
CS 514: Advanced Algorithms II – Sublinear Algorithms Rutgers: Spring 2020

Lecture 9
March 24, 2020

Instructor: Sepehr Assadi Scribe: Chengyuan Deng and Runhui Wang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Streaming Linear Regression

We move forward to exploring approaches of modeling streaming data in alien systems or algorithms. In
this lecture, we extend the application of linear regression in a streaming model.

Recap of Linear Regression

As one of the baseline machine learning algorithms, Linear Regression models the linear relationship between
feature variables and one target variable based on a data set of observations. Ideally, for a feature set A and
label set b where A, b ⊆ Rn, there exists a linear function f s.t. ∀(ai, bi) with ai ∈ A and bi ∈ b, f(ai) = bi.

In most of real-world scenarios, due to inevitable noise and bias in data collections, it would be almost
hopeless to retrieve the de facto linear relationship between the features and label. However, it is possible
to learn linear function f : b̂ = A ·w that minimize some distance measurement. Usually, we optimize a
learning objective L(w) by minimizing total loss across all training samples based on a certain loss function.
Specifically, w∗ could be obtained by:

w∗ = argmin
w

L(w) (1)

In the analysis above, we consider the feature is represented in one-dimension. Now we extend the linear
regression to multi-dimension situation when each label is dependant on d features. Consequently we have
a feature set A ⊆ Rn×d, and a label set b ∈ Rn. Here we propose two assumptions which stand immune
through the lecture unless noted otherwise:

Assumption 1. For matrix A ⊆ Rn×d, n� d and A is full column rank.

Assumption 2. For each element in matrix A and b, it takes O(log n) bits to store in the stream.

One could observe that the first assumption is actually a trivial one, considering n indicates the number of
training samples, which is usually large. And there are no implications that the feature data samples follow
a certain distribution or have explicit relationship between one another, hence each column should be linear
independent to each other, it is therefore reasonable to regard A as full column rank. Now if we ignore the
bias in linear equation for simplicity, then ideally, there exists x ⊆ Rd s.t. A · x = b. Again we are trying
to find an approximate x̃. We adopt l2-norm loss function as learning objective of this task, specifically as
the following:

L(x) = ||A · x− b||2
x∗ = argmin

x
L(x) (2)

Notice that equation 2 is a convex optimization problem, and there are several approaches to obtain x. We
provide the answer here as x∗ = (ATA)−1AT b and refer the readers to thinking of one possible proof using
singular value decomposition.

1

The Model of Streaming l2-Regression

In the streaming l2-regression problem, on the contrary of observing and training all data samples as a
family, we are receiving each data sample separately. Which is to say, we only have access to one row of
matrix A, b in each round. Can we design a streaming algorithm to find the exact x∗ based on this?

The answer is no. One intuitive observation is that the overall space required for two matrices would be
O(n · d · log n). If only a small portion of data samples are stored in the stream, then only the corresponding
small portion in x∗ could be learned. When the next round comes, the model would simply forget everything
it has learned, and x∗ goes back to blank. Notice that x∗ ∈ Rd, so this only works when most elements in
x∗ are zero, or are dependant on very few features, which indicates most features do not have an impact on
the label at all. So we claim that the exact x∗ cannot be computed with O(n) space, formally as claim 3.
One could think of a rigorous proof by reduction from Index problem.

Claim 3. The lower bound for exact l2-regression problem in the stream is Ω(n).

Now we consider solving it by approximation. Let’s first define our problem:

Problem 1. Given each row of matrix A ∈ Rn×d, denoted as ai1, ai2 . . . aid, (i ∈ [n]), and corresponding
row in matrix b ∈ Rn, denoted as bi at each round, find x̃ s.t. ‖A · x̃− b‖2 6 (1 + ε) · ‖A · x∗ − b‖2

We consider several natural streaming approaches and discuss how they may work as the following:

• Uniform Sampling: Sample a number of data points uniformly at random, compute x∗ based on
those samples and use x∗ for x̃. This is not promising to work for our case. Let’s consider the situation
illustrated in figure 1, most samples (blue) are in lower dimensions and a small number of samples
(red) are in a distant, marginal dimension. If the uniform sampling happens to miss those red points,
it is very likely that we would obtain l1 instead of an approximation to l2. An additional remark is
that one could argue since the red points are outliers, it is possible that a robust regression model
(l1-regression for example) could work. The thought yields to further elaboration, with the focus on
l2-regression we should agree that the contribution of distant points can cause the approximation to
go wild.

• Leverage Score Sampling: Define a score to indicate the importance of particular rows to the
regression model, approximate the score based on some samplings. There may be ways to make this
work, but we are not focusing on this approach in the lecture.

• Linear Sketching: The approach of linear sketching is usually applied as linear projection from high
dimension to much lower dimension, but able to the properties of original vector with high probability.
For our problem, we are using a matrix S ∈ Rk×n to scale down matrix A ∈ Rn×d to Rk×d. More
specifically, we formulate linear sketching of l2-regression problem as follows:

Algorithm 1: Linear sketching for streaming l2-regression

1. Sample a matrix S ∈ Rk×n from a certain distribution.

2. For each set of data samples (ai1, ai2, . . . aid, bi), compute S ·A(i), S · b(i) in the stream, where
A(i) is padded with 0 to the shape of n× d, and b(i) is padded with 0 to the shape of n× 1.

3. Solve x̃ = argmin
x∈Rd

‖SAx− Sb‖2.

Algorithm 1 is the backbone of the streaming algorithm of l2-regression. The only task remained is
how to sample a family of matrices S ∈ Rk×n with ’small’ k, we will return to that a bit later. Now
let’s analyze the space required in the linear sketching algorithm. We need to store matrix S ∈ Rk×n,
S ·A ∈ Rk×d and S ·b ∈ Rk. It is worth of noticing that keeping one matrix of S ·A will be enough to store

2

the all computation results, given the linearity that S ·A = S ·(A(1) +A(2) + . . .+A(n)) =
∑n
i=1 S ·A(i),

the same works for S · b. Therefore, it takes space of O(k · d · log n) to store S ·A and S · b. We are not
covering how to store S in this lecture.

Figure 1: An example case that uniform sampling may not work

Let’s now finalize the algorithm and prove the correctness. To provide a high-level idea, we design and prove
the algorithm in three phases: (1) Dimensionality reduction from n×d to k×d. (2) Subspace Embedding. (3)
Regression. For the first step, any family of matrices having the property could be considered as candidate of
S. For example, one may think of a matrix S

′ ∈ Rk×n with each element S
′

·· ∈ {1, -1} generated randomly.
In this lecture we apply Gaussian matrices to solve this problem. Why could this help? Because in the i - th
round of the algorithm, we only need the i - th row of A and i - th column of S, which can be generated from
a Gaussian distribution with one step. Therefore, we only have to store k elements of each column in S,
resulting in a space of O(k · log n). If we can keep k small as k ∈ poly(d), then the algorithm sounds good.

Before getting to the final version of the algorithm, we define Gaussian Matrix through a recap of Gaussian
distribution.

Definition 4. A random variable X is said to have a Gaussian Distribution with mean µ ∈ R and variance
σ2 ∈ R, if its probability density function is given by:

f(x;µ, σ2) =
1√
2πσ

exp (− 1

2σ2
(x− µ)2) (3)

Definition 5. A matrix S ∈ Rm×n is a Gaussian matrix, if each element in S is sampled from a certain
Gaussian distribution N(µ, σ2), where µ is the mean and σ2 is the variance.

Notice that Gaussian distribution has many favorable properties, and the correctness proof of our algorithm
benefits a lot from these properties.

Finally, we propose the following algorithm:

Algorithm 2: An algorithm for streaming l2-regression

1. Sample each element of S i.i.d N(0, 1k) for k = O(dε2).

2. Run step 2 and 3 of Algorithm 1.

3

2 Proof of Correctness

We prove the correctness of this algorithm based on the following lemma.

Lemma 6. For x̃ ∈ argmin
x
‖SAx− Sb‖2, ‖Ax̃− b‖2 6 (1 + 3ε) · ‖Ax∗ − b‖2.

Notice that lemma 6 shows the output of Algorithm 2 satisfies the requirement of the original problem. For
the rest of this lecture, we give the proof of lemma 6 in two steps:

1. If S is a subspace embedding, then the problem is solved. (informal version of claim 8)

2. Algorithm 2 will give us a subspace embedding S with k = O(dε2) rows. (informal version of claim 9)

To lead out, we first introduce the notion of subspace embedding as following:

Definition 7. Given a matrix M ∈ Rn×d, a (1 ± ε)-l2 subspace embedding S of M is a matrix S ∈ Rk×n,
such that ∀y ∈ Rd, we have:

‖SMy‖2 = (1± ε)‖My‖2

(Note: a = (1± ε)b means that (1− ε)b 6 a 6 (1 + ε)b.)

One would observe that what subspace embedding does here is to preserve the norm of My within multiplica-
tive approximation. From the perspective of measurement, the task is to find a linear transformation matrix
S, such that the measurement of My stay in the bound of its multiplicative approximation. Therefore, it
is a property of subspace Rk instead of Rn, which means M could be a random matrix in its space. In
consistence with the discussion of lemma 6, we have the following two claims to support our proof:

Claim 8 (Formalization of 1). Suppose S is a (1±ε)-l2 subspace embedding of M ∈ Rn×d, then ‖Ax̃−b‖2 6
(1 + 3ε) · ‖Ax∗ − b‖2

Claim 9 (Formalization of 2.). Subspace embedding problem can be solved for k = O(dε2)

We present the proof of claim 9 in the next section and and the following goes goes the proof of claim 8:

Proof. Consider matrix M = [A, b] and y = [x,−1]T , where A ∈ Rn×d, b ∈ Rn and x ∈ Rd , it is straightfor-
ward that My = Ax− b. Therefore, ‖SMy‖2 = ‖SAx− Sb‖2.

From the definition, we have (1− ε) · ‖Ax− b‖2 6 ‖SAx− Sb‖2 6 (1 + ε) · ‖Ax− b‖2.

Recall that the output of algorithm 2 is x̃ ∈ argmin
x
‖SAx−Sb‖2, we have ‖Ax̃−b‖2 6 (1+ε)‖SAx̃−Sb‖2 6

(1 + ε)‖SAx∗ − Sb‖2 6 (1 + ε)2‖Ax∗ − b‖2.

Notice that ε is always expected to be small, let’s say ε ∈ [0, 12], it is trivial to claim that (1+ε)2‖Ax∗−b‖2 6
(1 + 3ε)‖Ax∗ − b‖2. ((1 + ε)2 = 1 + 2ε+ ε2 < 1 + 2ε+ ε = 1 + 3ε)

Concluding the proof.

Subspace Embedding

For now, we are going to solve the subspace embedding problem (Claim 9). Just before that, we mention that
we got an O(k ·d · log n) space algorithm for regression, where k = O(dε2). Instead of having a space of factor

of n, it is now only O(dε2), which is a much smaller space. First we will try to prove that k = O(dε2). Then,
for subspace embedding, we want to prove that for ∀x ∈ Rd, ‖SAx‖ = (1± ε)‖Ax‖. (For simplification, we
use ‖a‖ to indicate ‖a‖2 from now on.)

4

Simplifications

1. We can assume that columns of A are orthonormal:

Suppose A = [A1|A2| · · · |Ad], and ‖Ai‖ = 1, < Ai, Aj >= 0

The reason we can make such an assumption is as follows.

Claim 10. Define U∈ Rd s.t U has orthonormal columns, then we have two equivalent subspace {Uy|y ∈
Rd} = {Ax|x ∈ Rd}, for any A ∈ Rn×d s.t A is full column rank.

Because A is full column rank, so the columns of A is linearly independent, which means that A is a basis
of Rd that spans the whole space. U has orthonormal columns, so its columns are also linearly independent,
which means U is another basis of Rd that spans the whole space. Thus, we can prove that {Uy|y ∈ Rd}
equals {Ax|x ∈ Rd}. So we can claim that for each element in {Ax|x ∈ Rd}, there exists an equivalent
element in {Uy|y ∈ Rd}.

Therefore we have:

‖SUy‖ = (1± ε)‖Uy‖ → ‖SAx‖ = (1± ε)‖Ax‖,

which means that if we can prove the subspace embedding property for the left subspace, we can prove it for
the right subspace as well. Therefore, we can just assume that the columns of our input A is orthonormal.

2. The other assumption is that we only need to focus on ‖x‖ = 1.

This is because for any other y, we can let x = y
‖y‖ , then we have ‖x‖ = 1 and that ‖SAy‖ = ‖y‖‖SAx‖.

At this point, A has orthonormal columns so we only care about ‖x‖ = 1.

Outline

With the simplifications mentioned above, we are going to prove claim 9 in two steps:

• Fix x∈ Rd s.t. ‖x‖ = 1, and prove that ‖SAx‖ = (1± ε)‖Ax‖, w.p. 1− 1
2100d

• Use Union bound to all x ∈ Rd. (Note that this is not a trivial bound because Rd has infinite number
of points, even if we constrain that ‖x‖ = 1.)

Remark. How do we do union bound on infinite space S?

The answer is γ − net and we will explain this in details later.

Step 1

Given a Gaussian matrix S ∈ Rk×n and an orthonormal matrix A ∈ Rn×d, we have S × A = G, where
G ∈ Rk×d. Recall that each element of S is sampled i.i.d N(0, 1k) for k = O(dε2). Then we have the following
claim about G:

Claim 11. G is a random Gaussian i.i.d1 N(0, 1k) matrix.

Proof. Recall that for Gaussian distribution, we have the following properties:

Property 1. Given X ∼ N(0, a2) and Y ∼ N(0, b2), we have X + Y ∼ N(a, a2 + b2)

Property 2. If g ∼ N(0, σ2)1×n, u ∈ Rn, v ∈ Rn, and 〈u, v〉 = 0, then 〈g, u〉 〈g, v〉 are independent.

1independent and identically distributed

5

These properties can be used to prove claim 11. Recall that:

G =

g1
g2
...
gk

 [u1 u2 · · · u3
]

=

〈g1, u1〉 〈g1, u2〉 · · ·〈g2, u1〉 · · ·
...

Where

(1)gi is the rows of S, and gi ∼ N(0, 1k)1×n because S is a guassian matrix;

(2)ui is the rows of A, and ui, uj ∈ Rn and 〈ui, uj〉 = 0 for i 6= j because A has orthonormal
columns.

Next, we focus on the distribution of 〈g1, u1〉. Note that u1 = (v1, v2, · · · , vn), ||u1|| = 1, then

〈g1, u1〉 =
∑n
i=1 g1i · vi

=
∑n
i=1N(0, 1k) · vi

=
∑n
i=1N(0,

v2i
k) = N(0,

∑n
i=1 v

2
i

k)

= N(0, 1k)

Similarly, all other elements in G also satisfy the same distribution as 〈g1, u1〉. Then we conclude the
proof.

The rest of Step 1 comes with the following claim:

Claim 12. If x is a fixed vector such that ‖x‖ = 1, then ‖Gx‖ = 1± ε.

Proof. Let’s focus on ‖Gx‖2 first, because if we can prove that ‖Gx||2 is around (1± ε), then we can easily
prove that ‖Gx‖ is around (1±ε) as well. This is because ε ∈ (0, 12], thus

√
1 + ε < 1+ε and

√
1− ε > 1−ε.

Note that ‖Gx‖2 =
∑k
i=1(〈gi, x〉)2, and that 〈gi, x〉 ∼ N(0, 1k), then the question we care about becomes the

following:

What is the value of
∑k
i=1[N(0, 1k)]2?

Now we have k random variables and each of them is Gaussian [N(0, 1k)]2, and want to know what happens
to their sum. To be more precise, define the following:

Yi ∼ N(0, 1k),

Zi = Y 2
i ,

Z =
∑
i Zi,

and we want to know Pr(Z ∈ (1− ε, 1 + ε)). Note that:

E[Z] =
∑
i Zi =

∑
i[Y

2
i] = k · 1k = 1.

(E[Y 2
i] just equals to the variance of Yi because V ar[Yi] = E[Y 2

i]− (E[Yi]
2) and E[Yi] = 0.)

So the problem has become a concentration question: Given that Zi is independent, Zi ∼ N(0, 1k)2, Z =∑
i Zi, E[Z] = 1, what is Pr(|Z − E[Z]| > ε)?

Remark. Can we apply Chernoff bound here? Chernoff type bounds are false for N(0, 1k)2 so we need
another type of bound here.

We introduce Bernstein inequality here:

6

Proposition 13. Suppose W =
∑k
i=1Wi, Wi ∼ N(0, 1)2, then ∀t > 0,

Pr(|W − E[W]| > t+
√
kt) 6 e−

t
2 .

Recall that we previously defined Yi ∼ N(0, 1k), Zi = Y 2
i , Z =

∑
i Zi.

Let’s define Xi =
√
k · Yi, and Xi ∼ N(0, 1). Define X =

∑k
i=1X

2
i , and we can easily get E[X] = k and

X = k ·Z. Thus, Pr(|Z −E[Z]| > ε) = Pr(|X −E[X]| > kε). Apply Bernstein inequality to X and we have

Pr(|X − k| > t+
√
kt) 6 e−

t
2 < 2−

t
2

Let t+
√
kt = kε and 2−

t
2 = 1

2100d
. Then t = 200d and 200d+

√
200d · k = kε. If we solve the equation, we

have k = O(dε2).

So far, we have proved that, for a single x ∈ Rds.t.‖x‖ = 1, ‖SAx‖=(1± ε)‖x‖ w.p. 1− 2−100d.

Step 2: Union Bound

We cannot do a union bound over 2100d vectors and get the type of bound we want. The problem is that we
have infinite number of vectors. So it is not clear how to do union bound over infinite number of vectors.
The fix for this issue is to use net arguments.

Let B ⊆ Rd be B = {x | ‖x‖ = 1}, for 0 < γ < 1, a γ -net for B is

N ⊆ B, s.t ∀x ∈ B, ∃y ∈ N ∩ ||x− y|| ≤ γ.

What is a way of picking N?

Algorithm: Picking a γ -net N for B

1. Pick y ∈ B, add y to N , remove {x|x is in the γ ball of y} from B.

2. Recurse until B is empty.

3. Then return N is a y -net

Next, we have to get the size of N . Volume idea is a good way to bound the size of N . Now let’s look at

y1

y2

B

γ
2

γ
2

b1

b2

Figure 2: Example of using volume idea

the ball in figure 2. Suppose we have y1, y2 ∈ N , define bi as the ball of radius γ
2 around yi. Then we have

the following properties:

7

• bi ∩ bj = ∅ and ||yi = yj || > γ

• all bi’s are inside of a ball of radius 1 + γ
2

The total volume of bi’s is less than the total volume of ball of radius 1 + γ
2 . Thus we have

||N || ≤ (1+ γ
2)
d

(γ2)
d

Later on the proof, we are going to pick γ as 1
2 , so for us γ = 1

2 → |N | ≤ 5d.

Claim 14. Fix a net N for B (B = {x|‖x‖ = 1}), define M = {Ax|x ∈ N}, then ∀x ∈ Rd,∃y ∈
M, s.t.‖Ax− y‖ ≤ γ.

Proof. To prove this, we need to use the fact that x is an orthonormal column.

x ∈ Rd → ∃z ∈ N s.t. ‖Ax−Az‖ ≤ γ
γ ≥ ‖x− z‖ = ‖A(x− z)‖ = ‖Ax−Az‖

(4)

We can find a y ∈M s.t y = Az, therefore we have γ ≥ ‖Ax− y‖.

So far, we found this net inside the column space of A. Now we want to apply our dimension reduction
lemma to all of y ∈M and all of their pariwise inner product. So we want to make the following claim.

Claim 15. ∀y1, y2 ∈M , the following must be true:

1. ‖Sy1‖ = 1± ε

2. 〈Sy1, Sy2〉 = 〈y1, y2〉 ±O(ε), w.p. 1− 1
2d

Proof. Because y1 ∈M , ∃x1 s.t. y1 = Ax1, we have

‖Sy1‖ = ‖SAx1‖=(1± ε)‖Ax1‖, w.p. 1− 1
2100d

.

Since A is orthornormal and ‖x1‖= 1, ‖Ax1‖ = 1, the first part is proven.

Now Let’s prove the following proposition:

‖SA(x1 − x2)‖2 = (1± ε)‖A(x1 − x2)‖2, w.p. 1− 1
2100d

We observe that:

‖SA(x1 − x2)‖2= ‖SAx1‖2 + ‖SAx2‖2 - 2〈SAx1, SAx2〉

±O(ε) ±O(ε) ±O(ε)

Because we have |M | = O(5d), so we need a union bound over 5O(d) pairs. We know this is true for y’s ∈M .

Look at y and we have

∃y1 ∈M s.t ‖y − y1‖ ≤ γ.

Suppose ‖y − y1‖ = α, and define y′ = y−y′
α , then ‖y′1‖ = 1, which means that

∃y′2 s.t ‖y′1 − y′2‖ ≤ γ.

Now let’s define y2 = αy′2, then

8

‖y′1 − y′2‖ = ‖y−y1α − y2
α ‖ ≤ α −→ ‖y − y1 − y2‖ ≤ α · γ ≤ γ

2

(Note that α ≤ γ.)

Continue for i steps, we have:

‖y − (y1 + y2 + · · ·+ yi)‖ ≤ γi

Therefore, we show that ‖yi‖ ≤ ri−1.

Finally, let’s extend i to infinity. For i =∞, define y =
∑
i yi, then

‖Sy‖2 = ‖S(
∑
i

yi)
2‖

=
∑
i

‖Syi‖2 +
∑
i 6=j

2〈Syi, Syj〉

=
∑
i

(1± ε)‖yi‖2 +
∑
i 6=j

(2〈yi, yj〉 ±O(ε) · ‖yi‖‖yj‖)

= ‖
∑

yi‖2 ±
∞∑
i=1

∞∑
j=1

O(ε) · ‖yi‖ · ‖yj‖

= 1±O(ε) ·
∞∑
i=1

‖yi‖ ·
(∞∑
j=1

‖yj‖
)

= 1±O(ε)

(5)

To this end, we have proved the correctness of Algorithm for Streaming Linear Regression. We hope figure
3 could help understand the structure of the whole proof.

Figure 3: Structure of Correctness Proof of Algorithm 2

9

	1 Streaming Linear Regression
	2 Proof of Correctness

