
CS 521: Linear Programming Rutgers: Fall 2022

Lecture 12
November 23, 2022

Instructor: Sepehr Assadi Scribe: Yi Wang, Haizhou Shi, Jingquan Yan, and Zihao Xu

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Topics of this Lecture

1 Newton’s Method 1

1.1 Newton’s Method for One-Dimensional Functions . 1

1.1.1 An Example . 2

1.1.2 The Analysis . 3

1.2 Newton’s Method for Multi-Dimensional Functions . 5

1.3 Newton’s Method for Unconstrained Convex Optimization . 7

1.3.1 A Second-Order Optimization Method . 7

2 A Quick Introduction to Interior Point Methods (IPMs) 8

2.1 Reducing Linear Programming to Unconstrained Convex Optimization 9

2.2 A Path Following IPM . 10

1 Newton’s Method

The goal of today’s lecture is to provide a high level overview of Interior Point Methods, yet another general
family of algorithms for solving LPs in polynomial time. For this and the subsequent lecture, we follow the
excellent book by Vishnoi on this topic [1, Chapters 9 and 10].

To start, we need to go over one of their key components, the Newton’s Method for solving unconstrained
optimization problems. The Newton’s method in general is an algorithm for finding roots of a given vector-
valued function g : Rn → Rn, i.e., finding an r ∈ Rn such that g(r) is the all-zero vector (0, 0, . . . , 0); for
simplicity of exposition, we denote g(r) = 0 in this case. We start by examining Newton’s method for
one-dimensional functions, i.e., functions from R to R.

1.1 Newton’s Method for One-Dimensional Functions

Let g : R→ R be a differentiable function and suppose our goal is to find a point r ∈ R such that g(r) = 0.
Let us start at point x0 with g(x0) 6= 0. Can we iteratively update this point to x1, x2, . . . to eventually
converge to the point r with g(r) = 0? This is basically what the Newton’s method does.

We now discuss how to update x0 to obtain the next point x1. Consider the line tangent to g at the point
(x0, g(x0)); we are going to “approximate” g by this line h(x) : R → R, find the root of h instead—which
is simple as it is a line with an explicit formula—and let x1 be this root (see Figure 1 for an illustration).

1

Figure 1: An illustration of Newton’s method.

Letting h(x) = ax+ b (or equivalently a line in R2), and g′ be the derivative of g, we have that

a = g′(x0) (as h is the tangent of g on x0)

ax0 + b = h(x0) = g(x0) (as h and g intersect on the point x0)

ax1 + b = h(x1) = 0. (as x1 is the root of h)

Combining these three equations gives us the following formula for x1:

x1 = x0 −
g(x0)

g′(x0)
. (1)

Thus, as an iterative method, we can simply state the Newton’s method as the following algorithm:

Algorithm: Newton’s Method for a one-dimensional function g : R→ R.

(i) Start with some initial point x0 ∈ R.

(ii) For t = 0 to T iterations: update xt+1 = xt − g(xt)
g′(xt)

.

(iii) Return xT as the answer.

Before getting to the analysis of g and to highlight some, perhaps peculiar, aspects of the Newton’s
method, let us consider an example first.

1.1.1 An Example

Consider the following function and its derivative:

g(x) = 1− 1

x
g′(x) =

1

x2
.

Suppose our goal is to find the root of g (which is clearly 1) using the Newton’s method. The update rule
for this function is

xt+1 = xt −
g(xt)

g′(xt)
= xt − x2t · (1−

1

xt
) = 2xt − x2t .

2

Let us now check whether or not this approach converges to the right answer. For any iteration t > 0, define
the error et as

et := |1− xt|;

namely, how far we are currently from the right answer which is 1. Using the update rule, we have,

et+1 = |1− xt+1| = |1− 2xt + x2t | = (1− xt)2 = e2t .

Using this, we can consider the following cases:

• Case 1: Suppose e0 < 1 or alternatively 0 < x0 < 2: then, each iteration quadratically decreases the
error and thus limt→∞ et = 0 and we converge to the optimal solution eventually.

In fact, if we have that e0 < 1/2 or alternatively 1/2 < x0 < 3/2, then we get

e1 < 2−2 e2 < 2−4 e3 < 2−8 . . . et < 2−2
t

.

Consequently, for any ε > 0, to reduce et < ε or alternatively get xt ∈ (1 − ε, 1 + ε), we only need to
have t = log log (1/ε) iterations, which is an extremely fast rate of convergence!

• Case 2: Suppose now e0 = 1 or alternatively x0 ∈ {0, 2}: then, in each iteration, we have et = 1 – this
means that we never converge to the optimal solution. In fact, as is clear from the update rule, in both
these cases, we simply have xt+1 = xt, and thus no changes are happening throughout the iterations.

• Case 3: Finally, suppose e0 > 1 or alternatively x0 /∈ [0, 1]: then, each iteration quadratically increases
the error and thus limt→∞ et = +∞. In other words, each iteration takes us even further from the
correct answer!

Remark. The first case of this example is considered the quadratic convergence regime of the
Newton’s method and our goal when analyzing this method is to guarantee that we are in this case. As
this example clearly illustrates, the starting point x0 (and/or some other properties of the function g) are
quite crucial for guaranteeing the quadratic convergence rate. Thus, in our analysis of this algorithm,
we crucially need to make some assumption about x0 and g.

1.1.2 The Analysis

In most applications of the Newton’s method, including in solving LPs that is our focus, it is customary to
state and analyze this result only for a single update step. We shall do the same in the rest of this lecture
(and the next one) as well.

Theorem 1 (Error Bound of Single Update in Newton’s Method). Let g : R → R be a twice differentiable
function. Let r be a root of g, i.e., g(r) = 0. Additionally, let x0 ∈ R be any starting point and define

M := sup
min(r,x0)<y<max(r,x0)

∣∣∣∣ g′′(y)

2 · g′(x0)

∣∣∣∣ .
For a single update step of the Newton’s method

x1 = x0 −
g(x0)

g′(x0)
,

we have have the following bound on the errors:

|r − x1| 6M · |r − x0|2.

To prove this theorem we need to use the standard mean value theorem stated as follows.

3

Fact 2. For any differentiable function f and interval (a, b) ∈ Rn, there exists a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

As a corollary of this result and Taylor’s expansion, we obtain the following statement.

Proposition 3. Let g : R → R be any twice differentiable function and a < b be two points in R. Then,
there exists a point c ∈ (a, b) such that

g(b) = g(a) + (b− a) · g′(a) +
1

2
· (b− a)2 · g′′(c).

Proof. Define the function h : R→ R where for all x > a,

h(x) = g(x)− g(a)− (x− a) · g′(a),

namely, the error of the first-order Taylor’s approximation of g around the point a. We have that

h′(x) = g′(x)− g′(a),

or alternatively
h′(x)

x− a
=
g′(x)− g′(a)

x− a
.

By Fact 2, there exists some cx ∈ (a, x) such that

g′(x)− g′(a)

x− a
= g′′(cx),

where we used the fact that g′ is differentiable (as g is twice differentiable). We thus have

h′(x) = (x− a) · g′′(cx),

and thus taking its integral, we have,

h(x) =
1

2
· (x− a)2 · g′′(cx).

Plugging in this bound in the definition of h earlier and rearranging the terms imply that

g(x) = g(a) + (x− a) · g′(a) +
1

2
· (x− a)2 · g′′(cx).

Finally, taking x = b, we have that there exists some c ∈ (a, b) where

g(b) = g(a) + (b− a) · g′(a) +
1

2
· (b− a)2 · g′′(c),

concluding the proof.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let us first assume that r > x0. By Proposition 3 applied to b = r and a = x0, we get
that there exists some c ∈ (x0, r) such that

g(r) = g(x0) + (r − x0) · g′(x0) +
1

2
· (r − x0)2 · g′′(c).

4

By further substituting g(r) = 0 (as r is a root) and g(x0) = g′(x0)(x0 − x1) (by the update rule), we have

0 = g′(x0)(r − x1) +
1

2
(r − x0)2g′′(c),

which implies that

|r − x1| 6
∣∣∣∣ g′′(c)2g′(x0)

∣∣∣∣ · |r − x0|2 6 sup
r<y<x0

∣∣∣∣ g′′(y)

2g′(x0)

∣∣∣∣ · |r − x0|2 = M · |r − x0|2.

The other case when r < x0 can be proven exactly as above by symmetry by considering the interval (r, x0)
instead of (x0, r).

1.2 Newton’s Method for Multi-Dimensional Functions

We now consider the general case of the Newton’s method for multi-dimensional functions that will be needed
for our purpose later. In order to do this generalization, we need to define an analogue of derivative for
multi-dimensional functions.

Definition 4. For a function g : Rn → Rn, the Jacobian (matrix) of g, denoted by Jg is the matrix of
all its partial derivatives. I.e., if we denote g(x) = (g1(x), . . . , gn(x)), then

Jg(x) =


∂g1
x1

. . .
∂g1
xn

...
. . .

...
∂gn
x1

. . .
∂gn
xn

 .

Using this, we can define the newton step for a function g : Rn → Rn at a point x0 as

x1 = x0 − (Jg(x0))
−1 · g(x0). (2)

We need one more definition before we can state the analysis of this method.

Definition 5. For any matrix A ∈ Rn×n, the spectral norm of A is defined as

‖A‖2 := sup
x6=0

‖Ax‖2
‖x‖2

.

Intuitively, the spectral norm of a matrix is the maximum scale by which the matrix can stretch a vector.

We now have the following generalization of Theorem 1.

Theorem 6. Let g : Rn → Rn be a twice differentiable function, r be a root of g, and x0 be an initial point.

(i) Jg(x0) is full-dimensional and ‖Jg(x0)−1‖2 6 α;

(ii) For all x ∈ {t · r + (1− t) · x0 | t ∈ [0, 1]}, ‖Jg(x)− Jg(x0)‖2 6 β · ‖x− x0‖2.

Let M :=
α · β

2
. For a single update step of the Newton’s method

x1 = x0 − (Jg(x0))
−1 · g(x0),

we have have the following bound on the errors:

‖r − x1‖2 6M · ‖r − x0‖22.

5

Proof. We follow the same strategy as in the proof of Theorem 1. We first claim that

g(r)− g(x0) =

∫ 1

t=0

Jg(t · r + (1− t) · x0) · (r − x0) dt. (3)

To see this, define the function h : [0, 1]→ R where for t ∈ [0, 1],

h(t) = g(t · r + (1− t) · x0).

By the Fundamental Theorem of Calculus,

g(r)− g(x0) = h(1)− h(0) =

∫ 1

t=0

h′(t) dt =

∫ 1

t=0

Jg(t · r + (1− t) · x0) · (r − x0) dt,

as stated in Eq (3).

We can now restate the “error vector” r − x1 as follows.

r − x1 = r − x0 + Jg(x0)−1 · g(x0) (by the update rule of Newton’s method)

= r − x0 − Jg(x0)−1 · (g(r)− g(x0)) (as g(r) = 0 since r is a root)

= (r − x0)− Jg(x0)−1 ·
∫ 1

t=0

Jg(t · r + (1− t) · x0) · (r − x0) dt (by Eq (3))

= −Jg(x0)−1
∫ 1

t=0

(
Jg(t · r + (1− t) · x0)− Jg(x0)

)
· (r − x0) dt.

(by writing (r − x0) = Jg(x0)−1 · Jg(x0) · (r − x0) and factoring this in the integral)

Using this, we bound the norm of (r − x1) as follows:

‖r − x1‖2 = ‖Jg(x0)−1
∫ 1

t=0

(
Jg(t · r + (1− t) · x0)− Jg(x0)

)
· (r − x0) dt ‖2

6 ‖Jg(x0)−1‖2 · ‖
∫ 1

t=0

(
Jg(t · r + (1− t) · x0)− Jg(x0)

)
· (r − x0) dt ‖2

(by the definition of the spectral norm of Jg(x0)−1)

6 ‖Jg(x0)−1‖2 ·
∫ 1

t=0

‖
(
Jg(t · r + (1− t) · x0)− Jg(x0)

)
· r − x0‖2 dt

(by the “triangle inequality” of the norm)

6 ‖Jg(x0)−1‖2 ·
∫ 1

t=0

‖
(
Jg(t · r + (1− t) · x0)− Jg(x0)

)
‖2 · ‖r − x0‖2 dt

(by the definition of the spectral norm of Jg(t · r + (1− t) · x0)− Jg(x0))

6 α ·
∫ 1

t=0

β · ‖(t · r + (1− t) · x0)− x0‖2 · ‖r − x0‖2 dt

(by conditions (i) and (ii) of the theorem statement for each term, respectively)

= α · β · ‖r − x0‖22 ·
∫ 1

t=0

t dt (as (t · r + (1− t) · x0)− x0 = t · (r − x0))

= M · ‖r − x0‖22. (as the value of integral is 1/2 and M = αβ/2)

This concludes the proof.

6

Remark. It is worth pointing out the conditions (i) and (ii) and the definition of M in Theorem 6
are natural generalizations of the same concepts in Theorem 1 in the one-dimensional case. Recall that
in Theorem 1 we defined

M := sup
y∈{t·r+(1−t)·x0|t∈(0,1)}

∣∣∣∣ g′′(y)

2 · g′(x0)

∣∣∣∣ .
In Theorem 6, we replaced |g′(x0)−1| with the bound ‖J−1g (x0)‖2 6 α which is a direct analogue. But,
instead of directly replacing |g′′(y)| with some high-dimensional analogue (which is effectively a 3d-
tensor), we bounded the Lipschitzness constant of Jg(·) matrix on the interval y is chosen from, namely,
upper bounded the rate of change of Jg which is an analogue of bounding the “derivative” of Jg (the
same as g′′ being the function that determines the rate of change of g′ in the one-dimensional case).

Finally, we conclude this subsection by pointing out that we only provided Theorem 6 for completeness;
for our application in this course, this theorem is not the “right” way of looking at Newton’s method (because
of its dependencies on the Euclidean norm). We will discuss this in more details in the next lecture but also
refer the reader to [1, Chapter 9.5] book for a discussion on this topic.

1.3 Newton’s Method for Unconstrained Convex Optimization

More specific to our applications in this course, Newton’s method is an algorithm for solving unconstrained
convex optimization problems of the form:

min
x∈Rn

f(x),

for a convex function f : Rn → R. This application is quite straightforward. Recall from Lecture 11 that the
minimums of a differentiable convex function are the same as roots of the gradient of f , i.e., for x∗ ∈ Rn:

x∗ ∈ arg min
x
f(x) ⇐⇒ ∇f(x∗) = 0.

Thus, optimization of f reduces to finding the roots of the multi-dimensional function ∇f : Rn → Rn. This
problem is precisely what the Newton’s method solves! In particular, at any point x0, a Newton’s step for
minimizing f corresponds to updating to the new point:

x1 = x0 −
(
∇2f(x0)

)−1 · ∇f(x0); (4)

Here, ∇2f is the Hessian matrix of f , the matrix of second-order partial derivatives of f , or equivalently,
the Jacobian of ∇f .

The Newton’s method thus lends itself naturally to the following iterative algorithm for (unconstrained)
convex optimization:

Algorithm: Newton’s Method for minimizing a convex function f : Rn → R.

(i) Start with some initial point x0 ∈ Rn.

(ii) For t = 0 to T iterations: update xt+1 = xt −
(
∇2f(xt)

)−1 · ∇f(xt);

(iii) Return xT as the answer.

We will postpone stating the precise bounds on this algorithm to the next lecture. Instead, we show an
alternative way of deriving this algorithm which is more inline with its second-order optimization viewpoint.

1.3.1 A Second-Order Optimization Method

The Newton’s method algorithm described above can be seen as a generalization of the gradient descent
method which only updated xt in the (opposite) direction of the gradient, i.e., xt+1 = xt − η · ∇f(xt).

7

Compared to gradient descent, the Newton’s method is exploiting more information about the function, in
particular its Hessian, which is a second-order information about f . Let us now see this more explicitly.

Suppose we are iteratively minimizing a convex function f : Rn → R and are currently at some point xt.
To decide our next step, we first approximate f at the point xt by its second-order Taylor expansion to get
the following function f̃ : Rn → R:

f̃(x) = f(xt) + (x− xt)> · ∇f(xt) +
1

2
· (x− xt)> · ∇2f(xt) · (x− xt).

We can now “pretend” that from now on f is replaced by f̃ instead and thus optimize f̃ instead to get the
point xt+1, i.e., let

xt+1 = arg min
x
f̃(x).

But since f̃ is a “quadratic” function, we can find its minimum easily by computing its gradient and finds
its roots, i.e., compute

∇f̃(x) = ∇f(xt) +∇2f(xt) · (x− xt).
Thus, we have xt+1 is the point where ∇f̃(xt+1) = 0 which implies that

∇f(xt) +∇2f(xt) · (xt+1 − xt) = 0.

Reorganizing the terms then gives us

xt+1 = xt −
(
∇2f(xt)

)−1 · ∇f(xt).

But this is precisely the formula we have for our update rule in the Newton’s method!

Remark. In the above formulation, we can think of each step of the gradient descent, say at a point
xt, as approximating f by its first-order Taylor expansion at the point xt and then simply move in
the direction that minimizes this function (the given approximate function will be linear and thus does
not have an absolute minimum value). Newton’s method on the other hand approximates f by its
second-order Taylor expansion. This typically results in (much) faster convergence (assuming the right
set of properties) but in turns also require a much stronger second-order oracle, namely, access to the
Hessian of f not only its gradient.

2 A Quick Introduction to Interior Point Methods (IPMs)

In this section, we will introduce the intuition behind the Interior Point Methods for solving LPs, in particular,
the path following IPMs. We postpone most of the details of these methods to the next lecture and will be
informal in this part for the sake of intuition.

Recall that our goal is to solve the following standard LP formulation:

min
x∈Rn

c>x

subject to Ax 6 b,

with m constraints of the form 〈ai , x〉 6 bi in (A, b). Throughout, we are going to assume that A is a
full-dimensional and feasible polytope (recall that these were common assumptions for our prior algorithms
as well, in particular, the first one was also used by the Ellipsoid method, and the second by the Simplex;
we also provided a way for lifting each assumption in the past which continue to work here as well).

At a high level, an IPM starts with a feasible solution somewhere “deep” inside the polytope and walks
through an interior path of the feasible solution set P . It will never approach the boundary of P until the
very last step (Figure 2), hence the name “interior-point” method. This traversing of the interior points is
done via solving a collection of intermediate unconstrained convex optimization problems (approximately)
using the Newton’s method.

8

Figure 2: An illustration of interior point method. Here, the arrow for c denotes the direction that optimizes
the objective function (which is the opposite direction of the vector c).

2.1 Reducing Linear Programming to Unconstrained Convex Optimization

Let us denote the feasible polytope by P := {x | Ax 6 b} and define int(P) as the interior of P and ∂P as
its boundary points. The optimization problem we would like to solve, namely,

min
x∈P

c>x

is a constrained convex optimization problem. Yet, to be able to apply Newton’s method, we need to work
with an unconstrained optimization problem. So, how do we use Newton method to solve this problem? An
intuitive way is to penalize the violated constraints in the minimization objective:

min
x∈Rn

c>x+ h(x),

where

h(x) =

{
0 if x ∈ P
+∞ otherwise

.

It is clear that the optimums of this new program coincide with that of the original LP. This is also now an
unconstrained optimization problem. The problem however is that this new objective function is not convex,
nor even continuous. Thus, we are no longer in the realm of convex optimization and cannot use our prior
ideas. The next idea for fixing this is to use the notion of a barrier function F (x) in place of h(x), which,
informally speaking, has the following roles:

(i) F (x) should be defined on the interior of P , i.e., F : int(P)→ R, and be (strongly) convex1;

(ii) F (x) should approach infinity the closer we get to the boundary of P , i.e., limx→∂P F (x) = +∞.

To make things concrete, we are going to pick a standard choice of a barrier function (but it would help to
“see” this F (x) abstractly for now as just satisfying the conditions).

1We will define strong convexity formally in the next lecture but for now simply think of it as a convex function which is “far
from” being a line on any interval – in other words, the tangent line on the function at any point is strictly below the function.

9

Definition 7. For any polytope P := {x | Ax 6 b} we define the logarithmic barrier F : int(P)→ R:

F (x) = −
m∑
i=1

ln
(
bi − a>i x

)
;

This way, as long as x ∈ int(P), we have a>i x < bi for all i ∈ [m], so F (x) is well-defined and attains a real
value. But if x approaches ∂F by having a>i x ≈ bi, then the corresponding term in F (x) becomes − ln (≈ 0)
which is +∞. More formally, we indeed have that limx→∂P F (x) = +∞ as desired (we postpone proving the
strong convexity of F to the next lecture).

Thus, at this point our optimization becomes

min
x∈Rn

c>x+ F (x),

which is indeed an unconstrained convex optimization problem. But now there is a different problem: the
optimum of this new optimization problem can be quite far away from the original LP optimum solution
we would like to solve; in fact, quite problematically, while the optimum solutions of the LP happen at the
boundary of P (recall that we proved earlier in the course that the optimum solutions happen on vertices
of the polytope P), all the boundary points of P have a value of +∞ and thus can never be an optimum
solution to the above program. This gives rise to the path following algorithm that reduces solving LPs not
to one unconstrained convex optimization problem, but rather a whole family of them.

2.2 A Path Following IPM

Define the following (uncountable) family of functions:

F :=
{
fη(x) = η · c>x+ F (x) | η > 0

}
.

Notice that any function fη ∈ F is again defined from int(P)→ R and is basically a rescaled version of the
previous objective plus barrier function we defined in the previous subsection. For any η > 0, define:

x∗η := arg min
x
fη(x);

we will prove in the next lecture that since fη is strongly convex, x?η is unique. Moreover, by increasing the
value of η, we are prioritizing the role of LP objective over the barrier function so that we eventually have

lim
η→∞

x∗η = x∗,

where x∗ is the optimum value of the original LP. On the other hand, for η = 0, x∗0 has nothing to do
with the objective function and is instead a point inside P which is in some sense “furthest away” from all
boundaries defined by the “force” introduced by F (x) from each constraint of the LP. This point, namely,
x∗0 is typically called the analytical center of P 2. The central path now is the set

Γcenter :=
{
x∗η | η > 0

}
,

which starts from the analytical center x∗0 of the polytope P and converges to the optimum solution of LP
x∗ in the limit (while we do not prove this explicitly, this path is indeed continuous).

The path following IPMs then try to follow the central path approximately by starting with a pair (x1, η1)
with η1 > 0 but also possibly close to 0, and x1 being near x∗η1 (the algorithm starts sufficiently close to
the analytical center so that we can show how to find such a pair – this is also a topic for the next lecture).

2This should not be confused with the center of gravity of P defined for the Ellipsoid algorithm; unlike the center of gravity,
the analytical center is somewhat “easier” to compute at least approximately.

10

The algorithm then iteratively updates (xt, ηt) to (xt+1, ηt+1) by increasing ηt slightly to get to ηt+1, while
updating xt+1 correspondingly to become near x∗ηt+1

. In particular, the algorithm maintains the invariant
that at any iteration t, xt is near x∗ηt . At the end of T iterations, once the algorithm has a pair (xT , ηT) for
a sufficiently large ηT , we can say that xT is sufficiently close to x∗ itself, so that a final rounding approach
can solve the problem.

There are several questions that needs to be answered here:

1. What does it mean for xt to be “near” x∗ηt?

2. At what rate we can “slightly” update ηt to obtain ηt+1?

3. And, most importantly, how can we obtain xt+1 from xt, ηt, and ηt+1?

The short answer to all these questions is the Newton’s method! The general idea is the following. Suppose
we already have xt as a (good approximate) minimizer of fηt . Now, let us slightly increase ηt to ηt+1 by
some factor, i.e., ηt+1 = (1 + γ) · ηt for some small γ > 0. The function fηt+1

is not “that different” from
fηt so we would expect that xt is a good starting point for optimizing fηt+1

. So, we are now going to run
Newton’s method with initial point for the unconstrained optimization of fηt+1

to optimize this to get xt+1

as a proxy for x∗ηt+1
which is the optimizer of fηt+1

. Thus, the key point in all of these is to make sure that
we can place xt in the quadratic convergence regime of fηt+1 . This will be the key issue that determines how
large we can update γ and how much we require xt to be near to x∗ηt . There are also further issues that we
need to address like how to start with the points (x1, η1) and when to end this process; and how to round
the final answer to a true optimum solution x∗ for the original LP.

We formalize this algorithm in the next lecture (at least partially). For now, we only mention that we
will be able to eventually to set the parameters so that the entire IPM needs

O

(√
m · ln (

m

ε · η0
)

)
iterations to output an answer with objective value within additive ε factor of the optimum solution. More-
over, each iteration only involves O(1) Newton’s step, each of which requires solving a system of linear
equations (primarily, plus some low cost bookkeeping). Finally, as we pointed out earlier in the course for
the Ellipsoid algorithm, we can take ε sufficiently small so that log (1/ε) is still polynomial in the input size,
while an ε-additive error can be rounded to an optimal solution. We can pick η0 also in a similar manner
with a similar logic so that log (1/η0) is polynomial in the input size. Putting all these together then gives
us a polynomial time algorithm for solving any linear program.

References

[1] N. K. Vishnoi. Algorithms for convex optimization. Cambridge University Press, 2021. 1, 7

11

	1 Newton's Method
	1.1 Newton's Method for One-Dimensional Functions
	1.1.1 An Example
	1.1.2 The Analysis

	1.2 Newton's Method for Multi-Dimensional Functions
	1.3 Newton's Method for Unconstrained Convex Optimization
	1.3.1 A Second-Order Optimization Method

	2 A Quick Introduction to Interior Point Methods (IPMs)
	2.1 Reducing Linear Programming to Unconstrained Convex Optimization
	2.2 A Path Following IPM

