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1 Minimum Spanning Trees

We now begin the second half of the course, starting with the problem of finding a minimum spanning
tree (MST) of weighted graphs. You have most likely seen this course in your previous algorithms course
and you can also refresh your background on this problem by checking Erikson’s Algorithms book (or any
other textbook on algorithms that you like). We will provide a quick review in the following.

Let G = (V,E) be an undirected connected graph with positive weights w : E → R+ on its edges.
Recall that a spanning tree of a connected subgraph G is any subgraph of G which is a tree – a tree itself
is a connected subgraph which has no cycle. With a slight abuse of notation, for any tree T , we write
w(T ) :=

∑
e∈T w(e) to denote the sum of the weights of edges in T .

Problem 1 (Minimum Spanning Tree (MST)). The minimum spanning tree (MST) problem is defined
as follows: Given a graph G = (V,E) and positive edge-weights w : E → R+, find a spanning tree T of G
with minimum weight w(T ).

Distinct-weights assumption: We can assume without loss of generality that the edge weights w(e) for
e ∈ E are distinct. This can be achieved for instance by using a consistent tie-breaking rule using the IDs of
the edges. A standard consequence of this assumption is that the MST of any given graph G with distinct
weights is unique.

Proposition 1. In any graph G = (V,E) with weights w : E → R+, if the weights are distinct, then the
MST of G is unique.
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Proof. Proof by contradiction: suppose there are two different MSTs T1 and T2 for G. Let e1 be any edge
in T1 not in T2. Suppose we add e1 to T2. This will create a cycle C in T2 ∪ {e1}. We consider two cases:

• Case 1: There is at least one edge e2 6= e1 in C with w(e2) > w(e1): Remove e2 from T2 and instead
add e1. Let T := T2 ∪ {e1} \ {e2}. This is also a spanning tree of G but now w(T ) < w(T2) as we
removed a “heavy” edge and brought in a “lighter” one. This is a contradiction with T2 being a MST
so this case cannot happen.

• Case 2: Every edge in the cycle C has weight higher than e1. Remove e1 from T1 to create two
connected components S and V \ S. Because C was a cycle with e1, there is still a path in C from
the endpoints of e1 without using this edge and that path has at least one edge, say, f , between S
and V \ S. Let T := T1 \ {e1} ∪ {f}. This is also a spanning tree of G but now w(T ) < w(T1), a
contradiction with T1 being a MST, so this cannot happen either.

Given the edge-weights are distinct, the only possible cases are the above and we showed neither can happen,
hence proving the statement by contradiction.

Consequently, throughout the course, unless explicitly stated otherwise, we assume the edge-weights are
distinct and thus, by Proposition 1, MST of the input graph is unique. In particular, we can refer to
it as the MST of G (instead of a/some MST of G) which makes the analysis (mostly its exposition) easier.

1.1 The Basics Rules of MSTs

There are two general rules that are used quite frequently in the design of essentially every MST algorithm.
You have most likely seen these rules before but perhaps not in this exact formulation. You may want to
refer to Figure 1 for a simple illustration of the proofs of these rules.

Cut Rule: In any graph G = (V,E), the minimum weight edge e in any cut S always belongs to the
MST of G. This rule allows us to determine which edges to include in the MST.

Proof. Suppose, by contradiction, that S ⊆ V is a cut in G such that its minimum weight edge e is not part
of the MST T . Add e to T which creates a cycle C and this cycle should have another edge f crossing the
cut S. Consider T ′ := T ∪{e}\{f}, which is still a spanning tree of G but has w(T ′) < w(T ) as w(e) < w(f)
since e is the minimum weight edge of the cut S. This is a contradiction with T being the MST of G.

Cycle Rule: In any graph G = (V,E), the maximum weight edge e in any cycle C never belongs to
the MST of G. This rule allows us to determine which edges to exclude from the MST.

Proof. Suppose, by contradiction, that C is a cycle in G such that its maximum weight edge e is part of the
MST T . Remove e from T to get two connected components, and find an edge f 6= e in C that connects back
these components. Consider T ′ := T \ {e} ∪ {f}, which is still a spanning tree of G. We have w(T ′) < w(T )
as w(f) < w(e) since e is the maximum weight edge of cycle C. This contradicts T being the MST.

2 Refresher on the Classical Algorithms for MSTs

This section reviews classical algorithms for MSTs—Kruskal’s, Prim’s, and Boruvka’s algorithms—that you
most likely have seen in your previous courses (at least some subset of them1). You can safely skip this
section and continue to the next one if you are already familiar with these algorithms.

1Sadly, Burovka’s algorithm seems to be missing from many standard textbooks on algorithms even though I think it is
actually simpler than both the other two alternatives!
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(a) Here, e is the minimum weight edge of the cut
shown by red dashed line and thus should replace f
in the MST. The cycle C is the thick (blue, green)
edges and the dashed line for e.

(b) Here, e is the maximum weight edge of the cycle
shown by the thick (blue, green, red) edges. Remov-
ing e from the MST creates two connected compo-
nents that should be connected by the edge f instead.

Figure 1: An illustration of the proofs of cut rule and cycle rule.

2.1 Kruskal’s Algorithm

To state Kruskal’ algorithm, we first need to review the union-find data structure.

Definition 2. A union-find is a data structure supporting these operations on input set {1, 2, . . . , n}:

• initialize: starts the data structure by creating n disjoint sets S1, . . . , Sn where Si := {i};

• union(i, j): Given index of two sets i, j, replace Si and Sj with Si ∪ Sj and the index of the new
set with min {i, j};

• find(e): given an element e ∈ [n], returns the index of the set Sj where e ∈ Sj .

There are different ways of implementing a union-find data structure and this problem was studied
extensively in 60’s, 70’s, and 80’s and at this point is extremely well-understood. We will not go over these
implementations in this course2. For our purpose, we can use the simplest (non-trivial) implementation of
this data structure that implements initialize in O(n) time and union and find in O(log n) time.

Kruskal’s algorithm works by iterating over the edges in the order of their weights and include every edge
that does not create a cycle; this is done by maintaining the connected components in a union-find data
structure and only pick an edge if it connects two different components and merge those components.

Algorithm 1 (Kruskal’s Algorithm).

(i) Create a union-find data structure D on n vertices in V by running initialize. Let T = ∅. Sort
the edges of G in increasing order of their weights.

(ii) For i = 1 to m in the sorted ordering of edges:

(a) Let ei = (ui, vi). Let a = D.find(ui) and b = D.find(vi).

(b) If a = b continue to the next edge; otherwise, T ← T ∪ {ei} and run D.union(a, b).

(iii) Return T .

2But you are encouraged to check this data structure online for mind boggling aspects of these implementations
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Proof of Correctness: The fact that Algorithm 1 returns a spanning tree is immediate: any edge is
ignored only if it creates a cycle (as it is inside a single connected component) and thus non-ignored edges
should maintain the connectivity of the input graph. To see that T is the MST of G we can apply the
cycle rule: any edge e ignored by the algorithm has both its endpoints inside a single connected component
and thus forms a cycle inside that component; given the sortedness of the edges, this ignored edge is the
maximum weight of this cycle, and thus by the cycle rule cannot be part of the MST. So, any ignored edge
cannot be part of the MST and thus the non-ignored edges T should form the MST.

Runtime Analysis: The first line of the algorithm takes O(m logm) = O(m log n) time (as n 6 m 6 n2

and so log n = Θ(logm)) to sort all the edges (using, say, merge sort). Initializing the union-find takes O(n)
time and each of its operations takes O(log n) time, so each iteration of the for-loop also takes O(log n)
time, making the total runtime of the algorithm O(m log n). Finally, it is worth pointing out that we can
implement for-loop much faster almost (but not quietly) in linear time; however that will not reduce the
runtime as we still need to sort the edges in O(m logm) time in general.

2.2 Prim’s Algorithm

We now consider another textbook algorithm for MSTs, the Prim’s Algorithm. To do so, we need to recall
the definition of priority queue data structures.

Definition 3. A priority queue is a data structure Q supporting the following operations on a universe
U of elements:

• insert(e, v): Given an element e ∈ U and a value v ∈ R, inserts the element e with value v in Q;

• decrease-key(e, v): Given an element e ∈ U and a value v ∈ R, changes the value of e to minimum
of v and its old value;

• extract-min(): Removes the element e with the smallest value v from H and return (e, v).

The Kruskal’s algorithm is about maintaining multiple connected component of the forest F simultane-
ously and updating them (merge them together in the algorithm). On the other hand, Prim’s algorithm
only contains one non-trivial connected component (all other components are singleton vertices) which we
“grow” until it contains the entire graph. The strategy for growing the component is also very basic: we
simply pick the edge with minimum weight that goes out of this component in every step.

Algorithm 2 (Prim’s Algorithm).

(i) Pick an arbitrary vertex s of the graph. Let T be a subgraph of G consisting of only the vertex
s for now and Q be a priority queue with keys being vertices in V and key-values being an edge
edge(v) and its weight (used for comparisons in decrease-key and extract-min operations).

(ii) For every vertex v ∈ N(s) set edge(v) = (s, v) and run Q.insert(v, w(edge(v))).

(iii) For n− 1 steps:

(a) Let v be the vertex with the smallest value in Q by running Q.extract-min and edge(v) be
the edge of v with weight equal to value of v in Q. Add vertex v and the edge edge(v) to T .

(b) For any vertex u ∈ N(v), if u /∈ T update Q.decrease-key(u,w(uv)) (if u is not in Q, we
instead run Q.insert(u,w(uv))).

(iv) Return T as the MST of G.
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Proof of Correctness: There are two steps in proving the correctness of Prim’s algorithm: (1) it outputs
a spanning tree, and (2) the weight of this spanning tree is minimum, namely, it is an MST. The proof of
first part is simply as follows: the graph T created by the algorithm consists of n− 1 edges (given the n− 1
steps of the for-loop), and does not have a cycle as every edge added is incident on a vertex of degree v at
the time (the vertex included in T ). Thus T is a spanning tree of the input.

To prove T is an MST we apply the cut rule. Let e be an edge added to T by the algorithm. Let C
be the connected component of T before adding the edge e. Since all vertices in C have been marked, all
edges incident on them have been added to Q. This means that all edges between T and N(T ), the set of
neighbors of T , have been included in Q (by way of running Q.decrease-key). Since e has the minimum
weight inside Q, this means that it has the minimum weight among all edges between T and N(T ). Thus, e
is the minimum weight edge of the cut T and hence, by the cut rule e belongs to the MST. This proves all
n− 1 edges inserted to T belong to the MST, hence T is the MST of the input graph.

Runtime Analysis: The algorithm requires O(n) insert operation, O(m) decrease-key, and O(n)
extract-min operations (and additionally takes O(m + n) time for standard bookkeeping). Thus, if we
implement the priority queue via a min-heap (a.k.a. a binary heap) that runs in each operation in O(log |Q|)
time, we get that the total runtime of the algorithm is O(m log n).

2.3 Boruvka’s Algorithm

Finally, we get to Boruvka’s algorithm, which, as far as I know, is the oldest algorithm for MSTs and in my
opinion is also simplest as it does not require even any particular data structure. It works by start having
each vertex its own connected component and then proceeds in rounds. In each round, the algorithm picks
the minimum weight edge going out of each component, add them to the tree, and merge those components
to create larger connected components. Then, it goes to the next round and continues this until the whole
graph is a single connected component.

Algorithm 3 (Boruvka’s Algorithm).

(i) Start by creating a set S(v) = {v} for each vertex v ∈ V and an empty subgraph T = ∅ initially.

(ii) In each round:

(a) For each set S, find the minimum weight edge going out of S, i.e., min {w(u, v) | u ∈ S, v /∈ S}.
Let eS be the edge computed for the set S.

(b) Add every edge eS = (u, v) to the subgraph T and merge the sets of S(u) and S(v) into a
single set S.

(iii) Repeat the rounds until all vertices are merged into a single set and return T .

Proof of Correctness: As before, we first argue that T is a tree. Given that the maintained sets in the
algorithm are connected components of T , the subgraph T is connected. Any edge added by the algorithm
in a round also connects two different connected components. The only concern is that what if the edges
added in the same round form a cycle? But, this cannot happen because the weight of the picked edges in
any path should be strictly decreasing (as in, if u picks an edge to v, but v picks an edge to w instead, then
w(u, v) > w(v, w)) and thus the edges cannot form a cycle. As such, T is indeed a tree.

To argue T is the MST of G, we again apply the cut rule: any edge inserted by the algorithm is the
minimum weight edge going out of its connected component (hence the cut) and thus by the cut rule belongs
to the MST.

Runtime Analysis: Each round of the algorithm takes O(m) time as it simply involves going over all
edges of the graph twice (once from each endpoint). The number of rounds is also O(log n) as we argue next.
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In each round, each connected components gets merged with at least another one, and thus the number of
components decreases by, at least, a factor of two. Hence, after at most log n rounds, only one components
remain and the algorithm terminates. Hence, the total runtime is O(m log n).

This concludes our summary of the background on classical algorithms for MST. You can find a lot more
information in Erikson’s Algorithms book or any other textbook on undergraduate-level algorithms.

3 Fredman and Tarjan’s Algorithm in O(m log∗(n)) Time

We now go over one of the earliest “advanced” algorithms for MST presented by Fredman and Tarjan
in [FT87] as part of—and one key application of—their introduction of Fibonacci heaps. The Fredman-
Tarjan algorithm runs in O(m log∗(n)) time, where log∗(n) is the number of times we need to take log(·)
until the number reaches one3. The algorithm is quite simple and even more so elegant and beautiful.

Let us start by defining Fibonacci heaps that implement priority queues (Definition 3) faster than a
typical min-heap.

Proposition 4 ([FT87]). There is a data structure H, called a Fibonacci heap, that implements a priority
queue (Definition 3) such that insert and decrease-key operations takes O(1) and extract-min operation
takes O(log |H|) amortized time where |H| denotes the maximum number of elements in the heap during the
entire execution.

The construction of Fibonacci heaps is not particularly simple and we will not go over that in this class.
Instead, we show how to use this data structure to get faster MST algorithms.

3.1 Warm-Up: Improving Prim’s Runtime via Fibonacci Heaps

Using Fibonacci heaps in Prim’s algorithm in place of its min-heap immediately leads to improving its
runtime. As stated, Prim’s algorithm involves O(n) insert operations, one for each vertex of the graph,
O(m) decrease-key operations, one each time we visit an edge of the graph, and O(n) extract-min

operation, one each time we mark a new vertex. Thus, using Fibonacci heaps, by Proposition 4, the runtime
of Prim’s algorithm actually reduces to O(m + n log n) time.

As long as the input graph is even slightly dense, i.e., m = Ω(n log n) edges, Prim’s algorithm equipped
with Fibonacci heaps runs in linear-time in the input size which is optimal. But, when m is Θ(n) itself, then
this algorithm does not provide any improvement over the runtime of the original Prim’s algorithm.

3.2 The Fredman-Tarjan Algorithm

We next go over Fredman-Tarjan algorithm that improves this runtime for all values of m and prove the
following theorem.

Theorem 5 ([FT87]). There is a deterministic algorithm for the minimum spanning tree problem that runs
in O(m log∗(n)) time.

The key observation behind the Fredman-Tarjan algorithm is that the runtime of Prim’s algorithm with
a Fibonacci heap depends on the size of the heap, which itself is the equal to the frontier of the graph search,
namely, vertices waiting in the priority queue to be examined next. So, instead of growing the frontier to
become “too much to handle”, we can limit its size and instead run Prim’s algorithm for another starting
vertex and keep doing this – one then needs to recombine these partial trees recursively.

We now state the formal algorithm.

3This is an extremely slow growing function and even if we take n to be the number of atoms in the entire universe, log∗(n)
will be at most 6 still!
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Algorithm 4 (Fredman-Tarjan Algorithm [FT87]).

• The algorithm runs in rounds. In round i, it works with a graph Gi = (Vi, Ei) with ni vertices
and mi edges which is obtained from G by contracting some vertices chosen in previous rounds;
we take G1 = G at the beginning. In round i, it also use a threshold ti on the size of the Fibonacci
heaps it uses which we set to be ti := 22m/ni (note that the nominator in the exponent is m
independent of the round but the denominator depends on the round).

• In each round i, the algorithm does as follows:

(i) Start with every vertex v ∈ Vi being unmarked.

(ii) Pick an arbitrary unmarked vertex and run Prim’s algorithm from it to get a tree Tv. In
particular, use Fibonacci heaps on the neighborhood of Tv, defined as

N(Tv) := {u ∈ Vi \ Tv | ∃w ∈ Tv such that u ∈ N(w)} ;

in each step, take the vertex with minimum edge-weight from N(Tv) (via extract-min

operation of the heap) and expand Tv from that vertex (note that vertices in N(Tv) can be
marked already but we still include them in N(Tv)).

(iii) If at the end of each step of Prim’s algorithm in the previous line, |N(Tv)| > ti, or that the
next vertex to explore is already a marked vertex (i.e., Tv just got an edge to an already
marked vertex), then terminate this branch of Prim’s algorithm, mark all vertices in Tv, and
go to line (ii). Continue as long as there is any unmarked vertex left.

(iv) Let C1, C2, C3, . . . be the connected components created by different Tv’s picked in the above
steps. Create Gi+1 for the next round by contracting these components in Gi into a single
vertex. Then go to the next round and continue this until the whole graph is contracted to a
single vertex and we have a single spanning tree (obtained by combining the trees computed
in different steps).

Proof of Correctness. The proof of correctness of the algorithm is pretty simple and follows from the
correctness of Prim’s and Boruvka’s algorithms. We first have that Algorithm 4 always finds a spanning tree
of the input graph the same way Boruvka’s algorithm always finds a spanning tree. We then have that each
edge e added to the tree T is a minimum weight edge of some cut and thus we can apply the cut rule to
argue this edge belongs to the MST. The cut itself is found by considering the connected component of G
on the set of vertices in T (and possibly by un-contracting the vertices in rounds > 1), the same exact way
as in Prim’s algorithm.

Runtime analysis. We now switch to the runtime which is the main part of the analysis for this new
algorithm. Each round involves visiting each edge at most twice (from either side) and inserting/updating
their weights into a Fibonacci heaps; as well as removing each vertex from the heap at most once via the
extract-min operation (after that, the vertex is marked one way or another and will not be inserted to the
heap again). As size of each heap is capped at ti by the construction of the algorithm, the total runtime of
the round i, by Proposition 4, is O(mi +ni · log ti) time. Given the choice of ti := 22m/ni , this total runtime
is O(mi + m) time. Finally, as mi 6 m, we have that Algorithm 4 takes O(m) time in each round.

Consequently, to bound the total runtime of the algorithm, we only need to bound the number of rounds
before the algorithm contract the entire graph into a single connected component. This is done using the
following key lemma, that shows the thresholds are growing exponentially in each round.

Lemma 6. For every round i of Algorithm 4, we have ti+1 > 2ti .

Proof. We are going to bound ni+1 as a function of ti and use the fact that ti+1 = 22m/ni+1 to conclude the
proof. By definition, ni+1 is equal to the number of connected components found at the end of the round.
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While we are truncating Prim’s algorithm to make its heap small, we still do not expect to have “very small”
components using the threshold we are using.

In particular, we claim that, for every component C in round i:∑
v∈C

degGi
(v) > ti; (1)

namely, sum of the degrees of vertices (in Gi) in a component C is at least equal the threshold. The
proof of Eq (1) is as follows. For each sub-tree T created in the algorithm in round i and each vertex v
extracted from the heap (i.e., marked) during its construction, we put at most degGi

(v) vertices in the heap
corresponding to T (we may insert less if those vertices are already inserted). This means that size of the
heap can only increase to sum of the degrees of extracted/marked vertices. Thus, if |N(T )| > ti, we know
that all vertices in T will be marked and so collectively they have contributed at least ti to the sum of
the degrees, hence proving Eq (1). On the other hand, if we terminate the search because we connected
to another marked vertex, then, by the prior argument (or rather inductively) sum of the degrees in that
component was already ti and we are only adding these vertices to that component which can only increase
the total degrees. This proves Eq (1).

Now, let C1, . . . , Cni+1 be the connected components found in this step (recall that ni+1 is equal to the
number of these connected components). We have,

2mi =
∑
v∈Vi

degGi
(v) (by the handshaking lemma)

=

ni+1∑
j=1

∑
v∈Cj

degGi
(v)

(by partitioning Vi into C1, . . . , C` as the algorithm continues until it marks all vertices)

> ni+1 · ti. (by Eq (1))

Thus, we have that

log ti+1 =
2m

ni+1
>

2mi

ni+1
> ti,

and hence ti+1 > 2ti , concluding the proof.

By Lemma 6, in round i of the algorithm, the value of ti is at least a tower of twos of length i (i.e.,
two to the power two to the power two ... for i times). This means that after O(log∗(n)) rounds, the value
of ti will be at least n and in that round, we are only running Prim’s algorithm once and so the algorithm
terminates surely in that round. Thus, we conclude Algorithm 4 takes O(m log∗(n)) time.

This concludes the proof of Theorem 5.
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