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CS 514: Advanced Algorithms IT — Sublinear Algorithms Rutgers: Spring 2020

Problem set 1
Due: 11:59PM, February 25, 2020

Problem 1. Let us revisit the balls and bins experiment: We are throwing n balls into n bins by choosing a
bin uniformly at random and independently for each bin. In lecture one, we proved that with high probability,
namely, probability 1 — 1/n°, for any fixed constant ¢ > 0, the maximum number of balls in any bins, i.e.,
the maximum load, is O(logn). We are going to improve this bound slightly in this problem and obtain

asymptotically tight bound of @(log)i gn) for the balls and bins experiment.

(a) Prove that with high probability, the maximum load in this experiment is O(lolgofgO <) (10 points)

Hint: Revisit the proof of Chernoff bound in the lecture notes and see if one can use a (slightly)
stronger variant of Chernoff for this problem.

(b) Prove that with probability 1/n® for some constant d € (0, 1), the first bin has load Q(log)lgj)gn).

(10 points)
Hint: Prove that the probability that the first bin receives exactly 0.1 {3 balls is at least ©(1) - 1/n?

Inln

for some d € (0,1). You may find the inequality (Z) > (n/k)k for all n, k helpful.

Problem 2. We are going to design a sublinear time algorithm for estimating the number of triangles,
namely, cliques on 3 vertices, in a given undirected graph. We will work with the general query model plus
an additional random edge sample query:

e Degree queries: Given a vertex v € V, output deg(v).

e Neighbor queries: Given a vertex v € V and i € [n], output the i-th neighbor of v or L if i > deg(v).

e Pair queries: Given two vertices u,v € V, output whether (u,v) is an edge in G or not.

e Edge-sample queries: Return an edge e € E uniformly at random and independently.

In the following, let n,m, and T denote the number of vertices, edges, and triangles in G, respectively.
Consider the following random variable X:

(i) Sample an edge e from G uniformly at random (using an edge-sample query); let u, v be the endpoints
of e such that ID(u) < ID(v).

(ii) Sample a vertex w from N(v) uniformly at random (using a neighbor-query); return X = 0 if
ID(v) > ID(w), otherwise go to the next line.

(iii) Check whether (u,w) is an edge in G (using a pair query); if so, let X = m - deg(v) (using a degree
query), otherwise let X = 0.

We will use this random variable X to design an algorithm for triangle counting.

(a) Prove that E[X] =T. (10 points)
(b) Prove that Var [ X]<m-n-T. (10 points)
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(c) Let k = 122"}}”. Consider an algorithm that computes random variable X independently for & times,

denoted by X1i,..., Xk, and return Y = % . Zle X;. Prove that, (10 points)

1
Pr(Y =T|>e-T) < —.
HIY -T2 e T) < g

mn
e2-T

The above now implies an algorithm with runtime O( ) for estimating the number of triangles to

within a (1 & ¢) multiplicative factor.

(d) Bonus part: There is a caveat with the algorithm above; one needs to know T to know how many
times to repeat the random variable X but T is exactly the quantity we want to estimate!

Show that one can increase the runtime of the algorithm above by an O(logn) factor and removes the
assumption of knowledge of T'.

Hint: Assume that T is the maximum value possible, say n3, and run the above algorithm to get an
estimate; if the answer was “very” different with the assumption, repeat the process but this time make
the guess equal to n®/2 and then n3/4 and so on. (+20 points)

General remark: The algorithm in this question does not achieve the optimal bounds for the triangle counting
2

problem, which is known to be O(%) (the two bounds match only when m = ©(n?) and otherwise the

second bound is always better). However, one can use the ideas from the average degree estimation problem

to improve the runtime of the above algorithm to match the optimal bounds (up to logarithmic factors).

Problem 3. Prove that any deterministic algorithm for estimating the number of connected components
to within an e - n additive factor in the adjacency list model requires Q(n) time for some constant € € (0, 1).

Hint: Use query complexity plus an adversary argument. (20 points)

Problem 4. We are going to design a sublinear time algorithm for estimating weight of a minimum spanning
tree (MST) in bounded degree graphs.

Let G(V, E) be a weighted connected graph with weight function w : E — {1,...,W} on the edges and
maximum degree d, specified in the adjacency list query model. The goal is to output a (1 +e¢) multiplicative
approximation to the MST weight of G in poly(%) time, in particular, independent n, i.e., number of
vertices in G.

(a) For any i € {1,...,W}, define G; as the subgraph of G on the same set of vertices obtained using only
edges e with weight w(e) € {1,...,i} (thus Gy = G and Gy = the empty graph). Let C; denote the
number of connected components of G;. Prove that the MST weight of G is

w w-1
d(Ci-1)= (Z q) +(n—Ww).
i=0 i=1
Hint: Think of Kruskal’s algorithm! (15 points)

(b) Use the formula above plus the algorithm for estimating the number of connected components in lecture
two on each graph G; (in a black-box way, but by using appropriate parameters ¢,9), to design an
algorithm for estimating the MST weight of G to within a (1 + ¢) approximation in poly(d'TW) time
with probability at least 3/4. (15 points)

Hint: Note that the algorithm for estimating number of connected components runs in O(4/%-1n (1/6))
time on graphs with maximum degree d to obtain an additive en approximation with probability 1 — 4.
Also use the fact that the MST weight is at least (n — 1) and hence an additive ¢ - n approximation
to the MST weight also implies a (1 £ &) multiplicative approximation.



Only for the personal use of students registered in CS 514, Spring 2020 at Rutgers University.
Redistribution out of this class is strictly prohibited.

Problem 5 (Bonus Problem). We are going to consider the balls and bins experiment yet another time,
but this time with a simple twist: We are throwing n balls into n bins one by one by choosing two bins
uniformly at random for each ball independently, and placing the ball in the bin with a smaller number
of assigned balls currently (breaking the ties arbitrary). Prove that with high probability, the maximum
number of balls in any bins in this modified experiment is O(loglogn). (+20 points)

Note: Getting the exact calculations for this problem can be rather tedious. You will receive half the grade
if you can provide the intuition and the high level overview of the proof correctly even if not all calculations
are done completely — however, beware of the dependency issues between the random variables you define.



