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1 Application: Linear Regression

Our goal throughout the semester will be to include various applications of linear programming in different
lectures. For this lecture, we consider their application to linear regression.

In linear regression, we have a set of m points from the n-dimensional space Rn:

(a1,1, a1,2, . . . , a1,n), (a2,1, a2,2, . . . , a2,n) · · · , (am,1, am,2, . . . , am,n).

We can denote these points by a matrix A ∈ Rm×n. The points are associated with real numbers in R:

(b1, b2, . . . , bm).

Similarly, we can denote these numbers by a vector b ∈ Rm.

Think of each column of this matrix as a “feature” or an “attribute” of the points, and think of each real
number bi as the “label” of the point ai := (ai,1, . . . , ai,n). Our goal is to find an “explanation” of these
labels in terms of the feature using a linear function. Formally, we would like to find a hyperplane x ∈ Rn

such that given any point ai, we can recover the label of ai, namely, bi, via 〈ai , x〉.

Of course, such a hyperplane can only exist if the system of linear equations A · x = b has a solution.
However, this is not generally guaranteed (especially because we often have m � n). Thus, the goal is to
find a hyperplane x with minimal “distance” from b. This leads to the family of regression problems wherein
the goal is to solve the following optimization problem:

min
x∈Rn
‖A · x− b‖,

where we can pick the ‖·‖ differently depending on the application. Two popular choices of the norm are
`2-norm and `1-norm that we review in this lecture.
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1.1 Detour: a closed-form solution for `2-regression

Recall that for any vector v ∈ Rm, the `2-norm of v is defined as:

‖v‖2 :=
√
〈v , v〉 =

√√√√ m∑
i=1

v2i .

In the `2-regression problem, we would like to find x ∈ Rn as follows:

min
x∈Rn
‖A · x− b‖2.

Fix a choice of A, b. Consider the function f(x) := ‖Ax− b‖22. Minimizing f then solves our problem (note
that here minimizing ‖A · x− b‖22 is the same as ‖A · x− b‖2). Since f is a convex function1, we have that
minimum of f happens on a point where

f ′(x) :=
∂f(x)

∂x
= 0,

where ∂ is the gradient of f . Computing the gradient of f is out of the scope of this course, but it is a basic
exercise in calculus as follows:

f(x) = (A · x− b)T · (A · x− b) (as ‖v‖22 = 〈v , v〉 = vT · v)

= (xT ·AT − bT ) · (A · x− b) (as (w − v)T = (wT − vT ) and (wv)T = vTwT )

= xTATAx− bTAx− xTAT b + bT b.

Using the rules of gradients and the fact that B := ATA is a symmetric matrix, namely, BT = B, we have,

f ′(x) =
∂f(x)

∂x
= 2 ·ATAx− 2AT b.

Thus, when f ′(x) = 0, we have,
ATAx = 2AT b,

which means that as long as ATA is non-singular, we have,

x = (ATA)−1AT b.

This gives a closed-form solution for `2-regression2

1.2 Main application: a linear program for `1-regression

The `1-norm of a vector v ∈ Rm is defined as:

‖v‖1 :=

n∑
i=1

|vi|.

Another form of linear regression is to instead minimize the `1-norm, i.e., find x ∈ Rn with

min
x∈Rn
‖A · x− b‖1.

One reason to prefer `1-regression over `2-regression is that it is more “robust” in the presence of outliers
(but this is a topic beyond the scope of our course). Unfortunately however, `1-regression does not have a
closed-form solution and we instead use linear programming to solve it. Writing this problem as a LP is not
entirely trivial so we are going to do it step by step.

1We revisit convexity later in the course; for this detour, we use this standard fact without proving it (or even defining it).
2Why should we expect ATA be non-singular? Well, for ATA to be singular, we need to have some x 6= 0 such that

ATAx = 0, which also implies xTATAx = ‖Ax‖22 = 0, which means Ax = 0. This means that the column space of A is not full
rank. In other words, one of the “features” we have picked is entirely useless as it can be expressed as a linear combination of
the previous features. Thus, we can simply discard this feature (and any other dependent ones) to obtain a full column rank
matrix A, solve the problem there, and then extend it to the original dimension using the fact that the discarded features were
all linearly dependent on the rest and thus this does not introduce any error.

A more direct (and equivalent) approach here is to simply compute x = (ATA)†AT b where for a matrix M , M† is the
pseudo-inverse of M .
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Step 1. The `1-regression problem is the following optimization problem:

min
x∈Rn

m∑
i=1

|〈ai , x〉 − bi|.

This is of course yet not a linear program because the objective function is not a linear function. But we
made the problem somewhat simpler without changing it at all (it is straightforward to check the problems
are equivalent so far).

Step 2. We are going to define m new variables z1, . . . , zm, one per each row of the matrix A. We write
our optimization problem now as:

min
x∈Rn,z∈Rm

m∑
i=1

zi

subject to zi = max (〈ai , x〉 − bi, bi − 〈ai , x〉) ∀i ∈ [m].

This is still equivalent with the previous problem because for every i ∈ [m],

|〈ai , x〉 − bi| = max (〈ai , x〉 − bi, bi − 〈ai , x〉) ,

by definition; enforcing zi’s being equal to this thus ensures that the problem remains the same. We are now
one step closer since our objective function now is linear although we still have many non-linear constraints
that we have to handle.

Step 3. The only (slightly) non-trivial step is this one where we are going to relax the constraints a bit
without violating feasibility as follows:

min
x∈Rn,z∈Rm

m∑
i=1

zi

subject to zi > max (〈ai , x〉 − bi, bi − 〈ai , x〉) ∀i ∈ [m].

It may now be clear entirely that this problem is the same as above, in particular because we actually
expanded the feasible region. However, we still have the following claim.

Claim 1. In any optimal solution of this problem, we have that for every i ∈ [m],

zi = max (〈ai , x〉 − bi, bi − 〈ai , x〉) ;

Proof. Suppose some zi is strictly larger; then reduce it by a tiny ε > 0 which does not violate the constraint
but reduces the objective function, contradicting the optimality.

This implies that optimal solutions of the problems in steps 2 and 3 coincide and thus we can still focus on
solving this problem. We are still not done because our constraints are not yet linear.

Step 4. Finally, we can “linearize” the constraints simply as follows:

min
x∈Rn,z∈Rm

m∑
i=1

zi

subject to zi > 〈ai , x〉 − bi and zi > bi − 〈ai , x〉 ∀i ∈ [m].

This is now truly a linear program and is clearly equivalent to the previous step because for all i ∈ [m]:

zi > max (〈ai , x〉 − bi, bi − 〈ai , x〉) ⇐⇒ zi > 〈ai , x〉 − bi and zi > bi − 〈ai , x〉
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Wrap-up. Using the above four steps, we can write any `1-regression problem with m points in n dimension
as a LP with n + m variables and 2m constraints. Solving this LP then gives us the optimal solution to the
`1-regression problem as well.

2 “Basic” Definitions in Linear Programs

Given that linear programming involves optimization over real numbers, it is not clear a priori that we can
even have a finite time algorithm for it (no matter how inefficient) – after all, unlike most combinatorial
problems, here we cannot simply enumerate all solutions until we find the right answer given that the number
of all possible solutions is infinite. The goal in the rest of this lecture is to develop some basic understanding
of linear programs and their structure, which along the way also addresses this question.

We start with the following definition.

Definition 2. We say that a LP is in equational form iff it is stated as

max
x∈Rn

cTx subject to Ax = b and x > 0.

As we shall see in the rest of this lecture (and subsequent ones), working with LPs in equational form can
be easier. The following simple result shows that every LP can be stated in the equational form without
increasing its size by much.

Proposition 3. Any n-variable m-constraint LP

max
x∈Rn

cTx subject to Ax > b

can be stated in the equational form with n′ = 2n + m variables and m′ = m equality constraints

max
x′∈Rn′

c′T · x′ subject to A′x′ = b′ and x′ > 0,

so that the objective value of both LPs are equal and answer to the latter LP can be uniquely mapped to the
answer in the original LP.

Proof. Firstly, for any constraint 〈ai , x〉 > bi in the first LP, define a new variable si in the new LP and add
the constraints 〈ai , x〉 − si = bi and si > 0. For instance

x1 + 2x2 > 3 =⇒ x2 + 2x2 − s1 = 3 and s1 > 0.

Secondly, for any variable xj in the first LP define two variables yj , zj and change any occurrence of xj in
the equations with yj − zj . For instance

x2 + 2x2 − s1 = 3 =⇒ y1 − z1 + 2 · (y2 − z2)− s1 = 3.

Add the constraints yi > 0 and zi > 0 to the new LP. (This way, x1 having value, say, 10 will be the same
as setting y1 = 10 and z1 = 0, while x1 being −5 corresponds to y1 = 0 and z1 = 5).

This new LP is now in the equational form and has 2n + m variables and m equations. We omit the
straightforward but rather tedious task of verifying the equivalence of these two LPs.

For the rest of this lecture, we work with an LP with n variables and m equations for n > m in the equational
form:

max
x∈Rn

cTx subject to Ax = b and x > 0.

By Proposition 3, every LP can be stated as the above one (including the extra n > m condition). We
further have the following two assumptions:
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• Assumption (i): The linear system Ax = b has at least one solution. (This is without loss of generality
since we can always check if Ax = b has any solution using Gaussian elimination and if not we know
that our LP is not feasible and thus there is nothing else for us to solve3).

• Assumption (ii): The matrix A has full rank. (This is without loss of generality since we can always
remove any linearly dependent row of A, solve the problem on the remaining equations, and then find
the unique value obtained for the dependent rows and check with the corresponding values on b).

We are now ready to state the main definition of this lecture: while in general there are infinitely many
feasible solutions to an LP, we are almost exclusively interested in a finite number of them specified by the
following definition (the reason we are only interested in these will become shortly):

Definition 4. Consider an LP in the equational form under assumptions (i) and (ii). We say that a
feasible solution x ∈ Rn is a basic feasible solution iff there exists a set B of m columns of A such
that (i) AB has full rank and (ii) x−B = 0.a We refer to B as a basis for the basic feasible solution x.

aAB is the sub-matrix of A on the columns specified by B and x−B := x[n]\B , namely, the columns of x not in B.

We have the following simple claims regarding basic feasible solutions.

Claim 5. Any set B ⊆ [n] of m columns of A can be a basis for at most basic feasible solution.

Proof. Consider a basic feasible solution x ∈ Rn with basis B. We have that x−B = 0, thus

Ax = ABxB + A−Bx−B = ABxB .

Since Ax = b, we also get that ABxB = b. Since AB has full rank, the system of linear equations ABxB = b
has a unique solution, thus xB is determined uniquely for the basis B.

Claim 6. Given any feasible solution x ∈ Rn, let

S := supp(x) = {j ∈ [n] | xj > 0} .

If AS has full rank, then x is a basic feasible solution.

Proof. Since row rank equals column rank and row rank of AS is at most m, if AS is full rank it necessarily
means |S| 6 m. If |S| = m, we get that x is a basic feasible solution by Definition 4.

Suppose now that |S| < m. Since we assumed A has full row rank, we know the columns in S can be
extended to m columns that are linearly independent. Let B be these columns. We get that x is a basic
feasible solution with a basis S.

Remark. We used the following two linear algebraic facts in the above proofs.

Fact 7. For any matrix M ∈ Rm×m which has full rank, for any b ∈ Rm, the system of linear equations
Ax = b has a unique solution x = A−1 · b.

Fact 8. In any matrix M ∈ Rm×n, the row rank of M is equal to the column rank of M .

In the next section, we prove a theorem that clarifies our interest in basic feasible solutions.

3We emphasize that this condition is necessary for feasibility of the LP but is not sufficient.
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3 Optimum Solutions Happen on Basic Feasible Solutions

The following theorem is the main result of today’s lecture.

Theorem 9. Consider an LP in the equational form under assumptions (i) and (ii). Suppose the LP has
an optimal solution; then, it also has an optimal solution which is a basic feasible solution.

Proof. We prove the following statement:

Suppose the objective value of the LP on every feasible solution is bounded from above. Then, for
any feasible solution y, there exists a basic feasible solution x such that cTx > cT y.

This statement then implies the theorem because the first part is a necessary condition for the LP to have
an optimal solution, and we can then apply this statement to y as any optimal solution.

We prove this statement as follows. Since y is a feasible solution and thus y > 0, we have,

S := supp(y) = {j ∈ [n] | yj > 0} .

Among all choices of y with the maximum value of cT y, find the one with the smallest support supp(y).

Firstly, suppose AS has full rank. In this case, by Claim 6 we are done as x itself is a basic feasible solution.

We now consider the case when AS does not have full rank. This means that the kernel of AS is non-empty,
i.e., there exists some w ∈ R|S| such that AS · w = 0 even though w 6= 0. It is without loss of generality to
assume that cTw > 0 as otherwise we can replace w with −w, which is fine because AS · (−w) = 0 also. We
now consider two cases:

• Case I: There exists some j ∈ S such that wj < 0. Define z ∈ Rn such that zS = w and z−S = 0. For
any t > 0, we have that

A · (y + t · z) = A · y + t ·A · z
= A · y + t ·ASw (as w = zS and z−S = 0)

= A · y (as ASw = 0)

= b. (as y is a feasible solution)

Now note that by increasing t slightly, we eventually reach a point that for some j ∈ S, yj + t · zj =
yj + t · wj = 0 (as wj < 0), while at the same time, all other yk > 0. This implies that at this point,
y+ t ·z > 0, A · (y+ t ·z) = b, and cT (y+ t ·z) > cT y; this is in contradiction with y having the smallest
support as the vector (y + t · z) has one more zero entry.

• Case II: For every j ∈ S, we have wj > 0. If cTw = 0, we can simply take −w again which takes us
to Case I above and we will be done. So, we have cTw > 0. Define the vector z as in the previous case.
For every t > 0, we have A · (y + t · z) = b (as proven above), y + t · z > 0 always, (making y + t · z a
feasible solution), and cT · (y + t · z) = cT y + t · cT z; since cT z > 0, making t larger and larger, takes
the value of the objective function to infinity, contradicting the assumption that the objective value of
the LP on every feasible solution is bounded from above

This concludes the proof.

We will use Theorem 9 repeatedly throughout the rest of the lecture. For now, we simply mention that a
trivial application of this theorem (plus Claim 5) is an (inefficient) algorithm for solving LPs: iterate over
all
(
n
m

)
m-subsets B of [n] to find all basic feasible solutions. Find the one that maximizes the value of the

objective function. This gives an (e ·n/m)m · poly(n) time algorithm for solving LPs (this is finite time thus
addressing our motivating question from earlier, in particular, exponential time, but of course terribly slow).
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