
CS 466/666: Algorithm Design and Analysis University of Waterloo: Fall 2024

Lecture 7
September 26, 2024

Instructor: Sepehr Assadi

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Topics of this Lecture

1 Karger-Klein-Tarjan Algorithm for MST 1

1.1 Preliminaries . 2

1.2 The KKT Algorithm . 2

2 A Detour: Optimal Algorithms with Unknown Runtime
(Optional Topic) 4

1 Karger-Klein-Tarjan Algorithm for MST

In the previous lecture, we went over the basics of the MSTs, the classical algorithms for it, and then saw
the Fredman-Tarjan algorithm that solves this problem deterministically in O(m log∗(n)) time. While for
all practical purposes, this is as good as a linear time algorithm, mathematically speaking, log∗(n) still goes
to +∞ with n, no matter how slowly, and thus, this runtime is still truly ω(m).

In this lecture, we will go over an algorithm for this problem due to Karger, Klein, and Tarjan [KKT95],
which runs in O(m) time but it is randomized, i.e., its O(m) runtime is in expectation.

Theorem 1 ([KKT95]). There is a randomized algorithm for the minimum spanning tree problem that runs
in O(m) time in expectation and with high probability.

In this lecture, we only prove the runtime of the algorithm in expectation (although extending it to a
with high probability bound is quite simple also). Before moving on, we recall the following two key rules in
the design of MST algorithms:

Cut Rule: In any graph G = (V,E), the minimum weight edge e in any cut S always belongs to the
MST of G. This rule allows us to determine which edges to include in the MST.

Cycle Rule: In any graph G = (V,E), the maximum weight edge e in any cycle C never belongs to
the MST of G. This rule allows us to determine which edges to exclude from the MST.

The general idea behind the Karger-Klein-Tarjan algorithm (henceforth, KKT algorithm) is to use the
cycle rule to get rid of most edges of the graph quickly, namely, sparsify the graph, and then solve the
problem recursively on this sparser graph. To present this algorithm, we need some preliminaries first.

1

1.1 Preliminaries

The following definition is key to the design of KKT algorithm.

Definition 2. Fix any graph G = (V,E) and any forest F that is a subgraph of G. We say that an
edge e ∈ E \F is F -heavy if adding e to F results in a cycle and e is the maximum weight edge of that
cycle. We refer to any other edge as an F -light edge.

The following observation is a direct corollary of the cycle rule and the definition of F -heavy edges.

Observation 3. For any graph G, any forest F that is a subgraph of G, and any F -heavy edge e, the MST
of G− e is the same as the MST of G.

How do we use Observation 3 in the algorithm? Suppose first that F is the MST of G; then every edge
e ∈ G \ F is F -heavy and thus can be neglected when computing the MST of G. Obviously however, this is
not helpful as we need to first compute the MST of G. But, what if we have some other forest F which is
easier to compute than the MST? Then, Observation 3 tells us that we can still neglect every F -heavy edges
without any worry. Thus, in order to find the MST of G, we can first try to quickly find “some approximate”
forest F , with the key property that most edges of the graph are F -heavy, and then recursively solve the
problem on the remaining few F -light edges. This is precisely what KKT algorithm does.

There is one more missing ingredient in the above approach. Given a graph G and a forest F , how quickly
can we find the set of F -heavy edges? It is easy to check if a single each is F -heavy or not in linear time.
But, doing this for every edge this way separately leads to a quadratic time algorithm which is way above
our budget. Nevertheless, a surprising fact is the we can find all F -heavy edges in linear time as well!

Theorem 4 ([Kom85, DRT92, Kin97]). There is an algorithm that given any graph G and any forest F
which is a subgraph of G, outputs the set of all F -heavy edges in O(m+ n) time.

We will not cover this algorithm and just take it for granted. We only mention that there is a great deal
of algorithmic work on this problem (typically under the name of MST verification algorithms) with the goal
of finding simpler algorithms, but it seems we still have not reached this goal.

1.2 The KKT Algorithm

We are now ready to present the KKT algorithm. We note that given the recursive nature of the algorithm
and since it can be called on not-necessarily connected graph, we use the term Minimum Spanning Forest
(MSF) throughout which refers to a collection of MSTs on each connected components of the graph.

Algorithm 1 (Karger-Klein-Tarjan Algorithm).

(i) Run 3 rounds of the Boruvka’s algorithm and let G′ be the contracted graph obtained from G. a

(ii) Sample each edge of G′ independently with probability 1/2 to obtain a graph G1. Recursively
find the MSF of G1 and call it F .

(iii) Use the algorithm of Theorem 4 to find all F -heavy edges of G′ and let G2 be the graph obtained
from G′ after removing them.

(iv) Recursively find the MSF of G2 and return it as the answer.

aThis is a simple preprocessing step to reduce the number of vertices slightly

2

Proof of Correctness. The correctness of this algorithm is actually quite easy to proof. The first step is
correct due to the correctness of Boruvka’s algorithm established earlier. Regardless of the choice of G1 and
the resulting MSF F , we have by Observation 3 that none of the edges removed from G to obtain G2 can be
part of the MSF of G. Thus, finding the MSF of G2 is the same as the MSF of G to begin with, and thus
the algorithm returns the correct answer.

Runtime Analysis. The key to the analysis of the algorithm is to show that the graph G2 actually has
few edges. In other words, after picking the MSF F on (almost) half the edges, the set of F -heavy edges
more or less contains all but O(n) edges of the graph.

Lemma 5. The expected number of F -light edges in Algorithm 1 is at most 2 ·(n′−1) where n′ is the number
of vertices in G′.

Proof. Notice that even though we are computing MSF of G1 using a recursive call to the KKT algorithm,
given that MSF is unique (recall our assumption on distinct weights from the last lecture), for the purpose of
the analysis, we can assume F is instead computed using Kruskal’s algorithm. This is because the distribution
of F is identical in both cases.

Now, let us examine how Kruskal’s algorithm works. Suppose we sort all edges of G′ (and not only G1)
in increasing order of weight and call them e1, . . . , em′ . Consider the following process. We go over these
edges one by one call Fi the subgraph of F maintained so far when visiting the edge ei. We check if adding
ei to Fi creates a cycle or not. If it does, then whether or not ei is sampled in G1 we are not going to pick
this edge in the MSF F so we just ignore it. But, if it does not, it is only now that we check whether ei
belongs to G1 even or not. This means that only now we toss the coin to decide if ei joins G1 or not. Notice
that, despite all these seeming changes, we actually have not changed the distribution of F in anyway in
this process (we can toss a coin for neglected edges and include them in G1 if we want just to make sure the
distribution of G1 remains identical, although this does not change the distribution of F in any way).

Finally, note that all the edges ignored in this process are certainly F -heavy because they created a cycle
even with a subgraph of F and are the heaviest weight edge of that cycle. Thus, the number of F -light edges
is at most equal to the number of edges that we did not ignored, in other words, the edges that we tossed a
coin for. At the same time, whenever we toss a coin, with probability half, we add the edge to the forest F .
Moreover, the forest F cannot have more than n′ − 1 edges. So, the expected number of coin tosses we can
have before collecting n′ − 1 edges in F is 2 · (n′ − 1), proving the lemma.

We are now ready to conclude the proof. Firstly, let A(G, r) denote the runtime of the algorithm on a
graph G when all the random bits we use is r (note that A(G, r) is deterministically fixed after we fixed the
randomness). We have,

A(G, r) 6 c · (m+ n) +A(G1, r) +A(G2, r),

for some absolute constant c > 0 which is the hidden constant in O(m + n) time needed for Boruvka’s
algorithm in the first step, the use of Theorem 4, and general bookkeeping throughout the algorithm ignoring
the recursive calls. Thus, the expected runtime of the algorithm on a graph G is

E
r
[A(G, r)] 6 c · (m+ n) + E

r
[A(G1, r)] + E

r
[A(G2, r)]. (1)

Now, define T (m,n, r) as the worst-case runtime of the algorithm on a graph with m edges, n vertices, and
for the randomness r. We prove inductively that

E
r
[T (m,n, r)] 6 2c · (m+ n).

For any graph H, let m(H) and n(H), denote the number of edges and vertices in H, respectively. Also,
let r1 be the randomness used out of the recursive calls and r2 be the randomness of the recursive calls.
Given Eq (1), we have,

E
r
[T (m,n, r)] 6 c · (m+ n) + E

r
[T (m(G1), n(G1), r)] + E

r
[T (m(G2), n(G2), r)]

3

6 c · (m+ n) + E
r1

[
E
r2

[T (m(G1), n(G1), r2)]

]
+ E

r1

[
E
r2

[T (m(G2), n(G2), r2)]

]
(the recursive calls themselves only depend on r2 (after fixing their input based on r1))

6 c · (m+ n) + E
r1

[2c · (m(G1) + n/8)] + E
r1

[2c · (m(G2) + n/8)]

(by induction hypothesis and as 3 rounds of Boruvka’s algorithm reduces vertices by a factor of 8)

6 c · (m+ n) + 2c · (m/2 + n/8) + 2c · (2n/8 + n/8)
(as E[m(G1)] = m′/2 6 m/2 trivially and E[m(G2)] 6 2n′ 6 2n/8 by Lemma 5)

= 2c ·m+ c · (n+ n/4 + 3n/4) = 2c · (m+ n),

proving the induction step. Thus, the runtime of the algorithm is O(m+ n) in expectation.

This concludes the proof of Theorem 1 and our study of MST algorithms in this course.

Remark. The KKT algorithm provided the first linear time algorithm for MSTs but at the “cost”
of randomization. Hence, the search for a deterministic algorithm for this problem still continues
and to date we do not know such an algorithm. The current best deterministic algorithm is due to
Chazelle [Cha00] with runtime O(m · α(n)) where α(n) is a certain Inverse Ackerman function (this is
an extremely slowly growing algorithm and for any reasonable number—say, number of atoms in the
universe—is bounded by 5; however, it is not constant still). There is also the algorithm of Pettie and
Ramachandran [PR02] that is provably optimal (in a very strong sense) but its runtime is not known. .

A longstanding open question in the area of graph algorithms is to obtain a deterministic
algorithm for MSTs that also runs in O(m) time.

2 A Detour: Optimal Algorithms with Unknown Runtime
(Optional Topic)

How can we have an algorithm that we can provably is optimal without even knowing its runtime (e.g., like
the one in [PR02] for MSTs)? Here, we show a simple solution to this problem from the computational
complexity literature due to Jones [Jon97].

Let P be any problem in mind. Suppose we have an algorithm that given an input x and a (supposed)
solution y, can verify if y is indeed a solution to x for the problem P . For an input of length n, let V er(n)
denote the worst-case runtime of this algorithm. Moreover, let Opt(n) denote the runtime of the optimal
algorithm for P on n-length inputs (which is unknown to us). Now, consider this algorithm A on input x:

1. List all computer programs (or Turing Machines) in some order C1, C2,

2. Run x on each of these programs in the following order: for every two steps of running x on Ci, run
one step on Ci+1 (so, a diagonalization-type approach).

3. If a program Ci terminates, run the verification algorithm to check its solution and terminate A if this
is a valid solution; however, we “wait” for Ci to accumulate at least V er(n) steps (in Line 2 above)
before we run the verification algorithm (by letting the program have “idle” steps after it is finished).

Let Co be the optimal program for the problem P . We thus know that A terminates for sure after it has run
Co for at most Opt(n) steps. During each of these steps, Co−1 has run two steps, Co−2 has run four steps,
all the way to C1 that has run 2o steps. Thus, the entire time spent on the programs C1, . . . , Co−1 is also
at most 2o ·Opt(n). The programs Co+1, . . . , also run Opt(n)/2 steps, Opt(n)/4 steps, and so on, hence the
total time spent over all programs is O(2o ·Opt(n)).

4

In addition, at most o+ logOpt(n) programs have run any steps and thus the total number of times we
could have run the verification algorithm is O(o+logOpt(n)) times. However, we also forced the algorithm to
only run the verification on programs that have already spent V er(n) steps themselves. If Opt(n) 6 V er(n)
(which is quite unlikely in general but not impossible if the answer is not unique), then it means that Co

will be the last program that runs the verification algorithm also and thus the total runtime of verification
steps also, by the same argument as above, is O(2o · V er(n)). If Opt(n) > V er(n), let v be such that
Opt(n) ≈ V er(n)/2v. Then, only programs Co+1, . . . , Cv will be running the verification algorithm (after
Co) and thus their total verification time is O(v · V er(n)) = O(v ·Opt(n)/2v) = O(Opt(n)).

All in all, the algorithm A takes O(2o · (Opt(n) + V er(n))) time. But now notice that no matter how
gigantic o can be, it is still only a constant with respect to the input size! Thus, the runtime of algorithm
A is O(Opt(n) + V er(n)), which is asymptotically optimal (modulo the extra verification time, which as we
said earlier, is very rarely more than the optimal algorithm time anyway).

It is worth examining this result a bit more: to some extent, it says that we already know how to design
an algorithm for every possible problem that is asymptotically as good as it gets. Of course, in reality, this
algorithm is never going to work for solving almost any problem given the astronomical hidden constants
that it creates1. So, in my humble opinion, this “algorithm”, more than anything, points to an inherent
flaw of asymptotic analysis and is a good reminder to not loose sight when designing algorithms by focusing
only on asymptotics of the algorithms, without other constraints such as simplicity, “elegance”, and most
importantly, a deeper understanding of the underlying problem – if we only care about asymptotic optimality,
we already know how to achieve that for any problem!

Before concluding this detour, we note that the result of [PR02] is quite stronger than the above generic
algorithm and does not suffer from astronomical constants; in fact, the runtime of their algorithm is propor-
tional to optimal number of comparisons, with a reasonable hidden constant, and not only optimal runtime.

References

[Cha00] Bernard Chazelle. A minimum spanning tree algorithm with inverse-ackermann type complexity.
J. ACM, 47(6):1028–1047, 2000. 4

[DRT92] Brandon Dixon, Monika Rauch, and Robert Endre Tarjan. Verification and sensitivity analysis of
minimum spanning trees in linear time. SIAM J. Comput., 21(6):1184–1192, 1992. 2

[Jon97] Neil D. Jones. Computability and complexity - from a programming perspective. Foundations of
computing series. MIT Press, 1997. 4

[Kin97] Valerie King. A simpler minimum spanning tree verification algorithm. Algorithmica, 18(2):263–
270, 1997. 2

[KKT95] David R. Karger, Philip N. Klein, and Robert Endre Tarjan. A randomized linear-time algorithm
to find minimum spanning trees. J. ACM, 42(2):321–328, 1995. 1

[Kom85] János Komlós. Linear verification for spanning trees. Comb., 5(1):57–65, 1985. 2

[PR02] Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning tree algorithm. J. ACM,
49(1):16–34, 2002. 4, 5

1Suppose, very generously, that the optimal algorithm for a problem needs only 100 bits to write down. This means its
program is going to appear roughly in a position 2100 in the list of all programs. This in turn means that the hidden constant in

the above approach is something like 22
100

. Compare this number with the (crude) estimate of 10100 on the number of atoms
in the universe to see how astronomical the hidden constants of O-notation is...

5

	1 Karger-Klein-Tarjan Algorithm for MST
	1.1 Preliminaries
	1.2 The KKT Algorithm

	2 A Detour: Optimal Algorithms with Unknown Runtime (Optional Topic)

