CS 466/666: Algorithm Design and Analysis University of Waterloo: Fall 2025

Lecture 13
October 23, 2025
Instructor: Sepehr Assadi Scribe: Helia Yazdanyar

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Topics of this Lecture

1 3-Coloring Problem 1

1.1 Independent Sets and Coloring L 1

2 Finding Large Independent Sets in 3-Colorable Graphs
2.1 A Simple Randomized Algorithm oo
2.2 A Better Algorithm Tailored to 3-Colorable Graphs

= W NN

2.3 Finding Independent Sets via SDPs L

ot

2.3.1 Rounding SDP (3) via random separators

In the previous lecture, we introduced Semi-definite Programming (SDP) and saw how it can be used to
obtain an algorithm for the Max-Cut problem. In this lecture, we use this technique to design an algorithm
for graph coloring.

1 The 3-Coloring Problem

We study the 3-coloring problem, namely, the problem of coloring the vertices of a graph using three colors
such that no two adjacent vertices have the same color. Formally, a 3-coloring of a graph G = (V, E) is a
function ¢ : V' — {1, 2,3} such that ¢(u) # ¢(v) for every edge (u,v) € E.

Deciding whether a graph is 3-colorable or not is an NP-hard problem. In this lecture, we want to explore
if we can use SDPs to color G with a ”good” number of colors. Here by ”good”, we mean some number that
is not trivial. For example we can always color the graph using n colors (where n is the number of vertices
in the graph), or by combinatorial bounds we know we can always color the graph using A + 1 colors where
A is the maximum degree in the graph.

1.1 Independent Sets and Coloring

A set U C V is called an independent set if no two vertices in U are adjacent. A k-coloring of G can be
viewed as a partition of V into k independent sets.

Suppose G is k-colorable. It is easy to see that in that case G has an independent set of size n/k — simply
take the color class in its k-coloring with the largest number of colors. We can also prove a somewhat inverse
of this statement: if we can always find an independent set of size 1/k-fraction of vertices in a given graph,
then, we will be able to color it with O(klogn) colors.

Lemma 1. Let G = (V, E) be an n-vertex graph and k be a fixed parameter. Suppose we have an algorithm
A that given any subgraph G’ of G with n' wvertices, finds an independent set of size at least n'/k in G'.
Then, we can use A to obtain an O(klogn) coloring of G.

Proof. Consider the following algorithm B: let U = () and G’ = G. While G’ is non-empty, run A(G’) to
obtain an independent set S, color S with a new color and update G’ = G’ \ S.

The output of algorithm B is clearly a proper coloring of G since all vertices eventually belong to some
set .S, and we always color an independent set with the same color, so this is proper coloring. It thus remains
to bound the number of colors used in B. This is equal to the number of iterations of the while-loop; since
each step reduces the vertices to at most (1 —1/k) fraction of what it was, after the first ¢t = kInn iterations,
we have,

t
1 ,
size of G’ < (1_k’) p e kHan — o=Inntnn _ 4
In the next iteration then G’ becomes empty (as a singleton vertex is always an independent set). Thus, the
algorithm uses O(klogn) colors. O

We now go back to our 3-coloring problem: Our goal is to find a “large” independent set in a 3-colorable
graph G with maximum degree A. Once we can do that, we can apply Lemma 1 to obtain a proper coloring
of G with “small” number of color also.

2 Finding Large Independent Sets in 3-Colorable Graphs

2.1 A Simple Randomized Algorithm

One simple approach for finding a large independent set is the following:

\
Algorithm 1 (A simple randomized algorithm for independent set in arbitrary graphs).
1. Sample each vertex independently with probability p.
2. Let S be the set of sampled vertices.
3. Remove both endpoints of any edge inside S (keeping only the independent vertices).
K4' Return the resulting independent set I.)

We know that each vertex is sampled with probability p inside S, so we have
E|S|=n-p.

Also we can calculate the probability that an edge e = (u,v) is inside S, i.e., both its endpoints belong to
S, as below
Pr(e is sampled) = p*. (1)

Thus, since G can have at most nA/2 edges given its maximum degree is A,

E|E(S)| = ZPr(e is sampled) < % - p2.

By linearity of expectation, for any p, we can calculate the expected size of the set I returned by Algorithm 1:

A
E|I|>]E|S\—2-]E|E(S)|>n.p_2.nT.p2_

By choosing p such that the second term is half of the first one, we get that p = 1/2A and have

n n-A n

EllZ58 ~9a2 " 1a
The bounds obtained in this algorithm are quite weak: we can always find an independent set of size n/(A+1)
in any given graph of maximum degree A; pick a vertex in the independent set, remove itself and all its
neighbors and recurse. This way, we add one vertex to the independent set and remove at most A + 1
vertices. Thus, at the end, we will find an independent set of size n/(A + 1). Nevertheless, we will see that
the strategy of this randomized algorithm can be used later to get much better bounds.

We should also note that one reason the bounds obtained by this algorithm—or even the greedy one
mentioned above—are so weak is because we are not using the fact that the graph is 3-colorable at all. In
an arbitrary graph of max-degree A, we actually cannot hope for a bound better than n/(A + 1) in general.
Can you see why?

Remark. A more naive way of creating an independent set via a strategy similar to Algorithm 1 was
to pick the set S the same way, but then bound the probability that S is an independent set already;
i.e., making sure there are no edges inside S at all. In that case, we needed to have

A
Pr (there is an edge inside S) < Z Pr (e is sampled) = % -p?.

We thus need this probability to be less than one which implies that
e
- nA’

E|S|=n-p=

But then, this would give us

2n

N
which is even quadratically worse than the bounds of Algorithm 1.

The approach of Algorithm 1 is often called alteration method in randomized algorithms and
the probabilistic method. Instead of creating the object in one go probabilistically, we first use a
randomized process to “get close to” the object and then alter it deterministically to obtain the final
object (in Algorithm 1, getting “close” to an independent set meant finding a set that has very few
edges inside it).

2.2 A Better Algorithm Tailored to 3-Colorable Graphs

We start by presenting a simple algorithm due to Wigderson [Wig83] that finds an independent set of size
Q(y/n) in any 3-colorable graphs, regardless of the maximum degree of the graph.

The algorithm is based on the following observation: given any vertex v, the neighborhood N(v) of v is
2-colorable (because color of v cannot be used on these vertices). But then any 2-colorable graph is bipartite
and by finding its bipartition (which can be done easily using DFS/BFS search in polynomial time), we can
find an independent set that contains at least half its vertices. This implies that when maximum degree is
A, we can always find an independent set of size at least A/2 in G. But, combined with the previous greedy
algorithm (or Algorithm 1 for a slightly weaker result), this implies that we can always find an independent

set of size A
. n
mm{2) A—H} = Q(\/ﬁﬁ

in a 3-colorable graph.

We leave turning this algorithm into a one that finds an O(y/n)-coloring of any 3-colorable graphs as an
exercise to the reader. Just note that applying Lemma 1 might not be the most efficient way here and in
that lemma, we required k to be fixed where as v/n depends on the number of vertices; it will be a lot easier
to just directly turn this algorithm into a coloring one.

2.3 Finding Independent Sets via SDPs

We now switch to our main approach which finds a large independent set in a 3-colorable graphs using
Semi-Definite Programming (SDP). We will prove the following result, due to Karger, Motwani, and Su-
dan [KMS98], in this section.

Theorem 2 ([KMS98]). There exists a polynomial time algorithm that given any 3-colorable graph G with
maximum degree A, outputs an independent set in G of expected size

n
Ql ——— | .
(A1/3 -logA>

Combining this algorithm with the approach of Lemma 1, we can also obtain O(Al/ 3. log A - logn)
coloring of any 3-colorable graph in polynomial time. We will prove this theorem in the rest of this lecture.

We start with a simple claim: if G = (V| E) admits a 3-coloring, then, we can assign unit-length vectors
b, € R? to vertices of v such that for any edge (u,v), the angle between b, and b, is 27/3. See Figure 1.

V2
Vi

V3

Figure 1: Fix a 3-coloring of G. For any vertex v with color i € [3], we let b, = v;. The vectors v; for i € [3]
have the same angle of 27/3 with each other.

Recall that for any two vectors z,y € R2:

(@, y) =] - llyll - cos(bz,y),

where 6, , is the angle between the two vectors. Given cos(2m/3) = —1/2, we can write our previous
observation as follows.

Observation 3. In any 3-colorable graph G, there exists vectors b, € R? for vertices v € V such that

1o,]l = 1, Yv eV,

(bu, by) = —1/2, Y(u,v) € E. (2)

It is also easy to see that if we can find such vectors for any graph, we can immediately find a 3-coloring
of the graph. The problem of course is that we do not know how to find such vectors efficiently. But, similar
to the last lecture, we can relaz this problem to obtain an SDP.

Firstly, define a symmetric matrix X € R™*", wherein we interpret X,, = (by,b,). We can thus
write Eq (2) as the following “matrix program”: Find a matrix X € R™*™ such that:

Xpw=1, YvevV,
Xm; = *%, V(U,’U) € E,
X =BBT,

for some matrix B € R"*2, where the v-th row of B will be a vector b, € R?. This program is still equivalent
to that of Eq (2) and we still do not know how to solve it. But we can see that the constraint X = BBT
forces X to be a PSD matrix. Thus, by relaxing the constraint to simply require X to be PSD, we obtain
our final program:

Xy = 1, Yo € V,
Xuw =—3%, Y(u,v) €E, (3)
X >0.

The problem in (3) is now a proper SDP program (wherein we do not have any objective, the goal is to
simply find a feasible point in this program; if you like, you can think of this as an SDP where the objective
can be anything, say, maximize X1 1).

Observation 3, together with the fact that (3) is a relaxation of (2), implies that as long as G is 3-
colorable, the resulting SDP has a feasible solution. We now use this fact to design a rounding scheme that
given any solution to the SDP (3), finds a large independent set in G.

2.3.1 Rounding SDP (3) via random separators

Having the vectors as described, we want to use an idea similar to the one of last lecture, to separate the
vertices and construct a large independent set. In other words, given the SDP solution X we want to pick
a random vector r in the sphere of all vectors corresponding to the vertices, and then put all vectors of one
side of 7 in set S as the resulting independent set. We need to pick this vector r such that the expected size
of the resulting independent set is large. The algorithm is as follows:

~

Algorithm 2 (Finding an independent set using the SDP solution).

1. Solve the SDP in (3) to get a PSD matrix X satisfying the constraints (if the SDP is not feasible,
return G is not 3-colorable).

2. Recall that any PSD matrix can be written as X = BB for some B € R"*", thus
b1
S R
where each b; € R".
3. Pick a r € R™ from Gaussian distribution where r; ~ N(0,1) independently for each i € [n].
4. For a fixed parameter ¢ > 2 to be determined later, let:

S =A{v; €V :(b,r) > c}.

5. Let
F={(vi,v5) € E:(bj,r) =¢c A (bj,r)>¢c}

K6' Return I := S\ V(F))

See Figure 2 for an illustration of Algorithm 2. We first note that the set I returned by the algorithm
is always an independent set, since F' is the set of all edges inside S and we are removing all those edges
by removing their vertices. It thus remains to bound the size of I. We do so in the following by using an
approach similar to that of Section 2.1 but this time, by relating these probabilities to well-known properties
of the Gaussian distribution.

=

Figure 2: An illustration of the rounding scheme in 3 dimensions (all vectors here are unit-length in 3D and
end at the boundary of the sphere). The vertices in the independent set are the ones whose vector are cut
by the hyperplane.

Let us first state a standard but highly useful property of Gaussian distribution: sum of two independent
Gaussians is also a Gaussian.

Fact 4. For any two independently sampled Gaussians, we have,

N(p1,07) + N(p2,03) = N(p1 + p2, 07 + 03).

We first focus on the probability that a vertex v joins S.

Claim 5. For any vertezv € V,
Pr(veS)=Pr(N(0,1) >),

where the RHS is the probability that a random Gaussian entry from N(0,1) has value at least c.

Proof. Each vertex v € V has a vector b, € R™ in the solution X = BB where ||b,|| = 1. Since vector
r € R™ is sampled from the Gaussian distribution, and since sum of independent Gaussians is itself a
Gaussian (Fact 4), we have,

Pr(vef) = TGNI?g . ((bv Ty > c) (by the definition of the set S)

=Pr <Z N(0,1) by > c) (by writing the inner product as the weighted sum of Gaussians)
i=1

=Pr (Z N(0,b3,) > c>
=1

(as a- N(0,1) is distributed as N(0,a?); recall multiplying a variable by a changes its variance by a?)
=Pr (N(0,[|bu]|*) = ¢) (by the aforementioned property of Gaussians and definition of ||b, |?)
=Pr(N(0,1) = ¢). (as [|by]| = 1)

O

Next, we bound the probability that an edge (u,v) belongs to F, i.e., has both endpoints in S.

Claim 6. For any edge (u,v) € E,

Pr((u,v) € F) < Pr(N(0,1) > 2¢).

Proof. Let by, b, be the vectors of u,v from X = BBT. We know ||b,|| = ||b,]| = 1 and (b, b,) = —1/2
which implies that

Hbu + bv||2 = Hbu||2 + ”va2 + 2<bu7 bv> =1+1+2- (_1/2) =1L

Using this, we have,

Pr(ves)= Nf(’g . ((bu, Yy Z e {(by,)= c) (by the definition of the set F)
S ,)"
< P by + by, 1) =2
ety (ot b) > 20)
(as each term being larger than ¢ implies the sum is larger than 2¢)
= Pr (N(0, [|bu + by||* = 2¢) (exactly as argued in Claim 5)
=Pr(N(0,1) = 2¢). (as ||by + by|| = 1)
O

We are now almost done. Both the RHS of Claim 5 and Claim 6 has closed form analytical solutions
from existing literature on Gaussian distribution; thus, we simply need to “plug in” these standard terms
and then follow the same exact strategy as in Section 2.1. This is what the rest of this proof is going to do.
For that, we need the following fact about the Gaussian distribution.

Fact 7. For anyt > 1,

1 1
e t?/2.

t 27

Proof Sketch. Using the the definition of the PDF p(-) of the Gaussian distribution, we have,

° * 1 2 1 2 1 1 1
Pr(N(0,1) >t) = x)dr = e_“/gd:t:-e_t/2~(—+0),
WO >0 = [pede= [= P +0()

where the final part comes from the tailor expansion, and in turn gives us the bound we wanted. O

1 1 1 —12/2
). <Pr(N(0,1) >t) <
(t t3> ovr ¢ TN 0.1)>1)

As in Section 2.1, we can now calculate

E|I] > E|S| - 2-E|F|

= Z Pr(vel)—2- Z Pr((u,v) € F) (by linearity of expectation)
veEV (u,v)EE
A
>n-Pr(N(0,1)>¢)—2- % -Pr(N(0,1) > 2¢) (by Claim 5 and Claim 6)
1 1 1 1
>ne———-e /2 _pA e 2, (by Fact 7 and since ¢ > 2)
2¢ 2w

. 2¢ . V2T
We again would like the second term to be half of the first term. Thus, we would like to pick a choice of

c > 2 to satisfy

AL e L L e
" 2c 2ﬁ € " 2c /27 € ’

which is equivalent to
6702/2 —9A . 67402/2

which, by taking the In(-) on both sides, gives us

c= ,/g In(2A);

(this also satisfies the requirement ¢ > 2 as we know A = w(1); otherwise, we can find an independent set of
size Q(n) in the graph using the greedy algorithm).

To conclude, we now have

1 1
ElIl Z2n- . e~ 3 In(28) (by our choice of the parameter c)
2,/2In(28) 2V

n
:Q _—
(A1/3 : logA> ’

as desired. This concludes the proof of Theorem 2.

Remark. Let us put this result in the context of the simple algorithm of Section 2.1. Define
p:=Pr(N(0,1) > ¢),
for ¢ > 2 to be determined later. Given that “effectively” (although not accurately), for any =z > 1,
Pr(N(0,1) > z)~e /2,
we can “almost” say that
Pr(N(0,1) > 2¢) ~ e~ (29%/2 = (6—02/2)4 ~ pt.
Thus, going through the calculations of Section 2.1, we get
E|l|Zn-p—nA-p,

which suggests we should set p ~ A~/3 and get E Il 2 n/A1/3. This is exactly what our actual
argument did modulo fixing these informal approximation-terms with actual bounds.

But going back to Section 2.1, there, we saw that naive sampling is enough to ensure each vertex
joins S with probability p and each edge joins S with probability p? (for some p). The new rounding
scheme now ensures that while each vertex still joins S with probability p, each edge joins S with
probability ~ p?*, so a much lower probability. In other words, looking at the probabilities defined by
the SDP, there is a very negative correlation between the choice of vertices on endpoints of an edge.
This was the key source of improvement in this algorithm compared to that of Section 2.1.

References

[KMS98] David R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by semidefinite
programming. J. ACM, 45(2):246-265, 1998. 4

[Wig83] Avi Wigderson. Improving the performance guarantee for approximate graph coloring. J. ACM,
30(4):729-735, 1983. 3

	1 3-Coloring Problem
	1.1 Independent Sets and Coloring

	2 Finding Large Independent Sets in 3-Colorable Graphs
	2.1 A Simple Randomized Algorithm
	2.2 A Better Algorithm Tailored to 3-Colorable Graphs
	2.3 Finding Independent Sets via SDPs
	2.3.1 Rounding SDP (3) via random separators

