −ε value in w) or none at all. This implies that y in in
(P). A similar argument also shows z is in (P) as desired.

1In fact, it even shows something stronger. For an algorithm like Simplex for LPs that always return a BFS of the given LP,
this result implies that we never need a rounding algorithm on top of Simplex because it anyway returns an integral solution
to begin with.
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A path Q = e1, . . . , ek in F . Let Q be a maximal path in that we cannot extend it in either direction in
F . Let s and t be the endpoints of this path. Since the edges in F have fractional value and Q is a maximal
path, we have that 0 <

∑
e3s xe < 1 and 0 <

∑
e3t xe < 1. Thus, we can again define y and z as before

by alternatively increase or decrease the xe-value of each edge in Q by ε. This way, for any internal vertex
v ∈ Q we have ∑

e3v
ye =

∑
e3v

ze =
∑
e3v

xe 6 1.

For the two endpoints s and t, the summations above may increase or decrease by ε compared to that of x,
but since there is a slack for these constraints, by taking ε > 0 small enough, we will still have that y and z
belong to (P) also.

To summarize, since F always contains either a cycle or a (maximal) path if it is non-empty, we showed
that any fractional vector x can be written as a convex combination of two other points in (P), thus ensuring
that x cannot be an extremal point. Thus, all vertices/extremal points/BFSs of the matching polytope (P)
has to be integral, concluding the proof.
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