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CS 514: Advanced Algorithms II – Sublinear Algorithms Rutgers: Spring 2020

Problem set 2
Due: 11:59PM, March 24, 2020

Problem 1. In Lecture 5, we designed a local computation algorithm (LCA) for the maximal independent
set (MIS) problem on graphs with maximum degree ∆. With high probability, the runtime of this algorithm
in answering each probe was ∆O(∆·log ∆) · log n which is considered efficient (at least for “small” ∆). However,
this LCA required to record Ω(n) random bits which is inefficient in terms of random bit complexity.

In this problem, we will examine two different (but similar) ways of reducing the number of random bits in
this LCA using k-wise independent hash functions described in Lecture 7.

(a) Show that we can pick all the random bits used by the LCA using a k-wise independent hash function
for some k = ∆O(∆·log ∆) · log n, while still maintaining the correctness of the algorithm. Conclude that
this gives an LCA for MIS with ∆O(∆·log ∆) · log2 n probe time and ∆O(∆·log ∆) · log2 n random bits.

(5 points)

(b) Recall that the LCA for MIS was based on simulating a distributed LOCAL algorithm for MIS and then
use a deterministic post-processing. Suppose we pick the random bits in each round of the distributed
LOCAL algorithm from a 2-wise independent hash function and choose the hash functions across the
rounds independently. Show that this new LCA still outputs a correct MIS with high probability and
that its runtime for each probe is ∆O(∆·log ∆) · log n and it needs poly(∆, log n) random bits.

(10 points)

Problem 2. A matching in a graph G = (V,E) (not necessarily bipartite) is any collection of edges that
do not share any vertices. A maximal matching M is then any matching that is not a proper subset of any
other matching in G; in other words, for any edge e ∈ E, at least one of its endpoints is matched by M .
An LCA for the maximal matching problem should maintain an implicit maximal matching to answer the
following probe:

- Given an edge e ∈ E, is this edge part of the chosen maximal matching?

In this problem, we design an LCA for maximal matching on graphs with maximum degree ∆ that answers
each probe in expected 2O(∆) time (note that this is a different guarantee from the LCA for MIS that works
with high probability for every probe).

(a) Our LCA for this problem maintains a maximal matching M implicitly as follows:

(a) Pick a random permutation π of edges of E.

(b) Given the probe e ∈ E do as follows:

(i) Go over each edge e′ ∈ E that share a vertex with e and have π(e′) < π(e): recursively
probe whether e′ is part of the maximal matching M or not.

(ii) If the answer to any of the probes incident on e was Yes, return e is not part of M ;
otherwise, return e is in M .

Prove that the set M of edges output by this LCA is always a maximal matching. (5 points)
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(b) Let T (e) be the set of edges that are recursively considered by LCA in response to a probe e. Prove
each of the following statements: (5 points)

(i) Runtime of LCA in response to probe e is O(∆ · |T (e)|);
(ii) Any path examined by a recursive query sequence in T (e) starting from e has decreasing values

of π over the edges. I.e., if the path is (e =)e1, e2, . . . , ek, then π(e1) > π(e2) > · · · > π(ek).

(c) Prove each of the following statements: (5 points)

(i) For any fixed path P of length k in G, the probability that P has decreasing values of π over the
edges is 1

k! .

(ii) For any fixed vertex v, the number of edges on all paths of length at most k starting from v in G
is at most ∆k.

(d) Use the two parts above to prove that the expected size of T (e) is 2O(∆) and conclude that the expected
time it takes to answer any fixed probe is also 2O(∆). (10 points)

Problem 3. Recall the problem of sparse recovery on F2 we studied in Lecture 6: Given a k-sparse vector
x ∈ Fn2 , i.e., ||x||0 = k, design a matrix A such that we can recover x uniquely from A · x (note that the
computation is done over F2). In the class, we saw that we can find an A with O(k · log (n/k)) rows for this
task and proved that Ω(k · log (n/k)) rows are also necessary. However, our algorithm required exponential
time (in k) for constructing A and also recovering x from A · x.

Design a polynomial-time randomized algorithm that outputs a matrix A with O(k · log (n/k)) rows such
that with probability at least 9/10, for any fixed (unknown) k-sparse x, we can recover x from A · x – note
that this is a weaker guarantee than our previous algorithm in terms of recovery that simultaneously worked
for all k-sparse x ∈ Fn2 . (25 points)

Hint: Consider the following matrix B with Θ(k) rows where each row B(i) of B is chosen by independently

picking a random subset Si of n with size (n/k), setting entry B
(i)
j = 1 for all j ∈ S and zero otherwise.

Combine this with the deterministic algorithm for 1-sparse recovery discussed in Lecture 6 to design a
polynomial-time algorithm that can recover a constant fraction of entries of x. Let y ∈ Fn2 be the vector of
recovered indices (so 1’s of y are a subset of 1’s of x). Show that another independent copy of the matrix in
the previous part with a constant factor smaller number of rows can be used to recover a constant fraction
of 1’s in the vector x− y. Continue this to recover all the vector x.

Bonus part: Design a deterministic algorithm for this problem. You will still receive partial credit for
algorithms that use sub-optimal number of measurements (e.g., a matrix with O(k2 · log (n/k)) rows instead).

(+40 points)

Problem 4. Given a set of numbers S and a number x ∈ S, the rank of x is defined to be the number of
elements in S that have value at most x:

rank(x, S) = | {y ∈ S : y ≤ x} |.

Given a parameter ε ∈ (0, 1/2], we say that an element x ∈ S is an ε-approximate element of rank r if

(1− ε) · r ≤ rank(x, S) ≤ (1 + ε) · r.

Suppose we are given a stream of numbers S = s1, s2, . . . , sn, where si ∈ [m] for 1 ≤ i ≤ n, and assume that
all si’s are distinct. Our goal is to design an O(ε−2 logm log n) space streaming algorithm for retrieving an
ε-approximate element for any given rank value.

(a) Consider the following algorithm for computing an ε-approximate median: sample O(ε−2 log n) num-
bers from the stream uniformly at random (with repetition) and return the median of the samples.

Show that this algorithm returns an ε-approximate median with probability at least 1−1/poly(n) and
uses O(ε−2 · logm · log n) bits of space. (10 points)

2



Only for the personal use of students registered in CS 514, Spring 2020 at Rutgers University.
Redistribution out of this class is strictly prohibited.

(b) We now extend the previous algorithm to compute an ε-approximate element of rank r for any r ∈ [n].

Consider the following algorithm for this problem. Let t =
⌈
24ε−2 log n

⌉
. If r ≤ t, then simply maintain

a list T of r smallest elements seen in the stream, and output the largest element in T at the end of
the stream. Otherwise, choose each element in the stream with probability t/r, and maintain the t
smallest sampled values in a list T . At the end of the stream, output the largest number in T .

Show this algorithm returns an ε-approximate element of rank r with probability at least 1−1/poly(n)
and uses O(ε−2 · logm · log n) bits of space. (10 points)

Problem 5. Suppose we are given a stream of numbers e1, . . . , en from a universe [m] which defines a
frequency vector f ∈ Nm. In Lecture 7, we saw streaming algorithms for estimating frequency moments of
the vector f . In this problem, we consider algorithms for another problem related to the frequency vector,
namely, point-wise estimation of f . In particular, the streaming algorithm needs to output a data structure
such that at the end of the stream, for any given i ∈ [m], with probability at least 1− δ, we can recover f̃i
from this data structure where:

fi ≤ f̃i ≤ fi + ε · ||f ||1.

(a) The standard solution for this problem is called the count-min sketch. Let a = 10 ln (1/δ) and b = 4
ε .

Pick a pairwise independent hash functions h1, . . . , ha : [m] → [b]. Throughout the stream, compute
a · b counters:

cp,q = | {ei in the stream | hp(ei) = q} |.
At the end of the stream, given any i ∈ [m], return

f̃i = min
p∈[a]

(cp,q where q = hp(i)) .

Prove that count-min sketch described above solves the given problem and analyze its space complexity.

(10 points)

(b) For a frequency vector f and φ ∈ (0, 1), a φ-heavy hitter of f is any element i ∈ [m] such that
fi ≥ φ · ||f ||1. Design a streaming algorithm that given a stream e1, . . . , en from universe [m] (defining
the frequency vector f) and parameters φ, ε, δ ∈ (0, 1/2), outputs a list of at most 2

φ numbers such
that with probability 1− δ, every φ-heavy hitter of f belongs to this list, and no element which is not
a (φ− ε)-heavy hitter in f is reported in this list. The space complexity of your algorithm should be
poly-logarithmic in n,m, (1/δ), and polynomial in φ and ε. (5 points)

Problem 6 (Bonus Problem). Recall the uniform distribution testing problem from Lecture 4: We are
given sample access to a distribution µ on domain [n] and our goal is to decide whether µ is the uniform
distribution Un on [n] or it is ε-far from Un in total variation distance, i.e., ∆tvd(µ,Un) ≥ ε. We showed that
for any constant ε ∈ (0, 1), this problem can be solved with constant probability using O(

√
n) samples. Our

goal now is to prove Ω(
√
n) samples are also necessary for solving this problem for some constant ε ∈ (0, 1).

(a) Define Dno as the distribution over family of distributions on [n] as follows (elements of Dno are itself
distributions, i.e., when we sample from Dno, we obtain a distribution):

• A sample distribution µ from Dno is obtained by sampling a subset S ⊆ [n] of size (n/2) uniformly
at random, and letting µ(i) = 2

n for all i ∈ S and µ(j) = 0 for j /∈ S (i.e., distribution µ is uniform
over S and has no mass in [n]− S).

Prove that any distribution µ ∼ Dno is ε-far from uniform in total variation distance for some fixed
constant ε ∈ (0, 1). (+5 points)

(b) Consider any algorithm A that uses o(
√
n) samples for uniformity testing: Prove that A cannot dis-

tinguish between Un or a distribution µ ∼ Dno with probability of success at least 2/3. Conclude that
any algorithm for uniformity testing with some constant ε ∈ (0, 1) with probability of success at least
2/3 requires Ω(

√
n) samples. (+15 points)
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