
CS 514: Advanced Algorithms II – Sublinear Algorithms Rutgers: Spring 2020

Lecture 3
February 4, 2020

Instructor: Sepehr Assadi Scribe: Zach Langley

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Lower Bounds for Sublinear Time Algorithms

In the previous lecture, we designed a sublinear time algorithm to count the number of components of a
graph up to an additive error. We did not shoot for a multiplicative error because we claimed that even
counting the number of components within a factor of two is hopeless. In this lecture, we will justify this
claim by establishing the following theorem.

Theorem 1. Let G be a graph on n > 3 vertices. Any algorithm (deterministic or randomized) for deciding
whether or not an undirected graph G is connected in the general query model requires at least Ω(n2) queries
to output the correct answer with probability at least 2/3.

It may be surprising that we can make such a statement. Firstly, the claim is that something is impossible.
No matter how clever one is, one cannot find a sublinear time algorithm for solving graph connectivity. Such
results are often called “lower bounds” or “impossibility results” – they lower bound the runtime of any
algorithm for solving a given task. Unlike NP-hardness, this lower bound is unconditional—no assumptions
about the world like P 6= NP need be made.

Another reason the theorem may be surprising is that unconditional lower bounds are often (extremely)
hard to come by. Even SAT—a quintessentially hard problem widely conjectured to require exponential
time—has eluded proof that it requires ω(n) time.1

The critical difference in the sublinear time regime is that a sublinear time algorithm cannot read its entire
input. The fact that a sublinear time algorithm is necessarily oblivious to some of its input gives us a
new avenue for proving lower bounds. For example, if no algorithm can decide graph connectivity unless it
“knows about” (i.e., queries for) at least half of the edges in the graph, then we obtain a corresponding time
lower bound, since every query is a step of the algorithm and takes at least constant time. Note that our
goal is to prove statements purely about the amount of information in the input needed by an algorithm to
compute some function on that input, namely, an information theoretic lower bound—the time lower bound
comes as a corollary.

In order to do this, we are going to study the notion of query complexity (sometimes called decision tree
complexity) with respect to its connection to proving sublinear time lower bounds.

Remark. Query complexity is a well studied and deep area in theoretical computer science and has
various aspects and applications that go way beyond sublinear time algorithms. In this course however,
we consider query complexity from a perspective of an algorithm designer and solely focus on its relation
with sublinear time algorithms.

1That said, we do know time-space tradeoffs known for SAT, although very modest ones. For example, if an algorithm
only uses O(

√
n) space, then ω(n1.3) time is required. More generally, any algorithm that uses S(n) space and T (n) time with

S(n)T (n) = O(n1.801) cannot solve SAT; see [2].

1



2 Deterministic Query Complexity

In the query complexity model, a function f : {0, 1}n → {0, 1} is computed on an input x by making a
sequence of queries to the input x. A query asks for the i-th bit of the input x. For example, if x = 0010,
then querying i = 1 would reveal x1 = 0 and querying i = 3 would reveal x3 = 1. The goal is to compute
f with as few queries as possible. Note that there is no notion of time in this model; algorithms are only
charged for the queries made to the input string and otherwise have unlimited computational power.

Every deterministic algorithm for computing a function in this model corresponds to a decision tree. A
decision tree is a rooted binary tree where each node is labeled by one of the inputs. If the input xi is a 0,
computation proceeds to the left-child, and if the input xi is a 1, computation proceeds to the right-child.
Finally, all leaves of the decision tree are labeled with either 0 or 1, corresponding to the output. See Figure 1
for an example.

x1

x2

x3

1

0

0

0

1

1

1

1

1

0

x1

x2

x3

1

0

0

1

1

0 1

10

x3

10

Figure 1: A decision tree for the function OR3 defined by (x1, x2, x3) 7→ x1 ∨ x2 ∨ x3 (left) and one for the
addressing function defined by f(x1, x2, x3) = (x̄1 ∧ x2) ∨ (x1 ∧ x2), which outputs x2 if x1 = 0 and x3 if
x1 = 1. (right).

Definition 2. The deterministic query complexity D(f) of a function f : {0, 1}n → {0, 1} is the worst-case
number of queries made in the by the best algorithm computing f , namely, the algorithm that minimizes
the number of queries in the worst case.

Equivalently, D(f) is the minimum depth over all decision tree computing f , minus one (we do not want
to count the leaf node). Trivially, we have D(f) ≥ 1 for all non-constant functions f and D(f) ≤ n for all
functions f .

2.1 Promise Problems

We will also consider computing functions not defined on the entire domain {0, 1}n.

For example the function:

Mn(x1, . . . , xn) :=

{
0 if |x| ≤ n/3,
1 if |x| ≥ 2n/3.

is undefined depending on |x| (here |x| denotes the number of ones in x, i.e., the Hamming weight of x).
However, we can still talk about the query complexity of an algorithm for computing Mn, provided that the
algorithm only needs to compute the correct output when |x| 6∈ (n/3, 2n/3) (otherwise, the algorithm may
output an arbitrary value).

2



Promise problems are often used to relax functions that may be hard to compute. For example, if we are
promised that the number of components in a graph is either more than n/10 or less than n/5, then there
is a sublinear time algorithm deciding in which class the input graph lies, as we saw in the previous lecture.
The function Mn above may be seen as a relaxation of the majority function MAJn that outputs 1 if a
majority of the input bits are 1 and 0 otherwise.

Remark. One can also consider query complexity for relations, namely, when some inputs can map to
several valid outputs, or when the range of the function is non-binary, and many other variants.

2.2 Adversary Arguments

Figure 1 shows a decision tree for OR3 of depth three. Can we do better? I.e., is there a deterministic
algorithm that computes ORn with fewer than n queries? Intuitively, the answer seems to be no. Consider
inputs that have exactly one 1 in them. If a deterministic algorithm fails to find the only bit set, it cannot
output the correct value. Let us formalize this intuition.

Proposition 3. The deterministic query complexity of ORn is D(ORn) = n.

It is not hard to prove this theorem from first principles, but let us develop a useful proof technique known
as an adversary argument for this purpose.

Adversary arguments: In an adversary argument, we imagine a two-player game between the Algorithm
and an Adversary based on some Boolean function f . The game is played as follows.

1. The Adversary maintains a bag of strings S, initialized to contain the entire function domain. For a
standard function, S = {0, 1}n. For a promise problem, the initial set would contain the subset of
strings that satisfy the promise.

2. In each round of the game, the Algorithm is allowed to query a new bit, say, the i-th bit, and the
Adversary answers with xi ∈ {yi : ∃y ∈ S}. In words, the Adversary must choose an output that
actually describes an element in S. The set S is updated to remove all elements y such that yi 6= xi.

3. The game ends if f(y) takes the same value for all y ∈ S.

We claim that the length of any such game with respect to f is a lower bound on D(f). Here is an informal
argument. Fix a decision tree for f . The Algorithm in the game simply asks the Adversary queries following
the evaluation of the decision tree, using the Adversary’s responses to navigate down the tree. The bag S
corresponds to all strings that would have lead to the Algorithms current node, and so the game ends if all
leaf nodes under the current node have the same label (because the algorithm can now output the value
of f and needs no further queries). Thus, as long as the game continues, there are at least two leaf nodes
descending from the current node with different labels. The game proceeding to k rounds, therefore, implies
that the depth of the decision tree is at least k.

To apply an adversary argument, we fix some algorithm for the input and design an adversary that prolongs
the game as much as possible so obtain stronger lower bounds.

Proof of Proposition 3. Fix an algorithm (decision tree) for ORn. Consider the adversary that always returns
every query with 0. After any n − 1 queries, there is some index i ∈ [n] not queried yet; suppose without
loss of generality that i = 1. At this point, the Adversary’s bag contains at least two strings evaluating to
different values, namely 0n and 10n−1. Thus, the game proceeds to the n-th round, giving D(ORn) ≥ n.

We can also use an adversary argument to prove a lower bound for the promise function Mn defined in the
previous section.

3



Proposition 4. The function Mn has deterministic query complexity at least 2n/3 + 1.

Proof. Assume for simplicity that n is a multiple of 3. Consider the adversary that outputs n/3 zeros and
then 2n/3 ones. After 2n/3 rounds, the adversary will have revealed n/3 zeros and n/3 ones. Setting the
unqueried indices n/3 indices to 1 produces a string in S evaluating to 1 and setting the remaining n/3
indices to 0 produces a string S evaluating to 0.

Remark. Adversary arguments form one of the key techniques for proving deterministic query com-
plexity lower bounds and we will use them throughout the course whenever we want to prove such
bounds. However, they are by no means the only technique for proving query complexity lower bounds
and various tools and techniques have been developed for this purpose. See, e.g. [1] for a survey of some
of these classical tools.

3 Randomized Query Complexity

We now turn to randomized algorithms. We can think of randomized algorithms in two ways. A common
view is that a randomized algorithm has access to a random stream of bits, and pulls from this stream as it
computes. Alternatively, we may view a randomized algorithm as a distribution over deterministic algorithms
(or, in our case, decision trees). To understand the latter interpretation, note that we can “instantiate” the
random stream of bits before the algorithm beginss, after which point the algorithm becomes deterministic.

For a randomized algorithm ALG, let ALGr be the deterministic algorithm by fixing the randomness over
ALG to be the string r, and let ALGr(x) denote the output of ALGr on input x. For concreteness, you may
think of r as an infinite string living in {0, 1}N. A randomized query algorithm ALG computes a function
f : S → {0, 1} if for all x ∈ S, it holds that

Pr
r

(f(x) = ALGr(x)) ≥ 2/3,

where r ranges over all possible random bit sequences queried by ALG. As usual, the constant 2/3 is
arbitrary; anything bounded away from 1/2 sufficiently (say, by a constant) will be equivalent, ignoring
constant factors.

Definition 5. The randomized query complexity R(f) of a function f is the worst-case number of queries
made by the best randomized ALG computing f (over any input and any random stream).

We should emphasize that the definition above is about the worst-case number of queries—not the expected
number of queries.

Determinism vs Randomization: With respect to query complexity, randomized algorithms are (much)
more powerful than deterministic algorithms. Consider the following randomized algorithm for computing
the promise function Mn introduced earlier with just one query:

1. Pick an i ∈ [n] uniformly at random.
2. Output xi.

We consider two cases to show that the algorithm works. If |x| ≥ 2n/3, then the algorithm samples and
outputs 1 and therefore succeeds with probability 2/3. Otherwise, if |x| ≤ 1/3, then the algorithm samples
and outputs 0 and therefore succeeds with probability 2/3. Thus, while D(Mn) > 2n/3, we have R(Mn) = 1.

As an aside, the alert reader may have noticed the happy coincidence that the definition of Mn uses the same
fraction as the probability of success needed by a randomized algorithm. If the constants were changed in
either definition, we may no longer have R(Mn) = 1, but we would still have R(Mn) = O(1). This follows
from the usual amplification strategy: run C trials and take the median (i.e., majority, when dealing with
binary values) output. The number of trials C depends on only the constants in the two definitions and is
therefore constant with respect to the input length.

4



Lower Bounds for Randomized Algorithms? As already observed in the example above, randomized
algorithms can be much more powerful than deterministic ones which makes proving lower bounds for them a
more challenging task. For instance, the type of adversary arguments appealed to in the previous section rely
heavily on the determinism of the algorithm and no longer apply to randomized algorithms (as is apparent
from the upper bound of R(Mn) = O(1) even though there is a “long” adversary-algorithm game for this
problem). As such, to prove lower bounds for randomized algorithms, we are going to explore new ideas.

3.1 Distributional Complexity

Let µ be a distribution over {0, 1}n. We say that a deterministic algorithm computes f over µ if the
probability that the algorithm errs on x ∼ µ is at most 1/3 (we emphasize that the randomness here is over
the choice of input and the algorithm is deterministic again).

Definition 6. The distributional complexity Dµ(f) of a function f is the worst-case number of queries made
by the best algorithm computing f over µ with probability of success at least 2/3 (over the randomness of
the distribution).

Note that we have switched from talking about distributions over deterministic algorithms (randomized
algorithms) to distributions over inputs. It turns out however that these two measures are intimately
connected to each other. In particular, the celebrated Yao’s minimax principle [3] relates distributional
query complexity to randomized query complexity as follows.

Proposition 7 (Yao’s minimax principle). For any function f : {0, 1}n → {0, 1},

(a) Dµ(f) ≤ R(f) for every distribution µ over {0, 1}n, and
(b) Dµ(f) = R(f) for some such distribution µ.

In other words, (a) says that if we want to lower bound R(f), it suffices to lower bound Dµ(f) for a µ of our
choosing (which brings us back to proving lower bounds for deterministic algorithms albeit on a distribution).
Part (b) says that—provided we are clever enough—we can find a µ such that Dµ(f) gives us R(f) exactly2.
The important piece for us is part (a) as it gives us the means to lower bound R(f).

Since we only need part (a), we only prove part (a) in this lecture.

Proof of Proposition 7-(a). The proof of this result is simply an averaging argument, which we will outline
below in details.

Let ALG be a randomized algorithm for f achieving query complexity R(f). For any choice of random
string r, let ALGr denote the deterministic algorithm obtained from ALG after fixing its randomness to
be r. Define the indicator random variable Z(x, r) for x ∼ µ and random bits r to denote the event that
ALGr(x) = f(x), namely, ALG outputs the correct answer on input x conditioned on its random bits being
r. On one hand, we have,

E
r,x∼µ

Z(x, r) =
∑
x,r

Pr(x) · Pr (r | x) · Z(x, r) (by law of conditional expectations)

=
∑
x,r

Pr(x) · Pr(r) · Z(x, r)

(as r ⊥ x, i.e., r is independent of x (by definition of a randomized algorithm))

=
∑
x

Pr(x) · E
r

[Z(x, r)] ≥
∑
x

Pr(x) · 2

3
=

2

3
,

where the last inequality is because for any fixed x, ALG outputs the correct answer with probability at

2This is only one interpretation of this result and in some scenarios one may want to view this differently.

5



least 2/3 (by definition of a randomized algorithm). On the other hand,

E
r,x∼µ

Z(x, r) =
∑
x,r

Pr(x) · Pr(r) · Z(x, r) (by second equality above)

=
∑
r

Pr(r) · E
x∼µ

Z(x, r) ≤ max
r

E
x∼µ

[Z(x, r)] .

(as maximum can only be larger than expectation)

This means that there is a fixed choice of r, where Ex∼µ [Z(x, r)] ≥ 2/3; in words, this means that there is
a choice of r where the deterministic algorithm ALGr outputs the correct answer with probability 2/3 over
choices of x ∼ µ. But since query complexity of ALGr is at most of that of ALG (as we consider worst-case
query complexity), we obtain that Dµ(f) ≤ R(f).

Remark. Part (a) of Proposition 7 is often called the easy direction of Yao’s minimax principle or
simply an averaging argument.

Important note: When working with distributional query complexity and in particular in the context of Yao’s
minimax principle, remember that the deterministic algorithm ALG is chosen after fixing the distribution
of inputs µ, i.e., ALG is a function of the distribution.

We now use the easy direction of Yao’s minimax principle to prove a randomized query complexity for OR.

Proposition 8. The randomized query complexity of ORn is R(ORn) ≥ n/3.

Proof. We only need to establish the lower bound Dµ(ORn) ≥ n/3 for some distribution µ of our own
choosing. By Yao’s minimax principle, it will follow that R(ORn) ≥ n/3 as well.

We propose the following distribution of inputs x ∈ {0, 1}n:

(i) Sample i ∈ [n] and θ ∈ {0, 1} uniformly at random and independently.

(ii) Set xi = θ and xj = 0 for j 6= i.

Fix any deterministic algorithm ALG computing ORn on distribution µ with probability at least 2/3. We
use q to denote the number of queries made by ALG. Let K = {i1, . . . , iq} be the set of queries asked by
ALG assuming the answer to every one of these queries were 0 (figuratively, these are queries in the “left
most branch” of the decision tree). Since ALG is deterministic, this set is always fixed (and well-defined).
Additionally, for any x, let Q(x) denote the set of indices queried by the algorithm when run on the input
x. Since ALG is deterministic, it follows that for any x ∼ µ, whenever i /∈ K, we have Q(x) = K. Moreover,

Pr (i ∈ K) =
|K|
n

=
q

n
.

At the same time, conditioned on i /∈ K, xi = θ is not queried and according to the distribution, xi is still
chosen from {0, 1} uniformly at random. But the answer of the algorithm is now a deterministic function of
Q(x) = K and hence is either fixed to 0 or 1. Hence,

Pr (ALG outputs correct answer | i /∈ K) =
1

2
.

Define E(x) as the event that ALG succeeds on computing x. By combining the above, we have,

2

3
≤ Pr
x∼µ

(E(x)) = Pr (i ∈ K) · Pr (E(x) | i ∈ K) + Pr (i /∈ K) Pr (E(x) | i /∈ K)

≤ q

n
+
(

1− q

n

)
· 1

2
, (as Pr (E(x) | i ∈ K) ≤ 1)

6



which implies (by a simple calculation) q ≥ n/3. Consequently, Dµ(ORn) ≥ n/3 as well and in turn
R(ORn) ≥ n/3, proving the lower bound.

Important note: Note that in Proposition 8, we proved the stronger statement that even if we are promised
that in the input string to ORn, there is at most one 1, a randomized algorithm still needs to make n/3
queries before solving ORn.

Remark. One can show with a more clever distribution and analysis that R(ORn) ≥ n/2. Similarly, a
clever randomized algorithm shows R(ORn) ≤ n/2. Thus, R(ORn) = n/2. However, for our purposes,
these details are not important, and so we leave them to the interested reader.

4 Back to Graph Connectivity: Proof of Theorem 1

We have now developed sufficient theory to prove the graph connectivity lower bound we mentioned in
Theorem 1 at the beginning of these notes. The main idea now is show that any algorithm for graph
connectivity in the general query model taking q queries implies an algorithm for computing OR in some
f(q) queries. Since we know a query lower bound for computing OR, we inherit a query lower bound for
computing graph connectivity via a reduction. In other words, we will describe a reduction from OR to
graph connectivity.

Proof of Theorem 1. Let N =
(
n
2

)
. We will reduce from ORN when promised that there is at most one input

bit set to one. The reduction consists of two parts. First, we must define a mapping from an x ∈ {0, 1}N
to a graph Gx such that ORn(x) = 1 if and only if Gx is connected. Second, we must show that we can
simulate all graph queries in the general query model by making at most one query to the pre-image.

We define the mapping from an x ∈ {0, 1}N to a graph Gx on 2n vertices as follows. Let V (Gx) = U ∪ V ,
where U = {u1, . . . , un} and V = {v1, . . . , vn}, and U ∩ V = ∅. For notational simplicity, we assume that x
is indexed by pairs i, j from [n] where i < j. If xij = 1, then Gx contains the “cross edges” uivj and ujvi. If
xij = 0, then Gx contains the “internal edges” uiuj and ujvj . No other edges are added to Gx. See Figure 2
for an example.

u1

u2

u3

u4

v1

v2

v3

v4

Figure 2: The graph Gx corresponding to the string x = 010000. The bits are indexed by the vertex pairs
(12, 13, 14, 23, 24, 34).

If x = 0n, clearly the graph Gx is disconnected, as there are no edges between U and V . Otherwise, U is
a clique minus an edge, V is a clique minus an edge, and there is an edge between U and V , and so Gx is
connected provided that n ≥ 3.

Now we must show that we can simulate the general query model on Gx with queries to x. There are three
types of queries:

1. Degree queries. For degree queries, we can simply return n − 1. Indeed, every vertex ui is connected
to exactly one vertex in {uj , vj} for each j 6= i, and these comprise all of its neighbors.

7



2. Neighbor queries. We can assume we are given a vertex ui. If we are returning the k-th neighbor, we
set j ← k if k < i and j ← k + 1 otherwise. Then xij tells whether to return vj or uj .

3. Pair queries. If uivi is queried, we return 0. Otherwise, we are emulating a query uivj for some i < j
and we return xij .

The reduction implies that any algorithm deciding the connectivity of a graph on 2n vertices with fewer
than N/3 queries would also decide ORN (on inputs with at most one 1) with fewer than N/3 queries, a
contradiction with our result in Proposition 8. Thus, deciding connectivity in a graph on 2n vertices requires
N/3 =

(
n
2

)
/3 = Ω(n2) queries.

A Remark on Sublinear Time Reductions: The principle behind the reduction in Theorem 1 is the
same as any other reduction (say, NP-hardness reductions) you have encountered before. Given a problem
A which we already know is “hard”, we prove that another problem B is also hard by showing that any
algorithm for B, in a black-box way, will solve any input of problem A as well. This is done by “transforming”
the input x of problem A into an input y for problem B and then run the algorithm for B to compute B(y)
and use the answer to decide A(x) as well.

So what is different here? In the classical setting, the reduction has enough time to read the input x entirely
and then transform it into an input y for B; for a sublinear time algorithm, this is impossible. As such, we
should construct the input y of B “on the fly” or in a “need-to-know basis”: this means that whenever the
algorithm for B needs to know a specific part of y, we would generate that part just then and answer the
algorithm for B accordingly. More formally, we answer the queries to input y by querying input x instead
and then transforming the answer. This is the reason in the proof of Theorem 1, we also needed to provide a
way of answering queries of to y based on queries to x. This ensures that if the runtime or query complexity
of the algorithm for B is “small”, then through the reduction we do not query x by much either and thus
get an algorithm with small query complexity for solving A on x, which would contradicts the lower bound
we know for A.

References

[1] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: a survey.
Theor. Comput. Sci., 288(1):21–43, 2002. 4

[2] R. Ryan Williams. Time-space tradeoffs for counting NP solutions modulo integers. Comput. Complexity,
17(2):179–219, 2008. 1

[3] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity (extended
abstract). In 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island,
USA, 31 October - 1 November 1977, pages 222–227, 1977. 5

8


	1 Lower Bounds for Sublinear Time Algorithms
	2 Deterministic Query Complexity
	2.1 Promise Problems
	2.2 Adversary Arguments

	3 Randomized Query Complexity
	3.1 Distributional Complexity

	4 Back to Graph Connectivity: Proof of Theorem 1

