CS 466/666: Algorithm Design and Analysis University of Waterloo: Fall 2025

Lecture 14
October 28, 2025

Instructor: Sepehr Assadi

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Topics of this Lecture

1 Compressed Sensing 1
2 Discrete Sparse Recovery 3
3 An /y)-Sampler Construction 5

We now switch to an entirely different topic by examining a new algorithmic paradigm: compressed
sensing and sparse recovery.

1 Compressed Sensing

Motivation Behind Compressed Sensing

Data analysis is most interesting when the data has structure — there is not much one can do with an
unstructured (think of “random”) data. But how can we exploit the structure of data? Even before that,
what do we mean by “structure” in data?

Structure can mean many things. One major theme in data analysis is sparsity — for now, think of sparse
data as something that can be compressed much further without losing most of its functionality. A good
example is a digital image: one can use standard image compression algorithms (e.g., JPEG) to dramatically
reduce the size of the image without changing the visibility of the picture almost at all. See the figure below
for instance that shows an almost 20x compression without much difference:

-

100 quality, 660.4ks

0 quality, 38.8ks . .. = ~ 50 quality, 139.5}«3

Figure 1: https://en.wikipedia.org/wiki/File:Quality_comparison_jpg_vs_saveforweb. jpg

The usual approach to compressing (approximately) sparse data is to first collect the raw data, and then
to compress it in software (in the example of an image, the camera first captures an image in the standard

https://en.wikipedia.org/wiki/File:Quality_comparison_jpg_vs_saveforweb.jpg

pixel basis and only then compress it further via, say, JPEG algorithm). This two-step approach works fine
in many applications, but in terms of efficiency, this seems quite counterintuitive: if most of the raw data is
going to be thrown out immediately anyway, why did we bother to collect it all in the first place?

The main idea of compressed sensing or “compressive sensing” is to directly capture data in a compressed
form. To put this in the context digital cameras, using compressed sensing we can now use fewer pixels while
capturing the photo without degrading image quality, resulting in qualitatively less battery drain for a given
number of photos. Another example is in MRI machines. In these machines, the scan time is proportional to
the number of measurements (or “slices”) taken, and can easily be 30 minutes or more. Compressed sensing
techniques have been tried out in some hospitals, and they have sped up scan times by a constant factor.

A Concrete Example: Sparse Recovery

In this lecture, we are going to consider the problem of sparse recovery in compressed sensing, which we now
define formally. Suppose our target data—often called the signal—is a real-valued vector z € R™. We have
“access” to this data using linear measurements. Le., we can pick a vector a € R™ and observe (a, z). Our
goal is then to recover the signal = using a minimal number of measurements. Formally,

Step 1: Design m linear measurements ai, ..., a, € R™ or equivalently a matrix A € R™*".
Step 2: An unknown signal x € R™ is now picked as input.
Step 3: Receive the measurement results b = (a1, x), ..., (a; ,) or equivalently b:= A - x.

Step 4: Recover the unknown signal x from the measurement signal b.

In the setting above, our task as an algorithm designer is to design a suitable measurement matriz A and
a recovery algorithm that allows for recovering x from A - x. Note that at this stage, this is an information
theoretic question not a computational one; in other words, we can, for now, ignore the runtime of algorithms
for constructing A and recovering x from A-x, and solely focus on designing smallest number of measurements
possible, i.e., minimize m.

At this level, the problem above has a straightforward solution: set A = I, to get b = I, = x which
obviously allows us to recover x € R™. This gives us an upper bound of n measurements for recovering x.
We also have a lower bound of n measurements: Any system of k equations Apx, -z = b where k < n is
undetermined and thus multiple x satisfy this system, making unique recovery of x from A - x impossible.

However, recall our earlier discussion in compressed sensing. We are typically not interested in recovering
arbitrary signals but rather ones with “structure”. In particular, in the sparse recovery problem, we are
guaranteed that the vector x is sparse, namely, has a small number of non-zero entries. Formally, we say
that a vector z € R™ is k-sparse iff ||z||o = k, i.e., there are only k non-zero entries in xz. The k-sparse
recovery problem is then defined as follows.

Problem 1 (Real-Valued Sparse Recovery). Given parameters n, k > 0, design a minimal set of
measurements A € R™*"™ such that for all k-sparse vectors x € R™, x can be recovered from A - x.

Note that the lower bound of n on number of measurements no longer hold for this problem because
we only need the mapping x — A - x to be injective for k-sparse vectors and not all vectors in R”. We
are not going to consider this problem as it is somewhat beyond the scope of our course and instead we
will consider a discrete version of it in the next section (which will also have applications to our original
¢p-sampler problem). The optimal solution to this problem needs only ©(k -log (n/k)) measurements (which
are also known to be necessary) and was presented in [CRT06] and [Don06]. We shall also note that these
results extend to the more practical setting of approximately recovering an approzimately k-sparse vector!.

nformally speaking, we say a vector y is k-sparse if y = « + o for a k-sparse vector = and a “noise” signal o with small ¢,
or 2 (or some other) norms.

Remark. In Problem 1, we are designing the measurement matrix A before x is even chosen and
thus A should work simultaneously for all . This is often referred to as the for-all guarantee in the
literature. A “weaker” version of this problem is to design A to recover a single unknown x which is
chosen independent of A — this weaker guarantee is referred to as the for-each guarantee.”

%This can only make a difference when we use randomization: the for-all guarantee says that the answer is correct
simultaneously for all k-sparse with some fixed probability, while for-each guarantee says that for any one (unknown)
signal the answer is correct with fixed probability.

2 Discrete Sparse Recovery

We are now going to consider a discrete version of sparse recovery. This is both to gives us some intuition
about the real-valued sparse recovery in Problem 1 and also for its applications to the remainder of the
course. By discrete sparse recovery, we mean recovery over finite fields and in particular field Fy.?

Problem 2 (Discrete Sparse Recovery on Fy). Given parameters n,k > 0, design a minimal set
of measurements A € F7'*" such that for all k-sparse vectors x € F%, x can be recovered from A - x.

Before getting to an upper bound for this problem, let us first see what is a natural lower bound on
number of measurements. By using m measurements, the set of vectors b that can be given as answer to
A -z is 2™ as there are only 2™ m-dimensional vectors in F5'. At the same time, we should make sure that

for any two different « # y € Fy, A-x # A -y as otherwise we cannot distinguish z and y from the resulting

vector b. Since the number of k-sparse vectors in Fy is (Z), we should have,

s (1) 2 () = o ee(f) il () > (')

As such, k - log (%) measurements are necessary for this problem.

The natural question at this point is that whether can match this lower bound by an algorithm also, i.e.,
design O(k - log (%)) measurements that allows us to recover any k-sparse vectors in 5. We will do so in
the following.

Warm-Up: k£ =1 Case

Consider the problem of recovering a 1-sparse vector z € Fo. We are going to design O(logn) measurements
for this problem.

For simplicity, we assume n is a power of 2. Consider the set of vectors a; for i € [logn], where:

— ap has all I’s in the first n/2 coordinates and zero outside.

az has all 1’s in the first n/4 and third n/4 coordinates and zero outside.

— a; have n/2% 1’s, followed by n/2% zeros, followed by n/2% 1’s and so on and so forth.

See Figure 2 for an illustration.

This forms the measurement matrix A. We now design the recovery algorithm. Note that A is basically
simulating a binary search (suppose j is the index where z; = 1):

2Recall that Fy is the field on {0, 1} where computation is mod 2, or equivalently addition is replaced with XOR-operation.

— (a1,) = 1 implies that index j belongs to [1 : n/2] and 0 means it belongs to the rest.

— {ag,) = 1 implies that index j belongs to [1: n/4] U[n/2+ 1 : 3n/4] and 0 means it belongs to the
rest. Combined with the above answer, this identifies an interval of length n/4 that j belongs to.

— In general, by considering first i rows, we can identify an interval of length n/2¢ that contains j.

This way, after logn rows, we can uniquely recover index j, giving us our recovery algorithm.

log(n)

Figure 2: log(n) vectors in F} for recovering I-sparse vectors

General Case

We are now going to solve the general case of the problem. Extending the binary search approach for k =1
case to general k seems challenging so we will use another approach based on probabilistic arguments.

Theorem 1. For anyn,k > 0, there exists a set of m = O(klog(%)) measurements A € F5' ™ for recovering
any k-sparse vector x € F3.

This proof is based on the probabilistic method which relies on a very basic principle: suppose we sample
an object randomly and can show that with non zero probability this object satisfies some desired properties;
this effectively means that there exists at least one object that satisfies the desired properties, hence proving
its existence. In the context of our problem, we are going to pick A € F;'*" randomly and show that with
non-zero probability we can recover z from A -z for all x € FJ. This will prove the existence of a suitable
measurement matrix A.

We start with the following claim about taking inner product of a random vector a € Fy with two distinct
vectors z,y € F4. In the following, we use the notation a €r F4 to mean that a is chosen uniformly at
random from 7.

Claim 2. For all x #y € Fy, and a €g F3, Pr, ((a, z) = {(a, y)) = 1/2.

Proof. For any index i € [n] and vector z € F%, define z_; = (21, 22, .., Zi—1, Zi+1,--2n). Let ¢ be any index
where x; # y;. Consider the following process of picking a: first pick a_; €]Fg‘_1 and then pick a; € Fs.

Ny

Case 1: (a—;, x—;) = {a—;, y—i): If a; = 1, then (a,z) # (a,y). So, conditioned on this case, with
probability 1 we have (a,z) # (a,v).

<

Case 2: (a—;, x—;
probabilit

Ny

2
(a—;, y—;): If a; = 0, then (a,z) # (a,y). So, conditioned on this case, with
1 we have (a,z) # (a,y).

<

This proves the claim. O
As a corollary of Claim 2, we have that a random matrix can distinguish « and y with “high enough”

probability.

Claim 3. For allz #y € F}, and A €g F3"", Pra(A-z = A-y) =1/2™.

Proof. Follows immediately from Claim 2 and independence of the m rows of A. O

Finally, we can use Claim 3 to argue that with non-zero probability, A can distinguish between all pairs
of k-sparse vectors z,y € F3.

Claim 4. For m = 2klog (<) and A € F*",
f;r (Vk-sparse x #y € Fo™ Az # Ay) > 0.

Proof. Since both z,y are k-sparse vectors in F}, the number of distinct pairs (z,y) is less than (2)2 Thus,
by applying union bound to the events in Claim 3,

(0" ()

n . — _ — b
ar(ﬂx#yGIFQ : Az = Ay) < Z P;r(A:r—Ay) < < Tom =1 ((3) < (&)Y
2 AYEFY
As the LHS is strictly less than 1, the probability of its complement event is non-zero as desired. O

We can now conclude the proof of Theorem 1.

Proof of Theorem 1. By probabilistic method, Claim 4 implies existence of A € F5"*" for m = O(klog(%))
such that A-x # A -y for all k-sparse z # y € F5. We use this matrix as our measurement matrix. For
recovery, given b € F5*, we simply go over all z € Iy and check whether Az = b or not; as the unique answer
to this system of equations (among k-sparse vectors) is Ax = b, we can recover z uniquely. O

We shall note that in Theorem 1 we only focused on designing minimal number of measurements and in
particular ignored the runtime of algorithms. As it is, our algorithms require exponential time to choose the
measurement matrix A, and more importantly, also take exponential time to do the recovery. We will revisit
this issue in the problem sets.

Remark. Note that the proof of Theorem 1 used k-sparsity in a very simple way by simply bounding
number of vectors that we aim to do the recovery for by (Z) It is thus easy to see that we can extend
this theorem for performing recovery of any subset X C F5 using O(log |X|) measurements.

3 An /)-Sampler Construction

We now switch to presenting another important algorithmic primitive known as an £y-sampler. Here, instead
of recovering the entire support of k-sparse vector, the goal is to recover one element from the support of
any (not necessarily) sparse vector.

Theorem 5. For everyn € N, there exists a distribution D on s xn matrices in F5*™ such that the following
is true. For each vector x € Fy, if we sample A from D independent of x, then, with high probability, using
only A-x and A, we can recover an index i € [n] chosen uniformly from the support of x (so x; = 1).
Moreover, s = O(log®n) and thus A - x also only requires O(log® n) bits to store.

We will prove the theorem in a couple of steps.

Step 1: When ||z||o = 1. In this case, we can simply let A; to be the 1-sparse recovery matrix (based on
binary search) we defined earlier. So, A; will have dimension O(logn) in this case.

Step 2: How to test if ||x||o =17 Step 1 implies that if ||z||o = 1, then we can solve the problem quite
easily. But, can we even check if we are in this “good” case? We will do so using a simple randomized
strategy.

Sample a 3 X n dimensional matrix A where every column has exactly one 1 and two 0’s and the position
of the 1 is chosen independently and uniformly at random. Consider A - & = [by; ba; bs).

Suppose first that ||x]||o = 1. Then, exactly one of by or bs or bs is non-zero. In particular, if i is the
index of the non-zero entry of z, then, the row of A on column 7 that has the value 1 corresponds to the
non-zero entry in A - x also.

Now, suppose that ||z|lo > 2. Let i # j be two non-zero indices from z. Define the vector y(i) where
y(i); = x; and y(i) is zero everywhere else. Define y(j) similarly with y(j); = x; and zero everywhere else.
And define y = x — y(i) — y(j). Fix all columns of A other that i-th and j-th column, which also fixes the
value of A -y = [c1; c2; ¢3]. We now have,

C1 Z.1 jl
A-x=A-y+A-yi)+A-y(j) = |ca| + |i2| + |J2]|,
3 i3 Js

where exactly one of iy,14s,i3 (resp, j1,j2,43) is non-zero depending which row of A in the column i (resp.
the column j) receives the value of 1. Note that these choices are still independent and uniform at random
for both 7 and j.

Claim 6. In this case, with probability at least 1/9, at least two values in by, by, bs are non-zero.

Proof. We say the event ‘success’ has happened if at least two-values in by, bo, b3 are non-zero. We consider
different cases based on ¢y, co, c3.

e All of ¢y, ¢, c3 are equal to zero: In this case, if 1 of column ¢ is different than 1 of column j, then,
two different values in by, bo, b3 are going to end up non-zero. Thus, the probability of success is:

O =

2
Pr (success) = Pr (1 of column i is different from 1 of column j) = 3 >

e Two of ¢1, ¢o, c3 are equal to zero: by symmetry, let us assume ¢; = ¢o = 0 and ¢3 # 0. If 1 column 7 is
different from 1 of column j and both are different from 3, then, all three of by, b, b3 will be non-zero
and success happens. Thus,

Pr (success) > Pr(1 of column ¢ 1 and 1 of column j is 2 or vice versa) =2 - — >

O =
Nef i

e One of ¢y, co,c3 is equal to zero: by symmetry, let us assume ¢; = 0 and ¢z, c3 # 0. If 1 of column 4
and 1 of column j both go to index 1, then, both of b, b3 remain non-zero also. Thus,

1
Pr (success) > Pr (1 of column i 1 and 1 of column j both go to index 1) = g

e Finally, none of ¢y, ca,c3 are zero. In this case, as long as 1 of column ¢ and 1 of column j go to the
same index, then both of the remaining indices remain non-zero in by, b, b3. Thus,

Pr (success) > Pr (1 of column 4 1 and 1 of column j go to the same index) = = >

1
5

Wl =

This concludes the proof. O

Finally, in the case that ||z||o = 0, we always have A -z = 0.

Putting these results together, we have the following distinguisher: if [by, ba, b3] has exactly one non-zero
entry, we consider it a ||x||p = 1 case, and otherwise, we consider the input not having this property. Now,
suppose we pick a matrix A, which consists of ¢ = 90Inn independent copies of the matrix A. When
[|z||o = 1, all the copies return ‘one non-zero entry’ case, while when ||z||o = 1, the probability of this event
happening is, by Claim 6, at most

1 901n b
(1 — 9) <exp(—10Inn) =n"10.

So, with high probability, we can solve the problem correctly in this case.

In this case, the matrix As has 270 Inn rows.

Step 3: when 2% < ||z||p < 2¥! for some given k > 0. We will attempt to reduce this case to the case
of step 1 while also running the step 2 test in parallel to make sure the reduction indeed worked correctly.
First pick a diagonal matrix B with dimensions m x m where each entry B;; for ¢ € [m] is 1 with probability
1/25+1 and 0 otherwise. Let y := B - z.

Claim 7. With probability at least 1/8, ||y|lo = 1.

Proof. Let s = ||z||o. For ||y|lo = 1, we need ezactly one of the indices ¢ in the support of x to be sampled
on the diagonal of B. Thus,

ok+1

1 1 s—1 1 1 1
Prllslo=0=s gz (1-5m) 25 (1-g) 30>

0| =

Now, use the matrices A; and A, from the previous step to create the matrix

A
ae[2] 5

We have
Ay Ay
A-x= -B-x= .
[AJ {Az Y
Thus, if y has exactly one non-zero entry, then, we can recover that non-zero entry from A; -y and Ay -y
allows us to test with high probability that ||y||o = 1 or not.

The final matrix we create in this step is then consists of copying A 801nn times independently on top of
each other to get a matrix Az. The probability that A3 cannot recover an index because non of the y-vectors
it creates have ||y||o = 1 is at most (by Claim 7):

1 80Inn
(1 - 8) <exp(—10Inn) =n~10,

Moreover, since there are only O(logn) ‘tests’ for ||y|lo = 1, with high probability, all of them succeeds and
thus the algorithm does not return a wrong answer.

In this case, the matrix Az has O(log® n) rows.

Step 4: arbitrary x. We can now solve the general problem. While we do not know the value of k, there
are only logn different choices for it for choices of k in 1 < 2% < n. So, we simply create matrices Aj, for
k =1 to logm, where each Aj is the matrix we created in step 3 for the value of k. We then set A4 to be
these matrices stacked on top of each other.

For the “correct” choice of k, the matrix A}, by the argument in step 3 returns a correct solution with
high probability. For all the other indices, we never run the matrix A; and its recovery phase before getting
ensured by matrix As that the number of non-zero entries passed to A; is only 1, hence, with high probability,
we will never return a wrong answer.

Finally, the matrix A4 has O(log® n) rows.

This concludes the proof of Theorem 5. More general and efficient fg-samplers can be found in [JST11].

References

[CRT06] Emmanuel J. Candes, Justin K. Romberg, and Terence Tao. Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information. IEFEFE Trans. Information
Theory, 52(2):489-509, 2006. 2

[Don06] David L. Donoho. Compressed sensing. IEEE Trans. Information Theory, 52(4):1289-1306, 2006.
2

[JST11] Hossein Jowhari, Mert Saglam, and Gabor Tardos. Tight bounds for lIp samplers, finding dupli-
cates in streams, and related problems. In Maurizio Lenzerini and Thomas Schwentick, editors,
Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2011, June 12-16, 2011, Athens, Greece, pages 49-58. ACM, 2011. 8

	1 Compressed Sensing
	2 Discrete Sparse Recovery
	3 An 0-Sampler Construction

