
CS 466/666: Algorithm Design and Analysis University of Waterloo: Fall 2024

Lecture 3
September 12, 2024

Instructor: Sepehr Assadi

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Topics of this Lecture

1 Streaming Distinct Elements Problem 1

1.1 The Streaming Model of Computation . 1

1.2 Distinct Elements Counting Problems . 2

1.3 The Algorithm . 3

1.4 Formal Analysis . 3

2 Independence for Space: Limited-Independence Hash Functions 5

2.1 Improving Space Complexity of Algorithm 1 . 7

3 The Original Distinct Elements Problem? 8

1 Streaming Distinct Elements Problem

Our next step in this course is to see an example of Chebyshev’s inequality in designing randomized algorithm
in the streaming model of computation. A streaming algorithm processes its inputs in small chunks, one at
a time, and thus does not need to store the entire input in one place. For motivation, consider a router in
a network: the router needs to process a massive number of packets using a limited memory much smaller
than what allows for storing all the packets it sees during its process.

1.1 The Streaming Model of Computation

We now define the streaming model formally as introduced by Alon, Matias, and Szegedy in [AMS96]1. The
input consists of n elements e1, e2, . . . , en, where each ei belongs to some universe U of m elements, that are
received one at a time by the algorithm, sequentially. Every time a new element is received, the previous one
is erased, so the algorithm only has access to the most recent element. The algorithm has a local memory
available, separate from the input, which is (ideally) much smaller than the input (and so we cannot store
the input entirely by the end of the stream).

The goal in this model is to design algorithms that use only a small amount of memory compared to the
input size, typically (but not always) of size poly(log n, logm) bits.

1The 2005 Gödel Prize—one of the highest awards in Theoretical Computer Science—was awarded to Noga Alon, Yossi
Matias, and Mario Szegedy for the introduction of this model. See the citation of the award here:

https://eatcs.org/index.php/component/content/article/503

1

https://eatcs.org/index.php/component/content/article/503

Warm-Up: Before getting to our main problem, let us mention a standard warm-up puzzle:

• You are given n − 1 distinct numbers from [n] in a stream in some arbitrary order. Find the missing
element in O(log n) bits of space.

• If you like to challenge yourself further, consider the same problem where you are given n− k distinct
numbers from [n] and the goal is to find the k missing elements in O(k2 · log n) bits of space.

• If you really like to challenge yourself, solve the above problem in O(k log n) bits of space.

We will leave the answer to these questions as an exercise to the reader (Note: the first two questions are
simple enough but the last one might be quite challenging without the “right” background—do not let that
discourage you however!).

1.2 Distinct Elements Counting Problems

We now consider one of the first (and highly influential) problems considered in the streaming model, namely,
the distinct element (counting) problem.

Problem 1. Given a stream of n elements from the universe [m], output the number of distinct elements
in the stream, denoted by DE.

For example, if m = 5, and the stream is 1, 2, 2, 1, 5, 4, 2, 2, 1, then the answer is DE = 4.

There are two naive solutions to this problem:

• Store the entire universe: Use a bitmap with m bits. Every time we see a new element, mark it. This
requires O(m) bits.

• Store the entire stream: Store a set of all the elements we receive. This requires O(n logm) bits.

These types of straightforward solutions are applicable to most streaming problems.

What about an algorithm using poly(log n, logm) bits? While we will not cover this topic in this course,
one can show that this is not possible without randomization and approximation, by proving:

• Every deterministic algorithm requires min {Ω(n),Ω(m)} bits, even if it is a, say, 1.1-approximation.

• Every exact randomized algorithm requires min {Ω(n),Ω(m)} bits.

Therefore, to find a sublinear space streaming algorithm we need to allow for both approximation and
randomization. In addition, to make the problem a bit easier for us in this lecture, we will consider a relaxed
version of the problem, sometimes called threshold testing (variant) of the problem, defined as follows:

Problem 2. At the beginning of the stream, you are given a value D̃E ∈ [m] and a parameter ε ∈ (0, 1).
Then, you are given a stream of n numbers (possibly with repetitions) from a universe [m]. The goal is to,

with probability at least 2/3, output Yes if DE > D̃E and output No if DE < (1− ε) · D̃E; if the value of DE
is between these two numbers, either answer is considered correct.

In this lecture, we will see an algorithm that solves this problem using

poly(log n, logm, 1/ε)

bits of space, which is much more efficient than the naive approaches above.

2

Simplifying assumption. Without loss of generality, we can assume that D̃E > 100/ε2. This is because

otherwise, we can simply use the deterministic O(D̃E·logm)-space naive algorithm that stores all the distinct

elements it sees and answers Yes as soon as it sees D̃E + 1 of them; when D̃E < 100/ε2, this algorithm only
requires O(logm/ε2) space which is sufficient for our purpose.

1.3 The Algorithm

Before getting to the actual algorithm, let us provide a vague intuition. Suppose there is a dartboard in front
of us and each time we throw a dart at this board, the probability we hit our target is some 1/K. Then, if
we could throw “much more” than K darts, we expect to hit our target many more times compared to when
we throw “much less” than K darts at this board. What does this have anything to do with our problem?

We are going to design a randomized process wherein each distinct element in the stream allows us to

throw a new dart which hits the target with probability ≈ 1/D̃E; we then, simply count the number of times

we hit the target. If DE > D̃E, we expect this counter to be “large” whereas when DE < (1 − ε) · D̃E, we
expect it to be a “small” number. How do we simulate this random dart process? By hashing the universe
to a certain range! The algorithm is formally as follows.

Algorithm 1. An algorithm for threshold testing distinct elements for a given D̃E ∈ [m] and ε ∈ (0, 1):

(i) Let t := 12/ε2 and pick a hash function h : [m] → [D̃E/t] uniformly at random from the set of

all functions from [m]→ [D̃E/t].

(ii) Count the number of distinct elements in the stream that are hashed to 1, i.e., count the size of
the set {e | h(e) = 1}, denoted by X.

(iii) Return Yes if the number X calculated above is at least (1− ε/2) · t or No otherwise.

Going back to our intuition from earlier, for each distinct number in the stream, h(·) has a chance of

hitting 1 with probability t/D̃E. As such, if DE > D̃E, then it is very likely that a “good number” of the

element will be hashed to 1, but if DE 6 (1− ε) · D̃E that number should be considerably lower (both cases
in a probabilistic sense).

You may ask what is the role of t then, i.e., why did we pick t to be Ω(1/ε2) and not simply, say, 1?2 This
is done for the purpose of “variance reduction”: see the calculation for the variance of the random variables
and how it is used in the analysis to see the necessity of using a larger t.

We will talk about the space complexity of this algorithm later in the lecture. For now, we should only
note that as it is, this algorithm requires prohibitively large space to store the hash function h and hence is
not space-efficient. Although the rest of the algorithm uses O(t · logm) = O(logm/ε2) bits of space which
is good enough for us. Regardless, almost all the main ideas of the algorithm are already here and thus we
focus on proving its correctness in the following.

1.4 Formal Analysis

We now formalize this intuition and prove the correctness of the algorithm.

Lemma 1. On any input stream and for any choice of parameters ε ∈ (0, 1) and D̃E > 100/ε2:

• If DE > D̃E, then Algorithm 1 outputs Yes with probability at least 2/3;

• If DE < (1− ε) · D̃E, then Algorithm 1 outputs No with probability at least 2/3.

2Notice that we ideally want t to be as small as possible as the space of the algorithm depends linearly on t.

3

Proof. Let {e1, . . . , eDE} denote the distinct elements in the stream. For i ∈ [DE], define the indicator random
variable Xi ∈ {0, 1} which is 1 iff h(ei) = 1. Under this definition, the random variable X in Algorithm 1 is:

X =

DE∑
i=1

Xi.

We can thus calculate the expected value of X as follows:

E [X] = E

[
DE∑
i=1

Xi

]
(by the equation above)

=

DE∑
i=1

E [Xi] (by linearity of expectation)

=

DE∑
i=1

Pr (h(ei) = 1) (by the definition of indicator Xi)

=

DE∑
i=1

t

D̃E
(as h(·) maps each element to a uniformly random position in [D̃E/t])

= DE · t

D̃E
. (1)

For our analysis, we also need to bound the variance of X, which can be done as follows:

Var [X] = Var

[
DE∑
i=1

Xi

]
(again, by the equation X =

∑
i Xi)

=

DE∑
i=1

Var [Xi] (variance of sum of independent variables is sum of variances)

6
DE∑
i=1

E
[
X2

i

]
(by the definition of variance Var [Xi] = E

[
X2

i

]
− (E [Xi])

2)

=

DE∑
i=1

E [Xi] (as X2
i = Xi since Xi ∈ {0, 1})

= E [X] . (2)

We can now analyze each case separately.

Case I: when DE > D̃E: In this case, by the bound on the expectation in Eq (1), we have,

E [X] > t.

The algorithm will say No if X < (1− ε/2) · t; in this case, this requires X to deviate by at least (ε/2) ·E [X]
from its expectation. This is exactly the topic of concentration inequalities. In particular, recall Chebyshev’s
inequality from the last lecture:

Proposition 2 (Chebyshev’s Inequality). For any random variable X and b > 0,

Pr (|X − E [X] | > b) 6
Var [X]

b2
.

4

We can apply Chebyshev’s inequality to our random variable X to get:

Pr (Algorithm 1 says No in Case I) 6 Pr (|X − E [X] | > (ε/2) · E [X]) (as described above)

6
4 ·Var [X]

ε2 · E [X]
2

(by Chebyshev’s inequality of Proposition 2 for b = (ε/2) · E [X])

6
4

ε2 · E [X]
(by the upper bound of E [X] on variance in Eq (2))

6
4

ε2 · (12/ε2)
(by the lower bound of t on expectation and the choice of t = 12/ε2)

=
1

3
.

This proves the first bullet of the lemma statement.

Case II: when DE < (1− ε) · D̃E: In this case, by the bound on the expectation in Eq (1), we have,

E [X] < (1− ε) · t.

The algorithm will say Yes if X > (1 − ε/2) · t; in this case, this requires X to deviate by at least (ε/2) · t
from its expectation.3 We thus have,

Pr (Algorithm 1 says Yes in Case II) 6 Pr (|X − E [X] | > (ε/2) · t) (as described above)

6
4 ·Var [X]

ε2 · t2
(by Chebyshev’s inequality of Proposition 2 for b = (ε/2) · E [X])

6
4 · E [X]

ε2 · t2
(by the upper bound of E [X] on variance in Eq (2))

6
4 · (1− ε)

ε2 · (12/ε2)
(by the upper bound of E [X] < (1− ε) · t and the choice of t = 12/ε2)

<
1

3
.

This proves the second bullet of the lemma statement and concludes the whole proof.

Thus, the algorithm has a probability of success of at least 2/3 for our problem, as desired. In the next
part, we see how to fix the issue with the space complexity of the problem—in particular, how to replace
the hash function h with something that we can store more efficiently.

2 Independence for Space: Limited-Independence Hash Functions

Generating and storing a random function h : [a] → [b] requires O(a log b) bits, which is often too costly.
In the case of Algorithm 1 this amounts to ω(m) space which makes the whole algorithm entirely useless!
Fortunately however, we can make the analysis of Algorithm 1 work even if the hash function h we picked
is not completely random, but has some limited independence only. Let us define this formally as follows.

3Notice that this time, we bound the deviation as a function of t and not E [X]; this is because, in this case, it is possible
for E [X] to be very small and thus bounding the deviation just as a function of expectation will be too weak. You are also
encouraged to check that in the previous case, bounding the deviation as a function of t does not work (because E [X] can be
much larger than t in that case).

5

Definition 3. A family H = {h : [a]→ [b]} is called a k-wise independent family of hash functions
if for all pairwise distinct x1, . . . , xk ∈ [a] and all y1, . . . , yk ∈ [b],

Pr
h∼H

(h(x1) = y1 ∧ · · · ∧ h(xk) = yk) =
1

bk
.

Observe that a k-wise independent family may also be (k + 1)-wise independent, i.e., the definition does
not necessarily break for k+1 hash values (although for “interesting” families this is almost always the case).
For instance, a truly random hash function is k-wise independent for all k ∈ [m].

Proposition 4. Let H = {h : [a] → [b]} be a k-wise independent, and h ∼ H chosen at random. Let
x1, . . . , xk ∈ [a] be arbitrary pairwise distinct elements. Then:

1. for every i ∈ [k], h(xi) is uniform over [b];

2. h(x1), . . . , h(xk) are mutually independent.

Proof. 1. We only prove this for i = 1; the rest is symmetric. Let y1 ∈ [b]. Observe that

Pr
h∼H

(h(x1) = y1) =
∑

y2,...,yk∈[b]

Pr
h∼H

(h(x1) = y1 ∧ h(x2) = y2 ∧ · · · ∧ h(xk) = yk)

(partitioning the sample space)

=
∑

y2,...,yk∈[b]

1

bk
=

bk−1

bk
=

1

b
. (by definition of k-wise independent family)

2. Let y1, . . . , yk ∈ [b]. Since all h(xi) are uniform over [b], it follows that

Pr
h∼H

(h(x1) = y1 ∧ · · · ∧ h(xk) = yk) =
1

bk
=

k∏
i=1

Pr
h∼H

(h(xi) = yi).

This concludes the proof.

Example. Let k > 2 be an integer and p > k be a prime number. Here is an example of a k-wise
independent family of hash functions mapping [p]→ [p]

A k-wise Independent Family of Hash Functions on [p] → [p] for a prime p:

1. H is the set of degree-(k − 1) polynomials over Fp (field of integers mod prime p). That is,

H := {h : [p]→ [p] | h(x) = ck−1 · xk−1 + ck−2 · xk−2 + · · ·+ c1 · x + c0, with c0, . . . , ck−1 ∈ Fp}.

2. Sample c0, . . . , ck−1 ∈ Fp and return h as the polynomial defined by these coefficients.

To see why this is a k-wise independent hash function, note that any degree-(k − 1) polynomial h is
uniquely determined by having k of its values (i.e., k distinct (x, h(x)) pairs for x ∈ Fp): if we fix only k− 1
values of h on x1, . . . , xk−1, value of h(xk) for any other xk is still chosen uniformly at random from Fp (we
omit the simple algebraic proof of this statement as it is not the focus of this lecture/course).

The important thing we would like to note about the family H is on how much space we need to store h.
Since each function in the family is defined by k polynomial coefficients, the space required to generate and

6

store it is only O(k log p) bits (as opposed to O(p log p) for a truly random hash function mapping [p]→ [p]).
It is also possible to evaluate any such hash function in the same amount of space.

Although this family only works for a = b = p, we can in general construct families for arbitrary a and b.

Proposition 5. For any integers a, b > 1, there exists a k-wise independent family of hash functions mapping
[a]→ [b], that requires O(k · (log a + log b)) bits.

2.1 Improving Space Complexity of Algorithm 1

To make Algorithm 1 space-efficient, we are going to replace the truly random hash function h : [m]→ [D̃E/t]
with a pair -wise independent hash function instead. By Proposition 5, this means we can store h in only

O(logm) bits (as D̃E/t 6 m) and evaluate h(·) on each arriving element quickly and in a space-efficient
manner still. The rest of the algorithm also needed O(logm/ε2) bits, thus we now have a truly space-
efficient algorithm for the problem.

But, what about the analysis? There were only two key places that we used the properties h:

• In Eq (1) to compute the expected value of X. In particular, we used the fact that for each element e

in the universe, Pr (h(ei) = 1) = t/D̃E, namely, that h(ei) is distributed uniformly over the range of h.
This continue to hold for any pair-wise independent hash function also as argued in Proposition 4.

As an aside, this is an easy property to satisfy that holds even for “weaker” hash families, say universal
hash families, or even uniform hash families—for instance, consider the family of functions h : [a]→ [b]
consisting of b functions {hi | hi(x) = i ∀x ∈ [a]}; this is obviously a “bad” hash family that maps all
the elements to the same position, and still even this family is enough to satisfy the property.

• In Eq (2) to say that variance of the sum is equal to sum of the variances as Xi’s are independent. We
no longer have the independence property here. However, the conclusion, namely, that variance of the
sum is equal to the sum of variances holds even for pairwise independent variables—which Xi’s are
because they are deterministic functions h(ei)’s, which are pairwise independent—as we prove below.

Proposition 6. Let X1, . . . , Xn be a family of n pair-wise independent variables. Then,

Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var [Xi] .

Proof. We have

Var

[
n∑

i=1

Xi

]
= E

[
(

n∑
i=1

Xi)
2

]
− (E

[
n∑

i=1

Xi

]
)2 (by the definition of variance)

= E

 n∑
i=1

X2
i +

∑
i 6=j

Xi ·Xj

− n∑
i=1

E [Xi]
2 −

∑
i 6=j

E [Xi] · E [Xj]

(by expanding the sums)

=

(
n∑

i=1

E
[
X2

i

]
− E [Xi]

2

)
+

∑
i 6=j

E [Xi ·Xj]− E [Xi] · E [Xj]

(by linearity of expectation and re-ordering the terms)

=

n∑
i=1

Var [Xi] + 0,

(first term by definition of variance, second term because Xi ⊥ Xj for pair-wise independent variables)

which proves the result.

7

This means that the modification of Algorithm 1, by replacing h with a pairwise independent hash
functions, works exactly as before and thus solves our problem, but now with a much better space. This
proves the following theorem.

Theorem 7. There is a streaming algorithm for threshold testing number of distinct elements in Problem 2
that uses O(logm/ε2) space and outputs the correct answer with probability at least 2/3.

3 The Original Distinct Elements Problem?

What about the original problem: estimating the number of distinct elements instead of threshold testing?

There is a simple way to go from Theorem 7 to that problem: run the algorithm of Theorem 7 in parallel

for different thresholds D̃E ∈
{

1, (1 + ε), (1 + ε)2, (1 + ε)3, . . . ,m
}

; then, find the largest choice of D̃E for
which the algorithm returns Yes, and output that as the estimate of DE for the stream. Notice that this
increasing the space by a factor of O(log(1+ε)(m) = O((logm)/ε) which is okay for our purpose. Assuming
every application of Theorem 7 in this process is also correct, it is easy to see that the returned answer will
be a (1 + Θ(ε))-approximation of DE – we can then use a smaller ε in the algorithm, if needed, by changing
the space with a constant factor, and obtain a truly (1 + ε)-approximation.

Figure 1: An illustration of the reduction from original estimation problem to threshold testing. Assuming
all Yes/No responses are correct, the true estimate should lie somewhere in the marked (blue) region—the
reason for the gap is to account for the fact that in the threshold testing, the answer can be arbitrary when
neither case are satisfied.

An important caveat is that, as stated, Theorem 7 only guarantees 2/3 probability of success and thus it
is not going to be the case that all of its O((logm)/ε) invocations in this strategy return a correct answer.
As such, we first need to boost the probability of success of the algorithm to a larger value before running
this strategy—this will be the content of a future lecture.

Finally, we note that the above strategy of going from threshold testing to the original estimation problem,
as well as boosting success of randomized algorithms, is a completely generic idea that has nothing to do
with the distinct element problem we studied, and can be applied to most other settings and problems.

Remark. The distinct element problem—in this formulation—was first studied by Flajolet and Martin
in [FM83], long before the formalization of the streaming model, as was revisited in the work of Alon,
Matias, and Szegedy [AMS96] that pioneered the streaming model.

The algorithm we discussed in this lecture was inspired by an algorithm of Bar-Yossef, Jayram,
Kumar, Sivakumar, and Trevisan [BJK+02]. This algorithm was later improved in a series of work,
culminating in the asymptotically optimal algorithm of Kane, Nelson, and Woodruff [KNW10] with
space complexity O(1

ε2 + logm) bits.

8

References

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the fre-
quency moments. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory
of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 20–29, 1996. 1, 8

[BJK+02] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting distinct
elements in a data stream. In Randomization and Approximation Techniques, 6th International
Workshop, RANDOM 2002, MA, USA, September 13-15, 2002, pages 1–10, 2002. 8

[FM83] Philippe Flajolet and G. Nigel Martin. Probabilistic counting. In 24th Annual Symposium on
Foundations of Computer Science, Arizona, USA, 7-9 November 1983, pages 76–82, 1983. 8

[KNW10] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct
elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana,
USA, pages 41–52, 2010. 8

9

	1 Streaming Distinct Elements Problem
	1.1 The Streaming Model of Computation
	1.2 Distinct Elements Counting Problems
	1.3 The Algorithm
	1.4 Formal Analysis

	2 Independence for Space: Limited-Independence Hash Functions
	2.1 Improving Space Complexity of alg:tt

	3 The Original Distinct Elements Problem?

