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CS 514: Advanced Algorithms II – Sublinear Algorithms Rutgers: Fall 2021

Problem set 1
Due: 11:59PM, October 12, 2021

Problem 1. Let us revisit the balls and bins experiment: We are throwing n balls into n bins by choosing a
bin uniformly at random and independently for each bin. In Lecture 1, we considered bounding the maximum
number of balls in any bin. We now consider a different question in the same setting: bounding the number
of empty bins.

(a) Prove that the expected number of bins with no ball in them is at least n/3. (10 points)

(b) Prove that the expected number of bins with no ball in them is at least n/10 with high probability
(say, with probability at least 1− 1/n). (10 points)

Hint: You may be tempted to directly apply Chernoff bound on the random variable of part (a). This
will not work as that random variable is not sum of independent random variables. Feel free to do
a literature search for finding a concentration result that applies here or prove this using an indirect
application of Chernoff bound.

Problem 2. We are going to design a sublinear time algorithm for estimating the number of triangles,
namely, cliques on 3 vertices, in a given undirected graph. We will work with the general query model plus
an additional random edge sample query:

• Degree queries: Given a vertex v ∈ V , output deg(v).

• Neighbor queries: Given a vertex v ∈ V and i ∈ [n], output the i-th neighbor of v or ⊥ if i > deg(v).

• Pair queries: Given two vertices u, v ∈ V , output whether (u, v) is an edge in G or not.

• Edge-sample queries: Return an edge e ∈ E uniformly at random and independently.

In the following, let n,m, and T denote the number of vertices, edges, and triangles in G, respectively.
Consider the following random variable X:

(i) Sample an edge e from G uniformly at random (using an edge-sample query); let u, v be the endpoints
of e such that ID(u) < ID(v).

(ii) Sample a vertex w from N(v) uniformly at random (using a neighbor-query); return X = 0 if
ID(v) > ID(w), otherwise go to the next line.

(iii) Check whether (u,w) is an edge in G (using a pair query); if so, let X = m · deg(v) (using a degree
query), otherwise let X = 0.

We will use this random variable X to design an algorithm for triangle counting.

(a) Prove that E [X] = T . (10 points)

(b) Prove that Var [X] ≤ m · n · T . (10 points)
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(c) Let k = 10·mn
ε2·T . Consider an algorithm that computes random variable X independently for k times,

denoted by X1, . . . , Xk, and return Y = 1
k ·
∑k

i=1Xi. Prove that, (10 points)

Pr (|Y − T | ≥ ε · T ) ≤ 1

10
.

The above now implies an algorithm with runtime O( mn
ε2·T ) for estimating the number of triangles to

within a (1± ε) multiplicative factor.

(d) Bonus part: There is a caveat with the algorithm above; one needs to know T to know how many
times to repeat the random variable X but T is exactly the quantity we want to estimate!

Show that one can increase the runtime of the algorithm above by an O(log n) factor and removes the
assumption of knowledge of T .

Hint: Assume that T is the maximum value possible, say n3, and run the above algorithm to get an
estimate; if the answer was “very” different with the assumption, repeat the process but this time make
the guess equal to n3/2 and then n3/4 and so on. (+10 points)

General remark: The algorithm in this question does not achieve the optimal bounds for the triangle counting

problem, which is known to be O(m3/2

ε2·T ) (the two bounds match only when m = Θ(n2) and otherwise the
second bound is always better). However, one can use the ideas from the average degree estimation problem
to improve the runtime of the above algorithm to match the optimal bounds (up to logarithmic factors).

Problem 3. The arboricity of an undirected graph G = (V,E) is a measure of “uniform sparsity” of G.
There are multiple equivalent definitions of arboricity1. Here, we mention one key definition for our purpose:

• A graph G is said to have arboricity α(G) = α if

α = max
S⊆V, |S|>1

⌈
|E(S)|
|S| − 1

⌉
,

where E(S) denotes the set of edges with both endpoints in S.2

In this problem, we design a sublinear query algorithm for this problem in the same query model as that of
Problem 2. Namely, we obtain an algorithm that given G = (V,E) via the general query model plus random
edge samples (as specified in Problem 2), and a parameter ε ∈ (0, 1), outputs an estimate α̃ such that

Pr (|α̃− α(G)| > ε · α(G)) < 1/10.

(a) Suppose we are told that G has n vertices and m edges. Sample each edge of G independently with
probability

p :=
100

ε2
· log n · n

m
,

to get a subgraph H of G. Prove that

Pr
(
|p−1 · α(H)− α(G)| > ε · α(G)

)
< 1/10,

where the probability is over the choice of H. (15 points)

(b) Use the above result to obtain an algorithm with O(ε−2 ·n log n) queries to the graph for approximating
the arboricity problem. (You do not need to bound the runtime of the algorithm) (15 points)

1These equivalences require proof which are not provided here.
2This definition perhaps gives an intuition why arboricity is a measure of uniform sparsity as opposed to just sparsity. Think

of a graph on n vertices that consists of a clique on
√
n vertices and no edges on the other vertices. This graph has O(n)

edges and thus is generally considered sparse. However, it is clear that arboricity of G is Θ(
√
n), which is large, as we expected

(because the graph we have should not be considered uniformly sparse or “everywhere sparse”).
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Problem 4. Prove that any deterministic algorithm for estimating the number of connected components
to within an ε ·n additive factor in the adjacency list model requires Ω(n) time for some constant ε ∈ (0, 1).

(20 points)

Bonus part: Prove that any deterministic algorithm for the above problem requires Ω(n/ε2) time when
parameter ε ∈ (0, 1) can be sub-constant (or rule this out by showing that there is a better deterministic
algorithm for every ε > 0). (+20 points)

Problem 5 (Bonus Problem). Recall that ORn : {0, 1}n → {0, 1} denotes the OR function on n variables
and R(ORn) is the randomized query complexity of ORn function as defined in Lecture 3.

Prove that R(ORn) = n/2. (+20 points)

Hint: For the upper bound, notice that the algorithm in Lecture 3 that shows R(ORn) ≤ 2n/3 does not
make any error when the correct answer is 0 (so informally speaking, it “wastes its error budget”). Change
this by simply outputting 1 a certain constant3 fraction of time randomly and otherwise run the previous
algorithm.

For the lower bound, again notice that the distribution we worked with results in ORn(x) being uniformly
at random over {0, 1} when x is chosen from the distribution. See if biasing the input distribution toward
one side allows for proving the stronger lower bound.

3You need to compute this constant explicitly.
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