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CS 514: Advanced Algorithms II – Sublinear Algorithms Rutgers: Fall 2021

Problem set 3
Due: 11:59PM, December 12, 2021

Problem 1. In the set disjointness communication problem, Alice and Bob are given subsets A,B ⊆ [N ],
respectively. The goal is to determine whether or not A ∩B = ∅.

(i) Prove that the deterministic communication complexity of this problem is D(set-disjointness) = Ω(N).

(10 points)

Remark. One can in fact prove that even randomized communication complexity of this problem is
R(set-disjointness) = Ω(N); this requires a much more involved proof and we do not cover it.

(ii) Use this in a reduction to prove that any constant pass deterministic streaming algorithm for undirected
connectivity requires Ω(n) bits of space. (10 points)

Problem 2. In Lecture 10, we designed a streaming algorithm for the k-center clustering problem when
points p1, . . . , pn ∈ {1, . . . ,∆}d are arriving one by one in the stream. For any ε ∈ (0, 1), the algorithm
achieves a (2 + ε)-approximation by storing O(k · logD

ε ) points where D =
√
d ·∆ is the maximum possible

value for the optimum solution. Our goal in this problem is to improve the space complexity of this algorithm
at a cost of increasing its approximation ratio by a constant factor.

Design a streaming algorithm for the k-center clustering problem that achieves an O(1)-approximation by
storing only O(k) points throughout the stream. (20 points)

Bonus part: Can you reduce the approximation ratio to (2 + ε)-approximation again by storing only
O(k/ε · log (1/ε)) points instead? (+25 points)

Hint: The original approach in the lecture was based on two steps: (i) Designing an O(k)-space intermediate
streaming algorithm that given a parameter τ ∈ [1, D], either outputs a clustering C with cost at most 2 · τ ,
or outputs that the optimal solution has cost more than τ ; (ii) then we did a simple geometric search by
running the algorithm above for O( logD

ε ) choices of τ ∈
{

1, (1 + ε), (1 + ε)2, . . . , D
}

in parallel.

Modify the second step by performing the geometric search sequentially by updating the current guess for τ
on the fly whenever it is smaller than the optimum value.

Problem 3. Design a single-pass semi-streaming algorithm for finding a minimum spanning tree (MST) of
the input weighted undirected graph G = (V,E) where the weight of each edge is revealed at the same time
with the edge in the stream.

You may assume that G is connected and all edge-weights are distinct. (20 points)

Problem 4. In Lecture 11, we mentioned the following result:

• Palette Sparsification Theorem: Let G = (V,E) be an n-vertex graph with maximum degree ∆.
Suppose for every vertex v ∈ V , we independently and uniformly at random sample O(log n) colors
L(v) from {1, . . . ,∆ + 1}. Then, with high probability, there is a proper coloring of G in which the
color of every vertex v is chosen from L(v).

Based on this theorem, we showed how to design a semi-streaming algorithm for (∆ + 1) coloring. Let us
now consider sublinear time algorithms from the first half of the course.
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Use the palette sparsification theorem to give an Õ(n3/2) query algorithm for (∆ + 1) coloring problem in
the general query model (defined in Lecture 2). Note that for this problem, we only focus on the query
complexity of the algorithms and not their time complexity. (20 points)

Hint: Give an Õ(n3/2) query and time algorithm for finding the conflict graph defined in the context of the
Palette Sparsification Theorem; then apply this theorem to finalize the proof.

Problem 5. Recall that a graph G = (V,E) is said to have arboricity α(G) = α if

α = max
S⊆V, |S|>1

⌈
|E(S)|
|S| − 1

⌉
,

where E(S) denotes the set of edges with both endpoints in S. In Problem set 1, we considered designing a
query algorithm for estimating arboricity of a given graph.

In this problem, the goal is to extend this result to the dynamic streaming model. Design a semi-streaming
algorithm (using graph sketching ideas) that given a graph G = (V,E) specified in a dynamic stream and a
parameter ε ∈ (0, 1), outputs an estimate α̃ such that:

Pr (|α̃− α(G)| > ε · α(G)) < 1/10.

(20 points)
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