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1 Application I: Maximum Flow

In the max-flow problem, we have a directed graph G = (V,E) with n vertices and m edges, source s, and
sink t, and capacity cu,v on each edge (u, v) ∈ E. The goal is to route a maximum amount of flow from the
source s to sink t while ensuring that no edge is responsible for routing more flow than its capacity, and that
no flow is generated except out of source s and no flow is consumed except by the sink t. This is a classical
optimization problem that is often taught in undergrad algorithms’ courses. See Figure 1 for an illustration.

Figure 1: An input graph to the max-flow problem on the left with capacities denoted on the edges, and a
maximum flow in this graph on the right.

We write the following LP for solving this problem:

max
f∈Rn2

∑
v∈V

fs,v

subject to
∑
u∈V

fu,v =
∑
w∈V

fv,w ∀v ∈ V \ {s, t} (preservation of flow constraints)

0 6 fu,v 6 cu,v ∀(u, v) ∈ E. (capacity constraints)

It is straightforward to verify that this LP actually solves the original problem modulo a certain technical-
ity: the flow f ∈ Rn2

may contain a cycle, meaning that the LP allows for some vertex v ∈ V to “generate”
some new flow, route it through a cycle back to v and “consume” it again at v (exercise: give a directed
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graph with a corresponding flow which is like this and is feasible and maximum). However, it is easy to see

that given any flow f ∈ Rn2

, we can repeatedly find a cycle in the support of the flow, reduce the flow on
every edge of the cycle by the same amount until one of the edges no longer has any flow, thus “break” the
cycle. This still preserves the total value of the flow, namely, the flow going out of s (=going inside t) as we
only reduced flow over a cycle. Repeatedly applying this then makes the flow cycle-free which is inline with
the original definition of the problem.

2 Application II: Minimum Cut

In the min-cut problem, we have a directed graph G = (V,E) with n vertices and m edges, source s, and
sink t, and capacity cu,v on each edge (u, v) ∈ E. An s-t cut in G is any partition S tT = V of vertices such
that s ∈ S and t ∈ T . We refer to edges going from S to T as cut edges of the cut (S, T ). The goal in this
problem is to find a s-t cut with the minimum total capacity on its cut edges. See Figure 2 below.

Figure 2: An input graph to the min-cut problem on the left (the same as the one for max-flow in Figure 1),
and a minimum s-t cut in this graph on the right (the blue set is S, the red set is T , and the green edges
are cut edges).

The min-cut problem is intimately connected to the max-flow problem. For instance, it is easy to see
that capacity of any s-t cut (S, T ) is an upper bound on the maximum flow possible from s to t; any flow
going from s to t necessarily needs to use the cut edges of (S, T ) to “cross” the cut. This gives the following
simple corollary:

minimum s-t cut capacity > maximum s-t flow value.

Remark. The connection between these problems however goes much deeper than this. For instance,
the inequality above is actually always an equality, meaning that the minimum s-t cut capacity is equal
to the maximum s-t flow in any graph. This is a topic related to the duality theory and will be covered
in the next sections.

We write the following LP for solving this problem (strictly speaking, some of the constraints below are
not necessarily and are added for simplification):

min
y∈Rn,z∈Rm

∑
(u,v)∈E

cu,v · zu,v

subject to yv − yu 6 zu,v ∀(u, v) ∈ E
ys = 0 and yt = 1

zu,v > 0 and 0 6 yv 6 1 ∀(u, v) ∈ E and ∀v ∈ V.

The fact that this LP “solves” the min-cut problem is no longer trivial. Let us prove this in the following.
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Integral interpretation of the LP. Firstly, as in Lecture 1, we start by seeing how this LP work if we
instead solve this problem integrally instead of fractionally, i.e., when y ∈ Zn, z ∈ Zm instead (note that
this is no longer a linear program). Let S := {v | yv = 0} and T := {v | yv = 1}, and since we assumed
yv ∈ {0, 1} for all v ∈ V , and additionally ys = 0 and yt = 1, we get that (S, T ) is a s-t cut. Now, consider
the variables zu,v for (u, v) ∈ E:

• If yu = yv, then the second constraint of the LP becomes zu,v > 0 and this is a minimization program
and there are no additional constraints on zu,v, we will have zu,v = 0 in the optimal solution.

• If yu = 0 and yv = 1, then the second constraint of the LP becomes zu,v > 1 and thus we will have
zu,v = 1 by the reasoning above.

• Finally, if yu = 1 and yv = 0, then the second constraint becomes zu,v > −1 which is redundant
because we also have the constraint zu,v > 0.

The above implies that zu,v = 1 iff u ∈ S and v ∈ T and otherwise it is 0; thus, z is the characteristic vector
of the cut edges of (S, T ). Thus, the value of the objective function is equal to the capacity of the cut (S, T ).
As we are minimizing this in the program, this corresponds to solving the min-cut problem.

Original LP and rounding. We now consider working with the original LP (without the integrality
constraints which were not linear). We design the following randomized rounding for turning an optimal
solution to the LP into an integral one without decreasing the value in expectation; in other words, obtain
an s-t cut with the same value (in expectation) as that of the LP1.

The rounding algorithm is as follows. Let y ∈ Rn, z ∈ Rm be an optimal solution to the LP. Pick a
random number θ ∈ (0, 1) uniformly at random and let S := {v | yv 6 θ} and T := {v | yv > θ}. Given that
ys = 0, yt = 1, and θ ∈ (0, 1), we get a valid s-t cut (S, T ). For any edge (u, v) ∈ E, define an indicator
random variable Xu,v ∈ {0, 1} which is 1 iff (u, v) is a cut edge of (S, T ), namely, u ∈ S and v ∈ T . We have

E
θ

[capacity of (S, T )] = E
θ

 ∑
(u,v)∈E

cu,v ·Xu,v

 =
∑

(u,v)∈E

E
θ
[Xu,v] (by the linearity of expectation)

=
∑

(u,v)∈E

cu,v · Pr (yu 6 θ < yv)

(as (u, v) is a cut edge iff u ∈ S, i.e., yu 6 θ, and v ∈ T , i.e., yv > θ)

6
∑

(u,v)∈E

cu,v · (yv − yu) (as θ is chosen uniformly from (0, 1))

6
∑

(u,v)∈E

cu,v · zu,v (by the second constraint of the LP)

= optimal LP value.

This implies that the expected capacity of the cut output this way is at most equal to the minimum s-t cut.

Remark. An important remark is in order here. While the above approach gives a randomized algo-
rithm for rounding the value of the LP, a slightly more careful view of the same analysis implies that
we can actually replace the random choice of θ ∈ (0, 1) with an arbitrary choice instead (for instance,
simply take θ = 1/2).

This is because in this algorithm, we always output an s-t cut. Our analysis shows that the expected
capacity of this cut is at most that of minimum s-t cut. But then this implies that for every choice of
θ, the capacity of the returned cut should be equal to the minimum s-t cut; otherwise, to “balance”

1Recall that since the LP is a relaxation of the min-cut problem, the optimum value of the LP is always at most as large as
the optimum value to the min-cut problem; this rounding step implies that these values are equal to each other.
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the expectation, some choice of θ should result in a value which is even less than the minimum s-t cut
which is not possiblea

aif for a random variable Y , E [Y ] = miny∈supp(Y ) y, then we should have that Pr(Y = miny∈supp(Y ) y) = 1.

3 The Simplex Algorithm

We now switch to designing our first “real” algorithm for LPs, called the Simplex algorithm designed by
Dantzig. There is a vast literature on Simplex and many of its variants have been studied, especially because
this algorithm for a very long term was the fastest known algorithm in practice (and perhaps in some cases
still is). Yet, in theory, the Simplex algorithm is not a polynomial time algorithm, and thus does
not have a particularly strong theoretical guarantee2. Given this (and other reasons), we are not going to
spend too much time on the Simplex algorithm and will only review it at a high level in this lecture.

In the following, to provide further intuition about the algorithm, we are going to consider an example
alongside a more general form of the algorithm. Moreover, there are several general exception handling steps
in the Simplex algorithm but we are going to ignore all of them for now and present the most vanilla version,
and then discuss those steps later in the lecture.

Input. The input to the problem is any LP.

Example. Our goal is to solve the following LP:

max
x1,x2∈R2

x1 + x2

subject to x2 − x1 6 1

x1 6 3

x2 6 2

x1, x2 > 0.

General form. In general, we start with any LP:

max
x∈Rn

cTx

subject to Ax 6 b

x > 0.

(The last constraint x > 0 is added to make the
exposition simpler and is not necessary so we can
indeed have truly any LP here.)

Step 1: Initial solution. To run the Simplex algorithm, we need to start with a feasible solution to the
input LP. This is in general a non-trivial step which is “as hard as solving LPs” but for now we are going to
assume that x = 0 is a feasible solution to the LP.

Example. We start with solution x1 = x2 = 0 in
the example.

General form. For now, we assume x = 0 is a
feasible solution to the LP we like to solve.

2More on this later in this course.

4



Step 2: Equational form. We then write the LP in the equational form by the method of Lecture 2.

Example. Equational form:

max
x1,x2,s1,s2,s3∈R2

x1 + x2

subject to x2 − x1 + s1 = 1

x1 + s2 = 3

x2 + s3 = 2

x1, x2, s1, s2, s3 > 0.

The linear system of this LP is the following:

−1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

 ·

x1
x2
s1
s2
s3

 =

1
3
2

 .

General form. Equational form:

max
x∈Rn,s∈Rm

cTx

subject to [A | Im] ·
[
x
s

]
= b

x > 0.

Step 3: Starting with a basic feasible solution. We then pick a basic feasible solution for the LP
(recall the definition from Lecture 2). In case x = 0 is a feasible solution, this step is simply to let the basis
be the last m columns of the constraint matrix, corresponding to the slack variables s1, . . . , sm. This gives
a basic feasible solution since the constraint matrix restricted to this part is Im which is full rank.

Example. B = {3, 4, 5} (corresponding to
s1, s2, s3) is a basis for the following basic feasible
solution:[

x1 x2 s1 s2 s3
]

=
[
0 0 1 3 2

]
.

General form. Whenever x = 0 is a feasible so-
lution to the original LP (before the equational
form), a basic feasible solution is then to set:

(x, s) = (0, b).

Simplex tableau. Each iteration of Simplex has a Simplex tableau that corresponds to some basic feasible
solution. Each tableau is a different but equivalent way of writing the linear system of the LP so that: (i) the
objective is expressed using only non-basic variables, (ii) each basic variable appears in the LHS of exactly
one equation, and (iii) the RHS of the equations only consists of non-basic variables. For the first iteration,

Example. The starting Simplex tableau is:

s1 = x1 − x2 + 1

s2 = 3− x1
s3 = 2− x2

o := x1 + x2.

General form. The starting Simplex tableau is:

s = b−A · x

o := cTx.

Step 4: Pivot steps. We then repeatedly find a non-basis variable with a positive coefficient in the
objective value of the current tableau (the line with equation o := · · · ); we increase this variable, called the
pivot, as much as possible while checking that will not turn any of the basis variables in the given equations
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become negative. Whichever basis variable that becomes zero in this process is then swapped with pivot in
the basis, namely, the pivot joins the basis and the other variable leaves it. This generates the next tableau
which we then process again similarly.

Example. The pivot steps goes as follows:

• For the next iteration, we increase x2 to 2,
which brings x2 to the basis and takes s3 out:

s1 = x1 + s3 − 1

s2 = 3− x1
x2 = 2− s3

o := x1 + 2− s3.

The corresponding basic feasible solution is:[
x1 x2 s1 s2 s3

]
=
[
0 2 −1 3 0

]
• In the next iteration we increase x1 to 3, which

brings x1 to the basis and takes s2 out:

s1 = 2− s2 + s3

x1 = 3− s2
x2 = 2− s3

o := 5− s2 − s3

The corresponding basic feasible solution is:[
x1 x2 s1 s2 s3

]
=
[
3 2 2 0 0

]

General form. Each Simplex tableau looks like:

y = p+Q · z

o := q + rT z.

where (y, z) form a permutation of variables (x, s)
(with y being basis variables and z being non-basis
ones), p ∈ Rm, Q ∈ Rm×n, q ∈ R, and r ∈ Rn.
The rule for replacing the pivot is explained above
and at this point we consider the choices to be
arbitrary among all variables that satisfy the con-
ditions.

Step 5: Termination step. We continue the above approach until we reach a situation wherein all the
variables in the objective function have a negative coefficient.

Example. We are now at an optimal solution with
value 5; the optimality can be seen as all the Sim-
plex tableaus are corresponding to the same lin-
ear system (they are just different representation),
and in any feasible solution of the LP, we need
s2, s3 > 0, which implies that the objective value
is always at most 5.

General form. The final Simplex tableau is:

y = p+Q · z

o := q + rT z,

where r < 0. We are now done as increasing
any of z-variables can only reduce o and since all
the equations were always equivalent, and that we
know z > 0 in any feasible solution, we have that
the optimal solution has value q and corresponds
to the current basic feasible solution associated
with this tableau.
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The above description and example corresponds to the “cleanest” forms of running Simplex. In general,
there are various exceptions and subtleties that need to be handled such as:

1. How to find a basic feasible solution at the first step? (a problem that we showed is as hard as solving
a linear program in general)

2. What happens when objective value can become unbounded on the feasible region?

3. When the Simplex method end up not having an improving pivot step? (this is related to the notion
of degeneracy and cycling)

4. What are some rules for picking which variable to leave the basis and which one to include, referred
to as Pivot rules?

These parts are addressed in (possibly too much!) details in the course textbooks and for now we skip them.
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