CS 466/666: Algorithm Design and Analysis University of Waterloo: Fall 2025

Lecture 22
November 25, 2025

Instructor: Sepehr Assadi

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Topics of this Lecture

1 Graph Simplification 1
2 Probabilistic Tree embeddings 2
3 Low Diameter Decomposition (LDD) 2
4 Back to Tree Embeddings: Proof of Theorem 1 4

For the last part of the course, we switch back to the topic of graph algorithms, and see some strong
primitives and (very) advanced algorithms on this topic.

1 Graph Simplification

The topic of today’s lecture is graph simplification and decomposition. How we can we “simplify” a graph,
say, reduce its edges and put more “structure” on it, while still preserving some of its main properties? In
the next lectures, we see how this can play an important role in designing more efficient algorithms. In this
lecture however, we consider a very simple variant of this problem: how to simplify a graph while preserving
its shortest path structures approximately.

Given an undirected graph G = (V, E), for any vertices u,v € V, the distance between u and v—denoted
by distg(u, v)—is the length of the shortest path between u and v. When the graph G is weighted, distg (u, v)
is the sum of the edge weights on the minimum weight between u and v, which we still call the shortest path.

The goal of this lecture is to simplify G by reducing it to a tree T such that the shortest path distances
in the tree will be approximately the same as the ones in G. This is generally quite useful as computation
over trees is significantly simpler than over arbitrary graphs for most problems of interest (shortest path
itself becomes trivial since there is only one path between each pair of vertices in a tree!).

Before delving into the actual result, let us first consider some naive attempts on approximating distances
of a given graph with graphs with simpler structures. Given a graph G, consider “simplifying” G by a
complete graph K such that for all u,v € V, wg(u,v) = distg(u,v), where wg (u,v) is the weight of the
edge (u,v) in K. Then, to find the shortest path of any u, v, we simply look up the weight of this edge in K.
This preserve the distances in G ezxactly, but can be very time consuming to construct, and take up a lot of
space, so not clear how much “simpler” it is (although computing the distances from it is indeed simple).

Another approach would be to embed a graph G into a single tree such that dist(u,v) is approximately
preserved for all u,v € V. A simple sanity check shows that such guarantee cannot always exist. Consider
a cycle graph of n vertices: any way of turning the graph into a tree must remove at least one edge (u,v),
which changes diste(u,v) from 1 to n — 1, thus, nowhere close to a good approximation of distg(u,v).

2 Probabilistic Tree embeddings

A workaround to the issue above—that a single tree can never preserve all distances in many graphs—was
first introduced by a beautiful result of Bartal [Bar96], referred to as probabilistic tree embedding. The
general goal is to consider a distribution of trees D such that the distance between any pair of vertices are
approximately preserved in expectation, i.e. Yu,v € V,

IED [distr(u,v)] ~ distg(u,v);
i.e., if we fix a pair of vertices and then sample a tree from this distribution, the vertices will have roughly

the same distance in T' and G in expectation. We should emphasize that here V(T') D V(G), i.e., we allow
additional vertices to appear in T as well.

Theorem 1 ([Bar96]). For any undirected graph G = (V, E), there exists a distribution D of weighted trees
Ty, -, Tk such that for alli € [k], we have V(G) C V(T;) and that for any fized pair of vertices u,v € V(QG),

distg(u,v) < TED [distr(u,v)] < O(log? n) - distg(u,v).

~

We call the O(log2 n) factor above the stretch of the tree embedding.

It is worth pointing out that the stretch of tree embeddings were subsequently improved to O(logn)
in [FRT04] which is the optimal bound for this problem. However, we stick with the slightly sub-optimal
approach of [Bar96] which is easier for our purpose.

This result relies on another important topic in algorithm design: Low Diameter Decomposition (LDD). We
first review this topic and then show how to use it to prove Theorem 1.

3 Low Diameter Decomposition (LDD)

We start with some definitions. Given a graph G = (V, E), the diameter of G is defined as

D(G) = nax distc(u,v),

namely, the distance between the “furthest” pairs of vertices. For any subset S C V, the weak diameter
of S is defined as
D(S) := max distg(u,v).

u,ve

Note that the weak diameter of S is not the diameter of the induced subgraph G[S], as we still calculate
the distances in the entire graph G and not just G[S]; this is the reason this is called the weak diameter.
Finally, for any integer r > 1 and any vertex v € V, we define

Ball(v,r) :={u € V | distg(u,v) <r}
and refer to it as the ball of radius r centered at v. We can now define LDDs as follows.
Theorem 2 (Low Diameter Decomposition). Given any undirected graph G = (V, E) and parameter D > 0,
there exists a random partition V = Cy U Cy U --- U Cy such that:
1. D(C;) < D for alli € [k], i.e., weak diameter of each “cluster” C; is at most D (deterministically);

2. For allu,v eV,
Pr (Cu) # C(u)) = 2087

where C'(u) denotes the partition containing vertex u.

- dista(u,v),

This theorem states that we can always partition a graph into disjoint components such that vertices inside
each component have short distances with each other and vertices that are close in the original graphs are
unlikely to be assigned to different components.

Proof of Theorem 2. We show the following procedure produces a partition Cy U --- LI Cy of V that satisfies
the two properties in LDD with high probability.

~

Algorithm 1. An algorithm for constructing an LDD.

Start with all vertices in V' being unmarked. Repeat until there are no unmarked vertices:

1. Pick any arbitrary unmarked vertex v.

101
Ologn on each trial®.

2. Sample R, from the geometric distribution of success probability p :=

3. Put all unmarked vertices in B(v, R,) into a cluster. Mark all of them.

K %That is R, is distributed as the number of trials we need to run before getting the first success. j

Let us first show that the weak diameter of each cluster will be at most D with high probability.
Claim 3. Let C be any cluster output by Algorithm 1. Then, D(C) < D with high probability.

Proof. Let v be the center of the cluster C', namely, the vertex picked in Algorithm 1 that led to C being
B(v, R,) intersection with unmarked vertices. Any pair of vertices u,w in C have

distg(u,w) < distg(u,v) + distg(v,w) < Ry, + Ry,

by triangle inequality and since both u, w € B(v, R,). We argue that with high probability, R, < D/2 which

happens because
D 101 D
Pr (Rv > 2) <(1—p)P? <exp <— Oggn : 2) <n7Y

the rest follows from a union bound over the at most n clusters. O

We now prove the second property. The main part is to prove it for adjacent vertices, which is done by
the following claim — we will then show how this easily implies the property for all pairs of vertices.

Claim 4. For any edge (u,v),
O(logn
Pr (Cfu) # Ofr)) = 20187,

Proof. Let (u,v) € E. We have

Pr(C(u) # C(v)) = Pr (u was clustered first) - Pr (C(u) # C(v) | u was clustered first)
+ Pr (v was clustered first) - Pr (C(u) # C(v) | v was clustered first) .

Let us consider the term
Pr(C(u) # C(v) | u was clustered first) .

Let w be the vertex which clustered u. By conditioning on u being clustered first, we have that
Ry, > distg(w,u).
At the same time, for C(u) # C(v) to happen, we should have

R, < distg(w,v) < distg(w,u) + 1,

where the second inequality is because there is an edge (u,v) in the graph. Thus, we have,

O(logn) .

Pr(C(u) # C(v) | v was clustered first) = Pr (R, < distg(w,u) + 1| Ry = distg(w,u)) =p = i)

Since we can bound the term when v is clustered first exactly the same way also, we can conclude the proof
of the claim. O

Finally, we extend the property of Claim 4 to all pairs of vertices (u,v). Consider a shortest path

Py = w1, ..., wg+1 between u and v where w; = u, wg41 = v and d = distg(u,v). By union bound,
d O(logn)
Pr(C(u) # C(v)) = Pr (Vi C(w;) # Clwig) < > Pr(C(w;) # C(wip)) < diste(u,v) - —5
i=1

by applying Claim 4 to each edge (w;, w;t1)-

Finally, we note that technically, we only showed D(C;) < D holds with high probability. To make
this a deterministic statement, we can modify Algorithm 1 such that when there is a cluster that violates
the diameter constraint, we output the trivial output where every vertex in that cluster is now its own
cluster. Since the probability of this occurring is < 1/n* by Claim 3, the increase in the error probability
of Pr(C(u) # C(v)) is negligible and the previous bounds still hold asymptotically but now we have a
deterministic upper bound on the weak diameter of each cluster. O

4 Back to Tree Embeddings: Proof of Theorem 1

We now go back to probabilistic tree embeddings and prove Theorem 1.

Proof of Theorem 1. We construct a tree embedding of G by recursively finding LDDs in G for geometrically
decreasing values of the weak diameter. The algorithm is formally as follows.

Algorithm 2. A probabilistic tree embedding algorithm given G = (V, E), a set U C V of vertices to
be clustered, and a parameter D as an upper bound on the weak diameter of U in G. To obtain a tree
embedding of a given graph G, we run this algorithm for (G, V,n).

1. If U only has a single vertex, return that single vertex as the tree embedding.
2. Let C1 U+ UCy be an LDD of U in G with parameter D/2 using Theorem 2.
3. For each i € [k], recursively compute a tree embedding of (G, C;, D/2) called T;.

4. Create a new tree T using a new root r which is connected to the roots of each of the sub-trees
T;’s for ¢ € [k], using an edge of weight D/2. Return T as the tree embedding of (G, U, D).)

-

First observe that the vertices in GG are the leaves in the output tree T'. Roughly speaking, the procedure
recursively split vertices into different groups at each level based on their distance. For any u,v € V, if
dist(u,v) is small, then they are likely to be split towards the end of the algorithm, hence the smallest
subtree in T that contains u,v is expected to be small and subsequently distr(u,v) is small. If distg(u,v)
is large, then they are expected to be separated early on, hence distr(u,v) is large.

By construction, for all possible tree T output by the algorithm we have V(G) C V(T'), which gives the
first property of the embedding.

For the second property, we first claim that disty(u,v) > distg(u,v) for all possible output tree T.
Consider the recursive call that separate v and v and let D be the weak diameter parameter of that call.

Since u and v are not separated yet, we have distg(u,v) < D since weak diameter of a recursive call with
value D is at most D. On the other hand, since u and v are now separated, we have, distr(u,v) > D as we
need to traverse two edges of weight D/2 to go from u to the root of T' and then to v, hence, we always have

distr(u,v) > distg(u,v),
deterministically (and thus certainly in expectation).

Finally, we argue that expected stretch of T' cannot be too large either. We have

log (n/D)
I%[distT(u,v)] < Z Pr (u,v separated in call D where 2' - diste(u,v) < D < 2! - distg(u,v)) - D
i=0
(by the construction of the algorithm)
log (n/D)
O(logn) . ; ,
= ————— - dist - (2 dist
; 3 disto(u.v) ista(u,v) (iste(u,v))

upper bound on D
by Theorem 2

= O(log®n) - dista(u,v).

This concludes the proof. O

References

[Bar96] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In Pro-
ceedings of 37th Conference on Foundations of Computer Science, pages 184-193, 1996. 2

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. Journal of Computer and System Sciences, 69(3):485-497, 2004. Special
Issue on STOC 2003. 2

	1 Graph Simplification
	2 Probabilistic Tree embeddings
	3 Low Diameter Decomposition (LDD)
	4 Back to Tree Embeddings: Proof of Theorem 1

