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1 Streaming Algorithms

We now move from sublinear time algorithms to the related area of streaming algorithms. These algorithms
are another family of sublinear algorithms but instead of time as in sublinear time algorithms, they focus
on space of algorithms. A streaming algorithm processes its inputs in small chunks, one at a time, and thus
does not need to store the entire input in one place. For motivation, consider a router in a network: the
router needs to process a massive number of packets using a limited memory much smaller than what allows
for storing all the packets it sees during its process.

In the following, we give a (semi) formal definition of the model and a simple example of a streaming
algorithm. We then switch to considering one of the first problems considered in the streaming model, the
distinct element problem, and design a streaming algorithm for that.

1.1 The Streaming Model of Computation

We now define the model formally. The input consists of n elements e1, e2, . . . , en, where each ei belongs to
some universe U , that are received one at a time by the algorithm, sequentially. Every time a new element
is received, the previous one is erased, so the algorithm only has access to the most recent element. The
algorithm has a local memory available, separate from the input, which is (ideally) much smaller than the
input (and so we cannot store the input entirely by the end of the stream).
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The goal in this model is to design algorithms that use only a small amount of memory compared to the
input size, typically (but not always) of size poly(log n, log |U|) bits.

1.2 Warm-Up: Uniform Sampling in a Stream

Let us start with the following simple problem.

Problem 1. Given a stream of elements from the universe [m], sample an element ei uniformly at random.

If we know the length n of the input in advance, this is trivial – simply sample a number i ∈ [n], keep a
counter of the number of elements seen so far, and store the i-th element. This algorithm uses O(log n+logm)
bits of space: O(log n) for the index i and the counter, and O(logm) for the element. But what if we do not
know the length n of the stream? The following Reservoir Sampling algorithm solves this problem.

Reservoir Sampling.

1. Let s be the selected element. Initially s← e1.

2. When ei arrives, set s← ei with probability 1
i .

3. When the stream ends, return s.

The space complexity of this algorithm is also O(log n+ logm) bits: O(log n) for storing the counter i, and
O(logm) space for storing the chosen number s.

Lemma 1. In the reservoir sampling algorithm, Pr(s = ei) = 1/n for every ei in the stream.

Proof. We have

Pr (s = ei) = Pr (s← ei and no other element is chosen as s)

= Pr (s← ei) · Pr (no other element is chosen as s) (because every step is independent)

=
1

i
· Pr (no other element is chosen) (because we select ei as s with probability 1/i)

=
1

i
·

n∏
j=i+1

(1− Pr (s← ej)) (again, because every step is independent)

=
1

i
·

n∏
j=i+1

(
1− 1

j

)
(again, because we select ej as with probability 1/j)

=
1

i
·

n∏
j=i+1

j − 1

j
=

1

i
· i

i+ 1
· i+ 1

i+ 2
· · · n− 1

n
=

1

n
,

concluding the proof.

We leave it as an easy exercise to the reader to show how one can modify this algorithm to sample k numbers
from the stream (both with or without repetition) in O(k · (log n+ logm)) space.

An interesting question? The O(logm) space in the algorithm is clearly necessary just to output the
answer. But what about the log n term? Can one prove that if we are required to output a number truly
uniformly at random1 from n numbers we also need the extra O(log n) factor in the space?

1As opposed to sample each element with probability, say,
1±o(1)

n
.
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1.3 Distinct Element Counting

We now consider one of the first (and highly influential) problems considered in the streaming model, namely,
the distinct element (counting) problem.

Problem 2. Given a stream of n elements from the universe [m], output the number of distinct elements
in the stream, denoted by DE.

For example, if m = 5, and the stream is 1, 2, 2, 1, 5, 4, 2, 2, 1, then the answer is DE = 4.

There are two naive solutions to this problem:

• Store the entire universe: Use a bitmap with m bits. Every time we see a new element, mark it. This
requires O(m) bits.

• Store the entire stream: Store a set of all the elements we receive. This requires O(n logm) bits.

These type of straightforward solutions are applicable to most streaming problems.

What about an algorithm using poly(log n, logm) bits? In the next lecture we will show that this is not
possible without randomization and approximation, by proving the following lower bounds:

• Every deterministic algorithm requires Ω(m) bits, even if it is a, say, 1.1-approximation.

• Every exact randomized algorithm requires Ω(n) bits.

Therefore, to find a sublinear space streaming algorithm we need to allow for both approximation and

randomization. In particular, we require our algorithm to output a number D̃E such that

Pr
(
|DE− D̃E| ≤ ε · DE

)
≥ 1− δ.

In the next two sections of this lecture, we will give two algorithms that solve this problem using

poly(log n, logm, 1/ε, log(1/δ))

bits of space, which is much more efficient than the naive approaches above.

2 A Geometric Search Algorithm

Our first algorithm will use a standard and highly useful trick. The idea is to introduce a variable T , that
takes values in [m], and for each T decide whether DE is approximately smaller or larger than T . More
specifically,

Problem 3. Design a randomized streaming algorithm A, that given a threshold T , and a stream of n
numbers from [m]:

• if DE ≤ T , A answers No with probability ≥ 1− δ;

• if DE > 2T , A answers Yes with probability ≥ 1− δ.

We will refer to A as an algorithm to (threshold) test DE. Assuming A answers correctly most of the time,
the sequence of outputs over an increasing sequence of thresholds will be roughly bitonic, and the stationary
point will be approximately DE. Since A is not committed to a specific output when DE ∈ (T, 2T ], its answer
when the threshold is near DE can go either way. See Figure 1.

3



Figure 1: A’s answer for geometrically increasing thresholds. The output is approximately bitonic.

Before we solve this threshold version of the problem, we show how to use such an algorithm to construct
an approximation algorithm for the original problem.

2.1 From Threshold Testing to Solving the Original Problem

Consider the following generic algorithm for going from threshold testing of distinct element problem to the
original approximation version.

Algorithm:

1. For each i ∈ {0, . . . , logm}, let Ti := 2i.

2. Let A be a randomized streaming algorithm for testing DE.

3. Run A for each of the Ti’s (in parallel) with confidence parameter δ′ = δ/(2 logm).

4. Starting from i = 0 to logm, let D̃E be the first Ti that A answered No on Ti. Return D̃E.

The space complexity of this algorithm is O(logm) times the space complexity of A (for confidence parameter
δ′ = O(δ/ logm)). So if we design a small-space algorithm A for the threshold version of the problem, we
will also obtain a small-space algorithm for the original problem to within poly log(m) factors.

Lemma 2. The algorithm outputs a 2-approximation of DE with probability at least 1− δ.

Proof. Let i be the integer such that Ti ≤ DE < Ti+1. We argue that the algorithm will output one of
{Ti, Ti+1} with probability 1− δ which will be a 2-approximation by definition.

Consider the events:

• E1: when D̃E ≤ Ti−1; and,

• E2: when D̃E ≥ Ti+2.

Then, Pr
(
D̃E /∈ {Ti, Ti+1}

)
= Pr (E1 ∪ E2) = Pr (E1) + Pr (E2). On the one hand,

Pr (E1) = Pr (A answers No for some Tj , with j ≤ i− 1)

≤
i−1∑
j=0

Pr (A answers No for Tj) (by union bound)

≤
i−1∑
j=0

δ

2 logm
(because DE > 2 · Tj and the probability that A errs is at most δ/(2 logm))

≤ logm · δ

2 logm
=
δ

2
.
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On the other hand,

Pr (E2) = Pr (A answers Yes for all Tj with j ≤ i+ 1)

≤ Pr (A answers Yes for Ti+1)

≤ δ

2 logm
. (because DE < Ti+1 and the probability that A errs is δ/(2 logm))

Thus
Pr
(
D̃E /∈ {Ti, Ti+1}

)
≤ δ/2 + δ/2 logm ≤ δ,

as desired. This concludes the proof.

Remark. The approximation factor 2 in this algorithm can be improved to 1 + ε for any ε > 0,
by reducing the geometric ratio of the thresholds to 1 + ε, and solving the threshold version of the
problem for distinguishing between T and (1 + ε) ·T . We omit the details as we are going to see a more
space-efficient algorithm for this task anyway.

Remark. Notice that our algorithm in this section (and in particular Lemma 2) did not use any details
of A (i.e., treated it as a black-box) or for that matter even any particular knowledge the problem at
hand, namely, estimating DE. As such, this trick of combining a threshold-testing version of a problem
with geometric searching can be applied to other problems as well and forms a standard technique in
streaming algorithms (as well as many other algorithms).

2.2 An Algorithm for Threshold Testing DE

The following algorithm solves the threshold testing problem, for a given threshold T . We may assume that
T ≥ 100, since for any T = O(1) we can simply use the deterministic O(T logm)-space naive algorithm that
stores all the distinct elements it sees and answers Yes as soon as it sees T + 1 of them.

Algorithm: A preliminary version of the threshold testing algorithm A.

1. Pick a truly random hash function h : [m] → [T ] (i.e., each element in [m] is hashed independently
to some number in [T ] chosen uniformly at random).

2. For each element in the stream, check h(ei). If h(ei) = 1, return Yes.

3. If the stream ends, return No.

We will consider the space complexity of this algorithm later in the section. For now, we should only note
that as it is, this algorithm requires prohibitively large space to store the hash function h and hence is not
space-efficient. Regardless, it forms the main building block for our final algorithm and thus we focus on
proving its correctness in the following.

The intuition behind the algorithm is as follows: for each distinct number in the stream, h(·) has a chance
of hitting 1 with probability 1/T . As such, if DE > 2T , then it is very likely that one of the values will be
hashed to 1, but if DE ≤ T that probability is lower.

Although we need A to answer correctly with confidence 1 − δ, this algorithm, as is, does not quite get us
that far. We will first prove that A answers correctly with constant nonzero probability, and then show how
to boost that probability to 1− δ.
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Lemma 3. The following two are true for A:

• if DE ≤ T , then A answers No with probability ≥ 1/e1.01;

• if DE > 2T , then A answers No with probability ≤ 1/e2.

Proof. Let i1, . . . , iDE ∈ [n] be the indices of the distinct elements of the stream. If DE > 2T , then

Pr (A answers No) = Pr
h

(h(eij ) 6= 1 for all j ∈ [DE])

=

DE∏
j=1

Pr
h

(h(eij ) 6= 1) (because h is truly random and thus independent for each eij )

=

DE∏
j=1

(
1− 1

T

)

=

(
1− 1

T

)DE

≤ exp (−DE/T ) (by the inequality 1− x ≤ e−x for all x)

<
1

e2
. (as DE > 2T )

Now suppose DE ≤ T . Just as in the previous case, we have

Pr (A answers No) =

(
1− 1

T

)DE

.

In this case, this is the probability that A gives the right answer, so we want a lower bound. We use the
following upper bound for the exponential function to simplify the above bound.

Proposition 4. Let c > 1 be any real number. Then e−cx ≤ 1− x for all x ∈
[
0,min

{
1
c , 2 ·

c−1
c2

}]
.

Proof. The inequality is trivial for x = 0. Let x > 0. Consider the Taylor series for e−cx:

e−cx = 1− cx+
(cx)2

2!
− (cx)3

3!
+ . . .

This is an alternating series in which the terms are monotonically decreasing in absolute value, since

(cx)i

i!
≥ (cx)i+1

(i+ 1)!
⇐⇒ (i+ 1)!

i!
≥ (cx)i+1

(cx)i
(as x, c > 0)

⇐⇒ i+ 1 ≥ cx⇐⇒ i+ 1

c
≥ x, (as c > 0)

and the last inequality holds because x ≤ 1/c. Thus, we can bound the series by any partial sum up to any
positive term. In particular,

e−cx ≤ 1− cx+
(cx)2

2
.

An easy calculation shows that 1− cx+ (cx)2

2 ≤ 1− x if and only if x ≤ 2 · c−1c2 .

By setting c = 1.01 in Proposition 4, we have 1 − x ≥ e−1.01 x for all x ∈ [0, 0.01]. Since T ≥ 100, then
1/T ≤ 0.01, and thus the inequality implies that 1− 1/T ≥ exp(−1.01/T ). Therefore,

Pr (A answers No) ≥ exp (−1.01DE/T ) ≥ 1/e1.01, (since DE ≤ T )

concluding the proof.

6



Lemma 3 implies that we “expect” to see No more often when DE ≤ T compared to when DE > 2T . However,
these probabilities are still far from our desired bounds of δ on the error (or even, say, (1/3)-error).

We are already familiar with the concept of amplifying probability of success from previous lectures. For
instance, we have previously used independent repetition of one-sided error algorithms, and majority/median
voting on algorithms with error probability “around” half. In the case of Lemma 3 however, A is a two-sided
error algorithm with error probabilities that are in both cases “far from” half. Nevertheless, the previous
approaches can be adjusted for this purpose as well.

One way to amplify the confidence of algorithm in deciding whether T ≤ DE or T > 2DE, is to exploit the
additive constant gap between the probability that A answers No in each case. Paraphrasing Lemma 3, if
DE ≤ T , then at least 1/e1.01 of the time A will output No, and if DE > 2T , then at most 1/e2 < 1/e1.01−0.22
of the time A will output No. Thus, after running A sufficiently many times, we can tell which case we are
in. We do so using the following algorithm.

Algorithm: A final version of A with the amplified probability of success.

1. Let λ := 1
2 ·
(

1
e2 + 1

e1.01

)
. Let λ1 := λ− 1/e2 and λ2 := 1/e1.01 − λ.

2. Run A for k := ln( 2
δ ) · 12 ·max

{
1
λ2
1
, 1
λ2
2

}
independent times, in parallel.

3. Let Ni be the indicator variable that is 1 if and only if A answers No in the i-th execution. Let
N :=

∑k
i=1Ni.

4. If N ≥ λ · k, answer No; otherwise, answer Yes.

Lemma 5. Amplified A returns the right answer with probability at least 1− δ.

Proof. First suppose DE ≤ T , so the right answer in this case is No. The confidence guarantee of A when
DE ≤ T implies E [Ni] = Pr (A answers No) ≥ 1/e1.01, and thus E [N ] ≥ k/e1.01. We have

Pr (answer Yes) = Pr (N < λk)

= Pr

(
N < k

(
1

e1.01
− λ2

))
≤ Pr (N < E [N ]− kλ2) (because E [N ] ≥ k/e1.01)

≤ Pr (|N − E [N ] | ≥ kλ2)

≤ 2 · exp

(
−2λ22 k

2

k

)
(by the additive Chernoff bound)

≤ δ. (because k ≥ ln( 2
δ ) · 1

2λ2
2
)

The case DE > 2T is symmetric.

As such, we can indeed amplify the success probability of original A to within 1 − δ using O(ln (1/δ))
independent repetitions in parallel. Note that in terms of a streaming algorithm, this only increases the
space by a factor of O(ln (1/δ)) compared to the original algorithm. We also emphasize that all these copies
are being run in parallel.

Space complexity of A? The algorithm we designed in this section is still not a space-efficient streaming
algorithm – while the entire space of the algorithm throughout the stream is O(logm) to store ei and compute
h(ei), storing the random bits in h itself requires O(m log T ) bits (which makes the space of the algorithm
more than the naive O(m) space!).
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Sometimes, the only bottleneck in space of our algorithms is to store random bits. Previously, we mentioned
that this is often not problematic and can be remedied through use of some “pseudo-random numbers”
instead of truly random numbers. In the next section, we will examine one such option (used extensively in
streaming algorithms) in details.

2.3 Trading Independence for Space: Limited-Independence Hash Functions

Generating and storing a random function h : [m]→ [T ] requires O(m log T ) bits, which is often too costly.
Although the analysis of A relies on the full independence provided by the random hash function, we can
make it work even when there is only “limited independence” in this hash function. Let us define this
formally as follows.

Definition 6. A family H = {h : [a]→ [b]} is called a k-wise independent family of hash functions if for
all pairwise distinct x1, . . . , xk ∈ [a] and all y1, . . . , yk ∈ [b],

Pr
h∼H

(h(x1) = y1 ∧ · · · ∧ h(xk) = yk) =
1

bk
.

Observe that a k-wise independent family may also be (k+ 1)-wise independent, i.e., the definition does not
necessarily break for k + 1 hash values (although for “interesting” families this is almost always the case).
For instance, a truly random hash function is k-wise independent for all k.

Proposition 7. Let H = {h : [a] → [b]} be a k-wise independent, and h ∼ H chosen at random. Let
x1, . . . , xk ∈ [a] be arbitrary pairwise distinct elements. Then:

1. for every i ∈ [k], h(xi) is uniform over [b];

2. h(x1), . . . , h(xk) are mutually independent.

Proof. We prove each part separately.

1. We only prove this for i = 1; the rest is symmetric. Let y1 ∈ [b]. Observe that

Pr
h∼H

(h(x1) = y1) =
∑

y2,...,yk∈[b]

Pr
h∼H

(h(x1) = y1 ∧ h(x2) = y2 ∧ · · · ∧ h(xk) = yk)

(partitioning the sample space)

=
∑

y2,...,yk∈[b]

1

bk
=
bk−1

bk
=

1

b
. (by definition of k-wise independent family)

2. Let y1, . . . , yk ∈ [b]. Since all h(xi) are uniform over [b], it follows that

Pr
h∼H

(h(x1) = y1 ∧ · · · ∧ h(xk) = yk) =
1

bk
=

k∏
i=1

Pr
h∼H

(h(xi) = yi).

This concludes the proof.

Example. Let k ≥ 2 be an integer and p > k be a prime number. Here is an example of a k-wise
independent family of hash functions mapping [p]→ [p]
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k-wise Independent Family of Hash Functions:

1. H is the set of degree-(k− 1) polynomial functions over Fp (field of integers mod prime p). That is,

H = {h : [p]→ [p] | h(x) = ck−1x
k−1 + ck−2x

k−2 + · · ·+ c1x+ c0, with c0, . . . , ck−1 ∈ Fp}.

2. Sampling h ∼ H: Sample c0, . . . , ck−1 ∈ Fp. Then h is the polynomial defined by this coefficients.

To see why this is a k-wise independent hash function, note that any degree-(k−1) polynomial h is uniquely
determined by having k of its values (i.e., k distinct (x, h(x)) pairs for x ∈ Fp): if we fix only k− 1 values of
h on x1, . . . , xk−1, value of h(xk) for any other xk is still chosen uniformly at random from Fp (we omit the
simple algebraic proof of this statement as it is not the focus of this lecture).

The important thing we would like to note about the family H is on how much space we need to store h.
Since each function in the family is defined by k polynomial coefficients, the space required to generate and
store it is only O(k log p) bits (as opposed to O(p log p) for a truly random hash function mapping [p]→ [p]).
It is also possible to evaluate any such hash function in the same amount of space.

Although this family only works for a = b = p, we can in general construct families for arbitrary a and b.

Proposition 8. For any a, b, there exists a k-wise independent family of hash functions mapping [a]→ [b],
that requires O(k · (log a+ log b)) bits.

Remark. We can replace the truly random hash function h : [m] → [T ] in algorithm of previous
section with a 2-wise independent hash function that only requires O(logm+ log T ) = O(logm) bits to
store. Using a slightly different analysis, one can then prove that the algorithm continues to output the
correct answer with sufficiently large probability. This way we can obtain a streaming algorithm for the
threshold testing problem using O(logm · log (1/δ)) space. By combining this with the geometric search
algorithm, we get an algorithm for 2-approximation of DE using O(log2m ·(log logm+log (1/δ))) space.
In the next section, we give a simpler and more direct algorithm for this problem.

3 A Better Algorithm for Estimating DE

To improve the space cost and achieve a (1 + ε)-approximation to DE, we will combine the idea of limiting
the independency with a more direct algorithm.

The intuition is as follows: Suppose every time we receive a number from the universe [m], we hash it to one
of m slots. To simplify things, suppose there are no collisions. At the end of the stream, DE slots will be
non-empty and we “expect” them to be evenly distributed – the first nonempty slot should be approximately
at m/DE, the second at 2 ·m/DE, and the t-th one at t ·m/DE. Thus, if we can compute the t-th nonempty
slot number X, we can use X ≈ t ·m/DE to estimate DE (the reason we go for some relatively larger t as
opposed to just t = 1 is to make the concentration results in the algorithm work as it will become evident).

Algorithm: The main streaming algorithm for estimating DE.

1. Let H be a 2-wise independent family of hash functions mapping [m]→ [m]. Pick h ∈ H at random.

2. Let t := 100/ε2. Maintain the t smallest pairs (ei, h(ei)) ordered by the hash value, breaking ties
consistently but arbitrarily (note that we do not keep (ei, ∗) more than once).

3. Let X be the t-th smallest hash value among the pairs.

4. Return D̃E := t ·m/X.
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By Proposition 8, we can generate and store h in O(logm) bits. Maintaining the t smallest pairs requires
O(t · logm) bits. Therefore, the algorithm uses O(t · logm) = O(1/ε2 · logm) bits.

Observe that the algorithm does not simply take t = 1, i.e., estimating via the minimum hash value. This
is because the minimum yields higher variance than the t-th smallest, for t > 1, as the proof will reveal.
Another characteristic of this algorithm is that, unlike most other algorithms we have seen so far in the

course, it does not compute an unbiased estimator of the target DE, as E
[
D̃E
]
6= DE.2 We now prove the

correctness of the algorithm.

Lemma 9. In the algorithm above, Pr
(
|D̃E− DE| > ε · DE

)
≤ 1

50 .

Proof. We will bound the upper and lower tails separately. For the lower tail, we have

Pr
(
D̃E < (1− ε) · DE

)
= Pr (t ·m/X < (1− ε) · DE)

= Pr

(
X >

t ·m
(1− ε) · DE

)
= Pr

(
less than t distinct elements hash to a value ≤ t ·m

(1− ε) · DE

)
; (1)

The last equation holds because the only way for X, i.e., the value of t-th smallest hash-value in the stream,
to be larger than some threshold τ := t·m

(1−ε)·DE , is that less than t numbers are hashed to [1 : τ).

For each i ∈ [DE], define the indicator variable Yi that is 1 if the i-th distinct number seen in the stream

hashes to a value < τ , and 0 otherwise. Let Y :=
∑DE
i=1 Yi. Since elements are hashed uniformly,

E [Yi] =
t ·m

(1− ε) · DE
· 1

m
=

t

(1− ε) · DE
,

and therefore E [Y ] = t/(1− ε). We can rewrite the probability of Eq (1) in terms of Y simply as Pr (Y < t):

Pr
(
D̃E < (1− ε) · DE

)
= Pr (Y < t)

= Pr (Y < (1− ε) · E [Y ]) (since E [Y ] = t/(1− ε))
≤ Pr (|Y − E [Y ] | ≤ εE [Y ]) . (2)

Next we use a concentration bound on Y . Although Y is a sum of 0-1 random variables, we cannot use
Chernoff bounds because our hash function h is only 2-wise independent, and thus the Yi’s are not mutually
independent.3 Instead, we can bound the variance and use Chebyshev’s inequality. Recall that the variance
is not linear in general, but it is if the variables are pairwise independent. Since h is 2-wise independent, it
is easy to see that Y1, . . . , YDE are pairwise independent. Thus,

Var [Y ] = Var

[
DE∑
i=1

Yi

]
=

DE∑
i=1

Var [Yi] (since Yi’s are 2-wise independent)

≤
DE∑
i=1

E
[
Y 2
i

]
=

DE∑
i=1

E [Yi] = E [Y ] . (since Yi’s are indicator random variables and so Y 2
i = Yi)

Using Chebyshev’s inequality in Eq (2) yields

Pr (|Y − E [Y ] | ≤ εE [Y ]) ≤ Var [Y ]

ε2 E [Y ]
≤ E [Y ]

ε2 E [Y ]
2 =

1

ε2 E [Y ]
=

1− ε
ε2t

≤ 1

ε2t
=

1

100
,

2Recall that E
[

1
X

]
6= 1

E[X]
in general.

3Although in this course we have only used Chernoff bounds that assume full independence, there are weaker variants
that only require limited independence. Nevertheless, for our application it is easier (and sufficient) to simply use Chebyshev
inequality instead.
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by the choice of t. As such, we conclude that Pr
(
D̃E < (1− ε) · DE

)
≤ 1/100.

For the upper tail, we can bound Pr
(
D̃E > (1 + ε) · DE

)
symetrically4. Finally, by union bound, we have

Pr
(
|D̃E− DE| > εDE

)
≤ 1/50,

concluding the proof.

As always, we can run this algorithm O(ln (1/δ)) times, in parallel, and then pick the median to boost the
probability of success up to 1− δ. This leads to the following theorem.

Theorem 10. There is a streaming algorithm that outputs a (1 ± ε)-estimation of the number of distinct
elements DE from a universe [m] with probability at least 1− δ, using O( 1

ε2 · logm · log(1/δ)) bits of space.

The distinct element problem was first studied by Flajolet and Martin in [FM83] (long before the formaliza-
tion of the streaming model). This problem was revisited in the work of Alon, Matias, and Szegedy [AMS96]
that pioneered the streaming model. The algorithm we discussed in this section was proposed by Bar-Yossef,
Jayram, Kumar, Sivakumar, and Trevisan [BJK+02] and was later improved in a series of work, culminating
in the optimal algorithm of Kane, Nelson, and Woodruff [KNW10] with space complexity O( 1

ε2 + logm).
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