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1 Introduction to Linear Programming

1.1 Optimization Problems

Optimization problems are everywhere: How to design the best schedule of classes? How to go from point
A to point B in the quickest possible way? How to transfer information in a network at the highest rate
possible? How to fit the largest number of packages in a delivery truck? These, and numerous examples
alike, are all optimization problems.

For our purpose, we can model optimization problems formally as follows.

Definition 1. Let Ω be a domain and f : Ω → R be an objective function that assign value to
the elements of this domain. Moreover, let C ⊆ Ω denote a subset of the domain identified by the
constraints of the problem. The goal is now to solve the following problem:

max
x∈Ω

f(x) subject to x ∈ C.

In words, Definition 1 simply defines optimization problems as finding an element of the domain Ω that also
belongs to the “feasible” subset C and maximizes the value of f(x). Notice that it is also possible for an
optimization problem to involve minimizing the objective function instead; however, since minimizing f(x)
and maximizing −f(x) are equivalent, there is no need for a further definition.

Attempting to solve optimization problems at this level of generality is virtually hopeless. For instance,

• Consider the following family of optimization problems {Ωn, fn : Ωn → R, Cn}n∈N: for any integer
n ∈ N, we take Ωn to be the set of all n-states Turing machines, Cn to be the subset of n-states
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Turing machines that eventually halt on the input 0, and fn(x) for each Turing machine x ∈ Ωn be
the function that counts the number of 1’s output by x on input 0 (we set f(x) = 0 if x outputs any
symbol other than 1).

Now, maximizing fn(x) subject to x ∈ Cn is equivalent to the infamous busy beaver problem which
is a well-known undecidable problem. Thus, it is impossible to design an algorithm for solving this
optimization problem in any finite time.

• Another, perhaps “scarier” example, is the following optimization problem on only four variables:

min
x=(x1,x2,x3,x4)∈N4

|xx4
1 + xx4

2 − x
x4
3 | subject to x1, x2, x3 > 1 and x4 > 3.

Checking whether the optimal solution to this optimization problem has value 0 or not is equivalent
to Fermat’s Last Theorem!

Given these, it is clear that we need to impose certain restriction on our optimization problems before we
can hope to study them further.

1.2 Linear Optimization (a.k.a. Linear Programming)

This course is about a particularly important family of optimization problems: Linear Programs (LPs)1. In
a linear program, the domain Ω is Rn, the objective function is always a linear function cT ·x (or equivalently
〈c , x〉), and set C is identified by a series of linear constraints of the form 〈a , x〉 > b. Formally,

Definition 2. In a linear program, we have an n-dimensional vector of variables x ∈ Rn, an n-
dimensional objective function c ∈ Rn, and constraints given via a m × n matrix A ∈ Rm×n and
m-dimensional vector b ∈ Rm. The goal is now to solve the following problem:

max
x∈Rn

cT · x subject to A · x > b.

A simple example of a linear program is the following:

max
(x1,x2,x3)∈R3

x1 + 2x2 + 3x3

subject to x1 + x2 + x3 6 3

x2 + x3 6 2

x1, x2, x3 > 0.

The optimal solution to this LP is (x1, x2, x3) = (1, 0, 2) which achieves the value of 7 (later in the course,
we will see a simple way verifying this is indeed an optimal solution; for now, this is left as an exercise for
the reader).

So, why we would like to study linear programming? For one thing, it has many applications:

(a) We can solve numerous “day-to-day life” problems, ranging from simple scheduling to complicated
scientific computing tasks, by modeling them via LPs and then solving them using many currently
available LP solvers.

(b) We can use LPs as a tool toward designing “generic” algorithms for various problems, for instance, in
combinatorial optimization.

1The term ‘programming’ here has nothing to do with computer programming and instead is used as somewhat an equivalent
of scheduling.
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(c) We can use LPs as an analytical tool for proving theorems (particularly in combinatorics) by exploiting
strong properties of LPs such as duality theorems (that we will learn about later in the course).

In the next section, we give concrete examples of each of these applications.

But there is also another high important reason behind studying LPs: we can solve them efficiently both in
theory and practice!

This course is primarily geared toward this last reason from a theoretical point of view—fundamentals of
linear programming and how to solve them efficiently in theory—as well as parts (b) and (c) of applications
above (this is not to say that applications of type (a) are unimportant – on the contrary, they certainly are
but need a dedicated course of their own and thus are out of the scope of this course).

2 Applications of Linear Programming

Let us make the above applications more concrete via several examples.

2.1 An Application of Type (a): Creating a “Balanced” Diet

The following is a textbook example of applications of LPs in solving “day-to-day life” problems. Suppose
we are interested in creating a balanced diet in terms of only its contents in vitamins A,B, C, its fiber, and
its protein. We are further provided by the dietary guidelines on how much of each of these our meal should
consists of, as well as a list of foods together with their vitamins/fiber/protein contents. On top of this, we
are given the price for each of these foods. This is basically a table of the following form:

Required amount Food 1 (e.g., carrot) Food 2 (e.g., pizza) · · · Food n

Vitamin A rA a1 a2 an
Vitamin B rB b1 b2 bn
Vitamin C rC c1 c2 cn

Fiber rF f1 f2 fn
Protein rP p1 p2 pn

Price – price1 price2 pricen

Table 1: Of course, this table is supposed to be filled with actual numbers but this course is not about
dietary guidelines and I had no idea what numbers to put here; so, we will leave it at that and instead write
them as the above parameters.

The goal is now to find a diet as a combination of these foods that satisfy all the required amounts of
vitamins, fiber, and protein, and has the minimum price possible.

We can write this as an LP as follows:

• For i ∈ [n], let xi be a variable denoting how much of food i we will include;

• For i ∈ [n], let ai, bi, ci, fi, pi, denote vitamins A,B,C, fiber, and protein content of food i, respectively;

• For i ∈ [n], let pricei denote the price we have to pay for each unit of food i;

• Finally, let rA, rB , rC , rF , rP denote the required amount of vitamins A,B,C, fiber, and protein.

Note that the last three lines are not variables, rather, numbers that are (supposedly) in Table 1

We can now write the following LP for solving our problem.
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min
x=(x1,...,xn)∈Rn

n∑
i=1

pricei · xi

subject to
n∑

i=1

ai · xi > rA

n∑
i=1

bi · xi > rB ,

n∑
i=1

ci · xi > rC ,

n∑
i=1

fi · xi > rF ,

n∑
i=1

pi · xi > rP

xi > 0 ∀i ∈ [n].

(We again emphasize that in the above LP, the only variables are x1, . . . , xn; remaining parameters are all
numbers that we can fill up using Table 1 assuming we had the actual numbers.)

We will leave verifying this LP actually solves the original problem to the reader as an easy exercise. At this
point, we can simply give this LP to a standard LP solver and obtain the solution to our problem.

2.2 An Application of Type (b): The Bipartite Matching Problem

We consider yet another textbook example of LPs, this time for solving algorithmic problems. In the bipartite
matching problem, we are given a bipartite graph G = (L t R,E) with bipartition L and R of vertices. A
matching M in G is any collection of edges that do not share any vertices (hence, they ‘match’ vertices in L
to vertices in R so that each participating vertex in the matching is matched to precisely one other vertex).
In the bipartite matching problem, the goal is to find a maximum matching, namely, a one with the largest
number of edges.

Let us define an integral 0/1 variable ye ∈ {0, 1} for each edge e ∈ E (we emphasize that these variables are
not in Rn, but rather we forced them to be only 0 or 1). Think of ye = 1 as showing that we pick the edge
e in our maximum matching and ye = 0 as we do not.

To ensure that the edges we pick form a matching, we need to make sure we do not pick more than one edge
per vertex. We can write this as the following constraint:

∀u ∈ L :
∑
e3u

ye 6 1 and ∀v ∈ R :
∑
e3v

ye 6 1.

Finally, our task of maximizing the number of edges in the matching becomes

max
∑
e∈E

ye.

Putting these together, we get the following optimization problem:

max
y

∑
e∈E

ye

subject to ∀u ∈ L :
∑
e3u

ye 6 1

∀v ∈ R :
∑
e3v

ye 6 1

∀e ∈ E : ye ∈ {0, 1} .

The above optimization problem is not an LP (even though it may very much look like it). The problem
is with the very last constraint of ye ∈ {0, 1} that forces the program to only use integer values for the
variables. Such a program is instead called an Integer Linear Program (ILP). Unfortunately, unlike LPs,
ILPs are much harder to solve or reason about. For one thing, solving general ILPs is an NP-hard problem
(you can prove this easily; try!).
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There is a general recipe in these situations: what if we relax the integrality constraint to obtain the following
LP instead?

max
x∈RE

∑
e∈E

xe

subject to ∀u ∈ L :
∑
e3u

xe 6 1

∀v ∈ R :
∑
e3v

xe 6 1

∀e ∈ E : 0 6 xe 6 1.

Such an LP is typically called the LP relaxation of the original ILP (or directly the original problem). Of
course, now it is no longer clear that solving this LP can tell us much about the original problem. Of course,
the optimal value of this LP is always an upper bound on the optimal value of the original ILP simply
because any solution to that ILP is a feasible solution here as well. But can it be that this relaxation made
the problem so different that these values now differ drastically from each other?

The answer to this question for general LP relaxations and ILPs can be Yes; we will see examples of this
soon in the course. However, we are now going to prove that for the specific case of the bipartite matching
problem, this is not the case.

Proposition 3. Any feasible fractional solution x ∈ RE to the LP for bipartite matching can be rounded to
a feasible integral solution y ∈ {0, 1}E without decreasing the objective value.

Before getting to the proof, notice a direct corollary of this proposition. We can now solve the bipartite
matching LP relaxation to find an optimal solution x. We know that the objective value of x is at least as
large as the optimal solution of the ILP. By Proposition 3, we can then round x to an integral solution y of
the same value, thus implying that y is also optimal for the ILP. This then gives us a maximum matching of
the original graph and solves the problem. Later in the course, we prove a stronger version of Proposition 3
that shows that in fact many “natural” LP solvers when given the bipartite matching LP relaxation, directly
find an integral solution (eliminating the need for this rounding step).

Proof of Proposition 3. Fix the feasible solution x ∈ RE . If x is already integral, we are done by taking
y = x. Otherwise, perform the following step first.

Step one: cycle canceling. Find a cycle in the support of x, denoted by supp(x) := {e ∈ E : xe > 0},
that contains a fractional value. If no such cycle is found go to the next step, otherwise let C be the cycle
and let e ∈ C be the edge with the smallest fractional value xe in the cycle. Let δ = xe. Now update x as
follows. Let C = e1, e2, e3, . . . , e` denote the edges of the cycle ordered such that e1 = e is the picked edge
with xe = δ. Update

xe1 ← xe1 − δ, xe2 ← xe2 + δ, xe3 ← xe3 − δ, . . . ,

namely, alternately decrease and increase x-values of edges by δ.

Since we are in a bipartite graph, the length of C must be even (recall that bipartite graphs are precisely
those that have no odd cycles). This ensures that (i) the value of

∑
e3w xe remains the same for every vertex

w ∈ L ∪R in the graph since we increased one edge of w and decreased another one by the same value; and
(ii) value of

∑
e∈E xe remains the same by the same reasoning. Moreover, support of x is now at least one

edge smaller because the original edge e we started with now has xe = 0.

Thus, through this transformation, we only shrink the support of x without decreasing the objective value.
As the support is finite, this process has to end eventually and at that point, we can no longer have any
cycles inside it.
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Step two: rounding forests. Now that there are no cycles left in the support of x, we have that supp(x)
is a forest (namely, a graph without cycles). Any part of this support that is integral has to be disjoint from
the rest because integral parts can only form a matching and thus vertices have degree exactly one (they
form a collection of vertex-disjoint edges).

Let F be the fractional part of the support. Pick any arbitrary leaf-nodes in the forest F (namely, a vertex
of degree one). Let v be this leaf-node u be its parent, and e = (u, v) be the edge between them. Let xe = 1
and reduce the x-value of all other edges incident on u to become 0. Firstly, since v was a leaf-node and thus
had no other edges, this transformation does not make x infeasible. Secondly, the total value of x incident
on vertex u previously was at most 1 (to ensure feasibility of the original x) and by this change it has become
exactly 1. Thus, we did not reduce the value of x at all. Finally, all edges incident on u have integral values
and thus are removed from F . We can continue this process and at every step we obtain a feasible solution
of the same value or higher and eventually transform the entire F into an integral solution.

Let y be this final solution which is now integral and has value as large as x. This concludes the proof.

Remark. In general, rounding a fractional solution to an integral one does not necessarily need to be
“lossless”. Finding the best rounding scheme (and even the best LP relaxation of a problem) is one of
the main topics studied in approximation algorithms, and we will revisit this throughout the course. In
general, the gap between the optimal ILP value and its corresponding LP relaxation is referred to as
the integrality gap.

2.3 An Application of Type (c): Bipartite Matching vs Vertex Cover

Illustrating the analytical applications of LPs and in particular using duality theorems require further knowl-
edge of LPs beyond what we discussed so far. Thus our hands are rather tied for demonstrating these appli-
cations. Instead, we are going to show a type of result we can prove using these techniques without actually
proving the result using LPs and instead prove it using more combinatorial means. Later in the course, we
will see how this result and various other follow from a general approach in linear programming.

Let G = (L tR,E) be a bipartite graph. We already defined what a matching M is in G. Let µ(G) denote
the size of the maximum matching in G. A vertex cover in G is a set of vertices S that cover all the edges,
i.e., any edge has at least one endpoint in S. Let τ(G) denote the size of the minimum vertex cover in G.
What is the connection between µ(G) and τ(G)?

It is easy to see that µ(G) 6 τ(G) always. Consider the edges of any maximum matching M . Any vertex
cover of G needs to cover these edges but since these edges are vertex-disjoint, the vertex cover needs to pick
at least one vertex for each edge of M , implying that µ(G) 6 τ(G). The question now is how much larger
can τ(G) get? The answer in bipartite is nothing at all. This is often referred to as the König’s theorem.

Proposition 4. In any bipartite graph, we have µ(G) = τ(G).

Later in the course, we prove this result using LP duality, by showing that (i) fractional matching LP and
fractional vertex cover LP are dual to each other, and (ii) applying the strong duality of LPs (and also
using Proposition 3 to relate fractional matchings to integral ones) to conclude the proof2.

We now give a direct combinatorial proof of Proposition 4. To do that, we need the following result referred
to as the extended Hall’s theorem (this can be proven using a simple argument from the original Hall’s
theorem, or as an immediate corollary of the Tutte-Berge formula for the size of maximum matchings).

Fact 5. Let G = (L tR,E) be any bipartite graph with |L| = |R| = n. Then,

max
A⊆L or A⊆R

(|A| − |N(A)|) = n− µ(G),

2If none of this makes sense, do not worry; we will get to these later.
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where N(A) denotes the set of neighbors of A.

We now prove Proposition 4.

Proof of Proposition 4. We only need to show that µ(G) > τ(G) as we established the other direction easily
already. Let A∗ be the set in G that witnesses the maximum in Fact 5, i.e.,

A∗ := argmax (|A| − |N(A)|) .

By symmetry, we assume A∗ is in L. Let S be N(A∗) ∪ (L \ A∗). We claim that S is a vertex cover of G.
The only edges that may not be covered by S are the ones going from A∗ to R \N(A∗). But there can be
no such edge in the graph because N(A∗) contains all the neighbors of A∗. Thus, S is a valid vertex cover
of G.

We now have that

|S| = |N(A∗)|+ |L \A∗| = |N(A∗)|+ n− |A∗| = n− (|A∗| − |N(A∗)|) = n− (n− µ(G)) = µ(G),

where in the second to last equality we used the fact that A∗ is a witness in Fact 5. As τ(G) 6 |S| (because
it measures the minimum vertex cover size and S is some vertex cover), we have τ(G) 6 µ(G), concluding
the proof.

This concludes our first lecture on linear programming. From the next week, we jump into the fundamental
theory of LPs as well as some of their theoretical applications along the way.
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