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1 Balls and Bins Experiments

We continue our study of probabilistic analysis of algorithms and concentration inequalities. We shall use
the following simple running example in this lecture to review “power” of different concentration inequalities.

Problem 1 (Maximum Load in Balls-and-Bins). We are give a collection of n balls and n bins. We
throw each ball independently to one of the bins chosen uniformly at random. We define the load of a bin
as the number of balls thrown to that bin in this experiment. What is the asymptotically maximum load of
a bin in this process with probability at least 2/3?

More precisely, our goal is to find the smallest possible upper T (n) (as a function of n) such that with
probability at least 2/3, the load of every bin in this process is O(T (n)).

Let us first see how we can simplify our analysis. The original question involves a quantifier for-all—as
in, every bin should have O(T (n)) balls. But, can we turn this into a for-each quantifier—for a fixed bin, say,
bin one, upper bound the load? It is easy to see that if we simply bound the load of a fixed bin with constant
probability, it cannot tell us anything meaningful about the maximum load across all bins1. However, if
we can bound the load of each bin with a much higher probability, then we can extend this to bound the
maximum load as well. In particular,

Pr (max load is > k) = Pr (load of bin 1 is > k OR load of bin 2 is > k OR · · · OR load of bin n is > k) .

But we can now use a very simple—but extremely helpful—inequality, the union bound, which is as follows.

Fact 1. For any two events A and B, Pr(A OR B) 6 Pr(A) + Pr(B).

1It is an easy calculation to see that with probability (1 − 1/n)n ≈ 1/e, the first bin receives zero balls but of course the
maximum load is not zero!
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So, applying union bound to the above terms gives us that

Pr (max load is > k) 6
n∑
i=1

Pr (load of bin i is > k) = n · Pr (a fixed bin, say bin one, has load > k) ;

in the last equality, we used the fact that the distribution of load of all bins is the same.

Consequently, if we define L to be the load of any fixed bin—say, bin one—then, to answer Problem 1,
we can instead find a function T (n) such that

Pr (L > T (n)) 6
1

3n
. (1)

Thus, for the rest of the proof, we will focus on solving this problem. Let us define indicator random variables
B1, . . . , Bn where for any i ∈ [n], Bi = 1 iff the i-th ball is sent to the fixed bin corresponding to L. As such,
we have L =

∑n
i=1Bi and hence, using the linearity of expectation,

E [L] = E

[
n∑
i=1

Bi

]
=

n∑
i=1

E [Bi] =

n∑
i=1

Pr (ball i is sent to bin one) =

n∑
i=1

1

n
= 1.

Thus, the question we are interested in is precisely a question concerning concentration inequalities. We
will thus apply a couple of different concentration inequalities to the random variable L to find out the best
approach to bound T (n). Before moving on however, an important remark is in order.

Remark. You may wonder why we consider simple tools like linearity of expectation or union bound as
extremely important. The main reason is that these tools allow us to reason about a complex random
variable—a one consisting of different components or and other random variables—by “breaking” them
down to simpler random variables and analyzing these simpler parts in isolation instead. This task
is much simpler than analyzing the probability distribution of the original complex random variable
directly (on this front, linearity of expectation is particularly appealing because it is an equality and
thus this process will actually find the tight answer to our problem).

1.1 Concentration Inequalities for Balls and Bins

Markov bound. Let us start by applying Markov bound from the previous lectures. Recall:

Proposition 2 (Markov bound). For any non-negative random variable X and b > 0,

Pr (X > b) 6
E [X]

b
.

For our purpose, we can thus have for any k > 1,

Pr (L > k) 6
E [L]

k
=

1

k
,

and thus to bound this probability with 1/3n, we need to take k = 3n – notice that this is entirely useless
because we only have n balls to begin with and so L 6 n happens with probability 1!

Chebyshev’s inequality. We can next try Chebyshev’s inequality. Recall:
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Proposition 3 (Chebyshev’s Inequality). For any random variable X and b > 0,

Pr (|X − E [X] | > b) 6
Var [X]

b2
.

To do so, we need to bound Var [L]. We have,

Var [L] = Var

[
n∑
i=1

Bi

]
=

n∑
i=1

Var [Bi] 6
n∑
i=1

E [Bi] = E [L] = 1,

where in the second equality, we used the fact that B1, . . . , Bn are independent and hence variance of their
sum is equal to their sum of variances. Thus,

Pr (L > k) 6 Pr (|L− E [L] | > k − 1) 6
Var [L]

(k − 1)2
=

1

(k − 1)2
.

This time, we will get something non-trivial: by setting k =
√

3n+1, we obtain that Pr(L > k) 6 1/3n which
is the bound we wanted. In other words, using Chebyshev’s inequality allows us to bound T (n) = O(

√
n).

While this is non-trivial, as we shall see this is still very far from the right bounds for the problem.

Chernoff bound. We now switch to one of the strongest concentration inequalities that we will encounter
in this course, the Chernoff bound. To be able to use Chernoff bound for bounding deviation of a random
variable, we need a much stronger knowledge than variance in Chebyshev’s inequality and expectation in
Markov bound; we now need to know that the random variable X is a sum of bounded-value independent
random variables. Formally,

Proposition 4 (Chernoff Bound). Suppose X1, . . . , Xn are independent random variables in [0, 1] and
X =

∑
iXi. Then, for any t > 1,

Pr (|X − E [X] | > t · E [X]) 6 2 · exp

(
− t · E [X]

3

)
,

and, for any ε ∈ (0, 1],

Pr (|X − E [X] | > ε · E [X]) 6 2 · exp

(
−ε

2 · E [X]

3

)
.

The above bound is often called the multiplicative Chernoff bound (as opposed to the additive Cher-
noff bound that we shall see later and is weaker than the above2). The proof of Proposition 4 is not as
straightforward as those of Markov bound or Chebyshev’s inequality, but it is not also particularly hard. For
interested reader (and to showcase the main ideas), we present a proof of a simpler form in Section 3.

Let us now apply Chernoff bound to our problem. We have that L = B1 + . . .+Bn, each Bi ∈ [0, 1], and
Bi’s are independent of each other. So, we can indeed apply Chernoff bound to L and obtain that

Pr (L > k) 6 Pr (|L− E [L] | > k − 1) 6 2 · exp

(
− (k − 1) · E [X]

3

)
= 2 · exp

(
− (k − 1)

3

)
.

By setting k = 3 · ln (6n) + 1, we have,

Pr (L > k) 6 2 · exp (− ln (6n)) = 2 · 1

6n
=

1

3n
.

Thus, Chernoff bound allows us to say T (n) = O(log n), exponentially stronger than the bound obtained via
Chebyshev’s inequality.

2There is also a more general version of Chernoff bound which is rather unwieldy to used in practice, but is a bit stronger
than the above bounds (especially for “small” values of E [X]); however, the above bounds are quite more convenient for us to
use and as such we will ignore the stronger bound for now.
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1.2 Optimal Bounds for Balls and Bins?

The bound of O(log n) on maximum load obtained via Chernoff bound is quite close to the optimal solution
but it is not the right answer still. While we can use a stronger version of Chernoff bound to obtain the
optimal bound via the use of a “generic” concentration inequality, we are going to instead use a more direct
approach: by calculating the probability of the event explicitly ourself (as somewhat of a last resort).

Remark. Think of working directly with the probability distribution of a random variable as the
“ultimate solution” – technically speaking, this approach always give you the optimal answer as you
will be calculating the exact probability. But in most cases, these probabilities are just too cumbersome
or downright impossible to calculate, hence the need for slightly more general concentration inequalities.

Also, despite the fact that Markov, Chebyshev, and Chernoff bounds are without a doubt the most
used concentration inequalities in the analysis of the algorithms, they are only the tip of the iceberg
among the vast array of concentration inequalities known. See the suggested reading materials and in
particular the excellent book of

Devdatt P. Dubhashi and Alessandro Panconesi, Concentration of Measure for the Analysis
of Randomised Algorithms.

that provides a more detailed overview of concentration inequalities in this context.

We have,

Pr (L > k) =

n∑
b=k

Pr (L = b) =

n∑
b=k

(
n

b

)
·
(

1

n

)b
·
(

1− 1

n

)n−b
.

Notice that in this approach, we already have a rather unwieldily calculation to work with. So, even in
this case, it would help to use some inequalities although they will be more ad-hoc compared to a generic
concentration inequality. In particular, we are going to calculate the above probability rather differently by
upper bounding it first.

Pr (L > k) = Pr (there exists some k balls that are mapped to the bin)

(a sufficient and necessary condition for L > k is that some k balls are mapped to this bin)

6
∑

balls a1, . . . , ak

Pr (a1, . . . , ak are mapped to the bin)

(by union bound where the sum ranges over all possible choices of picking k balls out of n)

=
∑

balls a1, . . . , ak

(
1

n

)k
(as the probability of a fixed k balls mapping to the bin is n−k)

=

(
n

k

)
·
(

1

n

)k
. (the number of ways of picking k balls out of n is

(
n
k

)
)

So far, in these calculations, we already used one inequality where we applied the union bound. We are
going to apply yet another inequality3 (which in general is a highly useful inequality to know).

Fact 5. For any integers a > b (here, e ≈ 2.73... is the natural number),(a
b

)b
6

(
a

b

)
6
(e · a

b

)b
.

3The reason we are pointing out the inequalities explicitly is that we need to be extra careful with them if our goal is to
compute an optimal bound – any loose inequality may negate all our effort of calculating the probability explicitly.
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Proof. We have, (
a

b

)
=

a!

b! · (a− b)!
=
a

b
· (a− 1)

(b− 1)
· (a− 2)

(b− 2)
· · · (a− b+ 1)

1︸ ︷︷ ︸
b terms in total

>
(a
b

)b
,

because each of the b terms is at least a/b. This proves the LHS. For the RHS, we have,(
a

b

)
6
ab

b!
,

because each of the terms in the nominator of the first equation is at most a. Furthermore, by writing the
Taylor expansion of eb, we have that

eb =

∞∑
k=0

bk

k!
>
bb

b!
. (as this is just one term, k = b, in the whole series)

Plugging in b! > (b/e)b in the above inequality, we get the RHS as well.

Continuing our calculations from before, we now have,

Pr (L > k) 6

(
n

k

)
· 1

nk
(as calculated above)

6
(e · n

k

)k
· 1

nk
(by Fact 5)

=
( e
k

)k
=

ek

ek·ln k
(ln k is the log of k in base e)

= exp (−k · (ln k − 1))

= exp (−k · ln (k/e)) .

We can now pick k = e·lnn
ln lnn to have,

k · ln (k/e) =

(
e · lnn
ln lnn

)
· ln
(

lnn

ln lnn

)
=

(
e · lnn
ln lnn

)
· (ln lnn− ln ln lnn)

>

(
e · lnn
ln lnn

)
· 1

2
· ln lnn (as for sufficiently large n, ln lnn > 2 · ln ln lnn)

> n1.3 > 3n. (for sufficiently large n)

Plugging in all these—honestly, rather tedious4—calculations back into our bounds, we get that

Pr

(
L >

e · lnn
ln lnn

)
6

1

3n
,

for sufficiently large n. This allows us to say T (n) = O(log n/ log log n) also holds for our problem in Eq (1).

4Well, this was kind of the whole point of showing how generic concentration inequalities are much easier to work with than
an ad-hoc argument...

5



Now, is this the right answer? Yes:

Pr (L > k) > Pr (L = k)

=

(
n

k

)
· 1

nk
·
(

1− 1

n

)n−k
>

(
n

k

)
· 1

nk
· 1

4
(as (1− 1/n)m > (1− 1/n)n > 1/4 for all m 6 n and n > 2)

>
(n
k

)k
· 1

nk
· 1

4
(by Fact 5)

=
1

4
· 1

kk
.

Thus, if we set k = 1
2 ·

lnn
ln lnn , we get that Pr (L > k) > 1

4·
√
n

; this means that T (n) is also Ω(log n/ log log n),

and hence the correct answer asymptotically is Θ(log n/ log log n).

2 Success Amplification of Randomized Algorithms

Let us conclude by studying another application: boosting the probability of success of a randomized algo-
rithm to any desired bound (with repeating it a certain number of times in parallel). To do so, we need the
following weaker—but easier to work with—variant of Chernoff bound called the additive Chernoff bound.

Proposition 6 (Additive Chernoff Bound). Suppose X1, . . . , Xn are independent random variables in
[0, 1] and X =

∑
iXi. Then, for any b > 1,

Pr (|X − E [X] | > b) 6 2 · exp

(
−2b2

n

)
.

We now formalize the problem. Suppose A is a randomized algorithm for some problem P with probability
of success at least 2/3. How can we boost its probability of success to 1− δ for a given δ ∈ (0, 1)?

Majority trick for decision problems: If P is a decision problem and thus A returns a Yes/No answer,
we can do the following: run A independently for k := 18 ln (2/δ) times and return the majority answer.

The analysis is as follows. Let X1, . . . , Xk be k indicator random variables where Xi = 1 iff the i-th run
of A returns the correct answer. Let X :=

∑k
i=1Xi. Firstly, we have that E [X] > k · 2/3 as each Xi = 1

with probability at least 2/3. Secondly, for the majority answer to be wrong, we need X 6 k/2. Thus,

Pr (majority answer is wrong) 6 Pr (|X − E [X] | > k/6) (as 2k/3− k/2 = k/6)

6 2 · exp

(
−2 · k2

36 · k

)
(by Proposition 6 for b = k/6 and n = k and since X is a sum of independent random variables in [0, 1])

= 2 · exp (− ln (2/δ)) = 2 · (δ/2) = δ.

Median trick for estimation problems: What if P was an estimation problem and thus A returns
a number that is in the correct range [x : y] with probability at least 2/3?5 In this case, returning the
majority will not work because it is possible that none of the numbers returned by the different copies of A
are even the same. The solution however is almost the same with a simple tweak: run A independently for
k := 18 ln (2/δ) times and return the median answer6.

The analysis is also similar to before. Let X1, . . . , Xk be k indicator random variables where Xi = 1 iff
the i-th run of A returns an answer in the correct range [x : y]. Let X :=

∑k
i=1Xi. We again have that

5E.g., for the streaming distinct element problem where A’s answer is a (1 ± ε) approximation of the number of distinct
elements DE, i.e., is in the range [(1 − ε) · DE, (1 + ε) · DE].

6You are strongly encouraged to think about why returning the average fails (in certain cases miserably).

6



E [X] > k · 2/3. Moreover, for the median to be a wrong answer, at least half of Xi’s has to be zero (this is
a necessary condition for failing but is not sufficient). So, again,

Pr (median answer is wrong) 6 Pr (|X − E [X] | > k/6) 6 δ,

where the rest of the calculation is exactly as done for the majority trick.

Remark. It is worth emphasizing that both the majority trick and the median trick completely treated
the algorithm (and analysis) of their input algorithm in a black-box way. One can use these tricks to
boost the probability of success of any algorithm (in many different settings) – this is indeed the reason
that for most algorithms, the dependence of resources on δ is almost always O(ln (1/δ)) factora.

aWe emphasize that this is O-notation and not Θ; there are a good number of cases also that one can do considerably
better than this bound also using more sophisticated (and often ad-hoc) approaches.

3 Appendix: Proof of (a Special Case of) Chernoff Bound

We are not going to give the entire proof of the Chernoff bound as it is somewhat tedious. However, to
provide enough intuition, we will prove a simpler variant of Chernoff (which is actually sufficient for our
balls in bins argument and many other settings as well).

Let us assume that each Xi is a Bernoulli random variable7 with mean pi (instead of arbitrary random
variable in [0, 1]). For simplicity, we are also going to only prove the upper tail of the deviation bound instead
of both tails (but the lower tail can be proven symmetrically). In particular, we prove the following result.

Proposition 7 (A weaker form of Chernoff bound). Suppose X1, . . . , Xn are independent Bernoulli
random variables in {0, 1} with mean p1, . . . , pn and X =

∑
iXi. Then, for any ε > 0,

Pr (X > (1 + ε) · E [X]) 6 exp

(
− ε2

2 + ε
· E [X]

)
.

Notice that in this result, ε is not limited to be less than 1 and thus we can recover the bounds of Propo-
sition 4 by considering ε < 1 and ε > 1 in the RHS separately.

Proof of a weaker form. Fix α > 0. Note that X > (1 + ε)E [X] if and only if

exp (α ·X) > exp (α · (1 + ε) · E [X]) .

Define a random variable Y = exp (α ·X). Using Markov bound on random variable Y , we have,

Pr (X > (1 + ε) · E [X]) = Pr (Y > exp (α · (1 + ε) · E [X])) 6
E [Y ]

exp (α · (1 + ε) · E [X])
(2)

As such, to bound the probability of deviation of X from E [X], we only need to bound E [Y ] and then we

7Recall that a Bernoulli random variable Z with mean p gets value 1 w.p. p and 0 w.p. 1 − p.
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can apply Eq (2). We can now upper bound E [Y ] as follows:

E [Y ] = E [exp (α ·X)] = E

[
exp

(
α ·

n∑
i=1

Xi

)]

= E

[
n∏
i=1

exp (α ·Xi)

]

=

n∏
i=1

E [exp (α ·Xi)] (for independent random variables A,B: E [AB] = E [A] · E [B])

=

n∏
i=1

(1− pi + pi · eα) (by the assumption that Xi is Bernoulli with mean pi)

=

n∏
i=1

(1 + pi · (eα − 1))

6
n∏
i=1

exp (pi · (eα − 1)) (1 + x 6 ex for all x)

= exp

(
(eα − 1) ·

n∑
i=1

pi

)
= exp ((eα − 1) · E [X]) .

Let us now set α = ln (1 + ε) and use Eq (2) to obtain that:

Pr (X > (1 + ε) · E [X]) 6 exp ((eα − 1) · E [X]− α · (1 + ε) · E [X])

= exp (ε · E [X]− (1 + ε) · ln (1 + ε) · E [X])

=

(
eε

(1 + ε)(1+ε)

)E[X]

. (3)

The bound above is already a very strong form of Chernoff bound (for Bernoulli random variables)8

– note also that in this equation, we do not need ε to be in (0, 1). We can simplify this bound to get the
bounds we want in the statement of the proposition (this will weaker the bound slightly; very rarely this
weakening can be problematic and we may need to use the stronger bound above directly).

We are going to use the following inequality (the proof is omitted) to simplify Eq (3): For any x > 0,

1 + x >
ex

1 + x/2
.

By applying this, we have (the proof is again omitted),(
eε

(1 + ε)(1+ε)

)
= exp (ε− (1 + ε) · ln (1 + ε)) 6 − ε2

2 + ε
.

And thus by Eq (3),

Pr (X > (1 + ε) · E [X]) 6 exp

(
− ε2

2 + ε
· E [X]

)
.

This concludes the proof.

8And we could have recovered the bound of T (n) = O(logn/ log logn) for balls-and-bins expriments by using this stronger
Chernoff bound; you are encouraged to try this on your own.
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