
Lecture 21: Hardness of Approximation

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 21, 2024

1 / 72

Overview

Background and Motivation
Why Hardness of Approximation?
How do we prove Hardness of Approximation?
Hardness of Approximation - Example

Proofs & Hardness of Approximation

Conclusion

Acknowledgements

2 / 72

Why Study Hardness of Approximation?

Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

What do we do when we see such a hard problem?

design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
design (always) efficient algorithm, but finds sub-optimal solutions

Approximation Algorithms

For α ≥ 1, an algorithm is α-approximate for a minimization
(maximization) problem if on every input instance the algorithm finds a
solution with cost ≤ α · OPT (≥ 1

α · OPT).

For some problems, it is possible to prove that even the design of
approximation algorithms for certain values of α is impossible, unless
P = NP (in which case we would have an exact algorithm).

Hardness of Approximation

Important to know the limits of efficient algorithms!

3 / 72

Why Study Hardness of Approximation?

Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

What do we do when we see such a hard problem?

design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
design (always) efficient algorithm, but finds sub-optimal solutions

Approximation Algorithms

For α ≥ 1, an algorithm is α-approximate for a minimization
(maximization) problem if on every input instance the algorithm finds a
solution with cost ≤ α · OPT (≥ 1

α · OPT).

For some problems, it is possible to prove that even the design of
approximation algorithms for certain values of α is impossible, unless
P = NP (in which case we would have an exact algorithm).

Hardness of Approximation

Important to know the limits of efficient algorithms!

4 / 72

Why Study Hardness of Approximation?

Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

What do we do when we see such a hard problem?

design algorithm which is efficient on “most” instances and always
gives us the exact/best answer

design (always) efficient algorithm, but finds sub-optimal solutions

Approximation Algorithms

For α ≥ 1, an algorithm is α-approximate for a minimization
(maximization) problem if on every input instance the algorithm finds a
solution with cost ≤ α · OPT (≥ 1

α · OPT).

For some problems, it is possible to prove that even the design of
approximation algorithms for certain values of α is impossible, unless
P = NP (in which case we would have an exact algorithm).

Hardness of Approximation

Important to know the limits of efficient algorithms!

5 / 72

Why Study Hardness of Approximation?

Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

What do we do when we see such a hard problem?

design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
design (always) efficient algorithm, but finds sub-optimal solutions

Approximation Algorithms

For α ≥ 1, an algorithm is α-approximate for a minimization
(maximization) problem if on every input instance the algorithm finds a
solution with cost ≤ α · OPT (≥ 1

α · OPT).

For some problems, it is possible to prove that even the design of
approximation algorithms for certain values of α is impossible, unless
P = NP (in which case we would have an exact algorithm).

Hardness of Approximation

Important to know the limits of efficient algorithms!

6 / 72

Why Study Hardness of Approximation?

Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

What do we do when we see such a hard problem?

design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
design (always) efficient algorithm, but finds sub-optimal solutions

Approximation Algorithms

For α ≥ 1, an algorithm is α-approximate for a minimization
(maximization) problem if on every input instance the algorithm finds a
solution with cost ≤ α · OPT (≥ 1

α · OPT).

For some problems, it is possible to prove that even the design of
approximation algorithms for certain values of α is impossible, unless
P = NP (in which case we would have an exact algorithm).

Hardness of Approximation

Important to know the limits of efficient algorithms!

7 / 72

Why Study Hardness of Approximation?

Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

What do we do when we see such a hard problem?

design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
design (always) efficient algorithm, but finds sub-optimal solutions

Approximation Algorithms

For α ≥ 1, an algorithm is α-approximate for a minimization
(maximization) problem if on every input instance the algorithm finds a
solution with cost ≤ α · OPT (≥ 1

α · OPT).

For some problems, it is possible to prove that even the design of
approximation algorithms for certain values of α is impossible, unless
P = NP (in which case we would have an exact algorithm).

Hardness of Approximation

Important to know the limits of efficient algorithms!

8 / 72

Why Study Hardness of Approximation?

Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

What do we do when we see such a hard problem?

design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
design (always) efficient algorithm, but finds sub-optimal solutions

Approximation Algorithms

For α ≥ 1, an algorithm is α-approximate for a minimization
(maximization) problem if on every input instance the algorithm finds a
solution with cost ≤ α · OPT (≥ 1

α · OPT).

For some problems, it is possible to prove that even the design of
approximation algorithms for certain values of α is impossible, unless
P = NP (in which case we would have an exact algorithm).

Hardness of Approximation

Important to know the limits of efficient algorithms!

9 / 72

Background and Motivation
Why Hardness of Approximation?
How do we prove Hardness of Approximation?
Hardness of Approximation - Example

Proofs & Hardness of Approximation

Conclusion

Acknowledgements

10 / 72

How do we Prove Hardness of Approximation?

When we prove that a combinatorial problem C is NP-hard, we
usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

maps every YES instance of L to a YES instance of C
maps every NO instance of L to a NO instance of C

For hardness of approximation what we would like is a (more robust)
reduction of the form:

maps every YES instance of L to a YES instance of C
maps every NO instance of L to a VERY-MUCH-NO instance of C

11 / 72

How do we Prove Hardness of Approximation?

When we prove that a combinatorial problem C is NP-hard, we
usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

maps every YES instance of L to a YES instance of C
maps every NO instance of L to a NO instance of C

For hardness of approximation what we would like is a (more robust)
reduction of the form:

maps every YES instance of L to a YES instance of C
maps every NO instance of L to a VERY-MUCH-NO instance of C

12 / 72

How do we Prove Hardness of Approximation?

When we prove that a combinatorial problem C is NP-hard, we
usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

maps every YES instance of L to a YES instance of C
maps every NO instance of L to a NO instance of C

For hardness of approximation what we would like is a (more robust)
reduction of the form:

maps every YES instance of L to a YES instance of C
maps every NO instance of L to a VERY-MUCH-NO instance of C

13 / 72

Background and Motivation
Why Hardness of Approximation?
How do we prove Hardness of Approximation?
Hardness of Approximation - Example

Proofs & Hardness of Approximation

Conclusion

Acknowledgements

14 / 72

Traveling Salesman Problem

Input: set of points X and a symmetric distance function

d : X × X → R≥0

For any path p0 → p1 → · · · → pt in X , length of the path is sum of
distances traveled

t−1∑
i=0

d(pi , pi+1)

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

Efficient route planning (mail system, shuttle bus pick up and drop
off...)

One of the famous NP-complete problems

15 / 72

Traveling Salesman Problem

Input: set of points X and a symmetric distance function

d : X × X → R≥0

For any path p0 → p1 → · · · → pt in X , length of the path is sum of
distances traveled

t−1∑
i=0

d(pi , pi+1)

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

Efficient route planning (mail system, shuttle bus pick up and drop
off...)

One of the famous NP-complete problems

16 / 72

Traveling Salesman Problem

Input: set of points X and a symmetric distance function

d : X × X → R≥0

For any path p0 → p1 → · · · → pt in X , length of the path is sum of
distances traveled

t−1∑
i=0

d(pi , pi+1)

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

Efficient route planning (mail system, shuttle bus pick up and drop
off...)

One of the famous NP-complete problems

17 / 72

Traveling Salesman Problem

Input: set of points X and a symmetric distance function

d : X × X → R≥0

For any path p0 → p1 → · · · → pt in X , length of the path is sum of
distances traveled

t−1∑
i=0

d(pi , pi+1)

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

Efficient route planning (mail system, shuttle bus pick up and drop
off...)

One of the famous NP-complete problems

18 / 72

Traveling Salesman Problem

Input: set of points X and a symmetric distance function

d : X × X → R≥0

For any path p0 → p1 → · · · → pt in X , length of the path is sum of
distances traveled

t−1∑
i=0

d(pi , pi+1)

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

Efficient route planning (mail system, shuttle bus pick up and drop
off...)

One of the famous NP-complete problems

19 / 72

Hardness of Approximation - TSP

1 General TSP without repetitions (General TSP-NR)

if P ̸= NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
More generally, if there is any function r : N → N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P ̸= NP

2 How does one prove any such hardness of approximation?

By reduction to another NP-hard problem.

3 In our case, let’s reduce it to the Hamiltonian Cycle Problem

Theorem

If there is an algorithm M which solves TSP without repetitions with
α-approximation, then P = NP.

20 / 72

Hardness of Approximation - TSP

1 General TSP without repetitions (General TSP-NR)

if P ̸= NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.

More generally, if there is any function r : N → N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P ̸= NP

2 How does one prove any such hardness of approximation?

By reduction to another NP-hard problem.

3 In our case, let’s reduce it to the Hamiltonian Cycle Problem

Theorem

If there is an algorithm M which solves TSP without repetitions with
α-approximation, then P = NP.

21 / 72

Hardness of Approximation - TSP

1 General TSP without repetitions (General TSP-NR)

if P ̸= NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
More generally, if there is any function r : N → N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P ̸= NP

2 How does one prove any such hardness of approximation?

By reduction to another NP-hard problem.

3 In our case, let’s reduce it to the Hamiltonian Cycle Problem

Theorem

If there is an algorithm M which solves TSP without repetitions with
α-approximation, then P = NP.

22 / 72

Hardness of Approximation - TSP

1 General TSP without repetitions (General TSP-NR)

if P ̸= NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
More generally, if there is any function r : N → N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P ̸= NP

2 How does one prove any such hardness of approximation?

By reduction to another NP-hard problem.

3 In our case, let’s reduce it to the Hamiltonian Cycle Problem

Theorem

If there is an algorithm M which solves TSP without repetitions with
α-approximation, then P = NP.

23 / 72

Hardness of Approximation - TSP

1 General TSP without repetitions (General TSP-NR)

if P ̸= NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
More generally, if there is any function r : N → N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P ̸= NP

2 How does one prove any such hardness of approximation?

By reduction to another NP-hard problem.

3 In our case, let’s reduce it to the Hamiltonian Cycle Problem

Theorem

If there is an algorithm M which solves TSP without repetitions with
α-approximation, then P = NP.

24 / 72

Hardness of Approximation

1 Hamiltonian Cycle Problem: given a graph G (V ,E), decide
whether there exists a cycle C which passes through every vertex at
most once.

2 Proof:
3 If we had an algorithm M which solved the α-approximate TSP

without repetition problem, then

from graph G (V ,E), construct weighted graph H(V ,F ,w) such that

All edges {u, v} ∈ F (that is, H is the complete graph on V)

w(u, v) =

{
1, if {u, v} ∈ E

(1 + α) · |V |, if {u, v} ̸∈ E

4 If G has a Hamiltonian Cycle, then OPT for the TSP is of value ≤ |V |
5 If G has no Hamiltonian Cycle, then OPT for TSP must use an edge

not in V , thus value is ≥ (1 + α) · |V |
6 Thus, M on input H will output a Hamiltonian Cycle of G , if G has

one, or it will output a solution with value ≥ (1 + α) · |V |

25 / 72

Hardness of Approximation

1 Hamiltonian Cycle Problem: given a graph G (V ,E), decide
whether there exists a cycle C which passes through every vertex at
most once.

2 Proof:

3 If we had an algorithm M which solved the α-approximate TSP
without repetition problem, then

from graph G (V ,E), construct weighted graph H(V ,F ,w) such that

All edges {u, v} ∈ F (that is, H is the complete graph on V)

w(u, v) =

{
1, if {u, v} ∈ E

(1 + α) · |V |, if {u, v} ̸∈ E

4 If G has a Hamiltonian Cycle, then OPT for the TSP is of value ≤ |V |
5 If G has no Hamiltonian Cycle, then OPT for TSP must use an edge

not in V , thus value is ≥ (1 + α) · |V |
6 Thus, M on input H will output a Hamiltonian Cycle of G , if G has

one, or it will output a solution with value ≥ (1 + α) · |V |

26 / 72

Hardness of Approximation

1 Hamiltonian Cycle Problem: given a graph G (V ,E), decide
whether there exists a cycle C which passes through every vertex at
most once.

2 Proof:
3 If we had an algorithm M which solved the α-approximate TSP

without repetition problem, then

from graph G (V ,E), construct weighted graph H(V ,F ,w) such that

All edges {u, v} ∈ F (that is, H is the complete graph on V)

w(u, v) =

{
1, if {u, v} ∈ E

(1 + α) · |V |, if {u, v} ̸∈ E

4 If G has a Hamiltonian Cycle, then OPT for the TSP is of value ≤ |V |
5 If G has no Hamiltonian Cycle, then OPT for TSP must use an edge

not in V , thus value is ≥ (1 + α) · |V |
6 Thus, M on input H will output a Hamiltonian Cycle of G , if G has

one, or it will output a solution with value ≥ (1 + α) · |V |

27 / 72

Hardness of Approximation

1 Hamiltonian Cycle Problem: given a graph G (V ,E), decide
whether there exists a cycle C which passes through every vertex at
most once.

2 Proof:
3 If we had an algorithm M which solved the α-approximate TSP

without repetition problem, then

from graph G (V ,E), construct weighted graph H(V ,F ,w) such that
All edges {u, v} ∈ F (that is, H is the complete graph on V)

w(u, v) =

{
1, if {u, v} ∈ E

(1 + α) · |V |, if {u, v} ̸∈ E

4 If G has a Hamiltonian Cycle, then OPT for the TSP is of value ≤ |V |
5 If G has no Hamiltonian Cycle, then OPT for TSP must use an edge

not in V , thus value is ≥ (1 + α) · |V |
6 Thus, M on input H will output a Hamiltonian Cycle of G , if G has

one, or it will output a solution with value ≥ (1 + α) · |V |

28 / 72

Hardness of Approximation

1 Hamiltonian Cycle Problem: given a graph G (V ,E), decide
whether there exists a cycle C which passes through every vertex at
most once.

2 Proof:
3 If we had an algorithm M which solved the α-approximate TSP

without repetition problem, then

from graph G (V ,E), construct weighted graph H(V ,F ,w) such that
All edges {u, v} ∈ F (that is, H is the complete graph on V)

w(u, v) =

{
1, if {u, v} ∈ E

(1 + α) · |V |, if {u, v} ̸∈ E

4 If G has a Hamiltonian Cycle, then OPT for the TSP is of value ≤ |V |
5 If G has no Hamiltonian Cycle, then OPT for TSP must use an edge

not in V , thus value is ≥ (1 + α) · |V |
6 Thus, M on input H will output a Hamiltonian Cycle of G , if G has

one, or it will output a solution with value ≥ (1 + α) · |V |

29 / 72

Hardness of Approximation

1 Hamiltonian Cycle Problem: given a graph G (V ,E), decide
whether there exists a cycle C which passes through every vertex at
most once.

2 Proof:
3 If we had an algorithm M which solved the α-approximate TSP

without repetition problem, then

from graph G (V ,E), construct weighted graph H(V ,F ,w) such that
All edges {u, v} ∈ F (that is, H is the complete graph on V)

w(u, v) =

{
1, if {u, v} ∈ E

(1 + α) · |V |, if {u, v} ̸∈ E

4 If G has a Hamiltonian Cycle, then OPT for the TSP is of value ≤ |V |

5 If G has no Hamiltonian Cycle, then OPT for TSP must use an edge
not in V , thus value is ≥ (1 + α) · |V |

6 Thus, M on input H will output a Hamiltonian Cycle of G , if G has
one, or it will output a solution with value ≥ (1 + α) · |V |

30 / 72

Hardness of Approximation

1 Hamiltonian Cycle Problem: given a graph G (V ,E), decide
whether there exists a cycle C which passes through every vertex at
most once.

2 Proof:
3 If we had an algorithm M which solved the α-approximate TSP

without repetition problem, then

from graph G (V ,E), construct weighted graph H(V ,F ,w) such that
All edges {u, v} ∈ F (that is, H is the complete graph on V)

w(u, v) =

{
1, if {u, v} ∈ E

(1 + α) · |V |, if {u, v} ̸∈ E

4 If G has a Hamiltonian Cycle, then OPT for the TSP is of value ≤ |V |
5 If G has no Hamiltonian Cycle, then OPT for TSP must use an edge

not in V , thus value is ≥ (1 + α) · |V |

6 Thus, M on input H will output a Hamiltonian Cycle of G , if G has
one, or it will output a solution with value ≥ (1 + α) · |V |

31 / 72

Hardness of Approximation

1 Hamiltonian Cycle Problem: given a graph G (V ,E), decide
whether there exists a cycle C which passes through every vertex at
most once.

2 Proof:
3 If we had an algorithm M which solved the α-approximate TSP

without repetition problem, then

from graph G (V ,E), construct weighted graph H(V ,F ,w) such that
All edges {u, v} ∈ F (that is, H is the complete graph on V)

w(u, v) =

{
1, if {u, v} ∈ E

(1 + α) · |V |, if {u, v} ̸∈ E

4 If G has a Hamiltonian Cycle, then OPT for the TSP is of value ≤ |V |
5 If G has no Hamiltonian Cycle, then OPT for TSP must use an edge

not in V , thus value is ≥ (1 + α) · |V |
6 Thus, M on input H will output a Hamiltonian Cycle of G , if G has

one, or it will output a solution with value ≥ (1 + α) · |V |

32 / 72

Background and Motivation
Why Hardness of Approximation?
How do we prove Hardness of Approximation?
Hardness of Approximation - Example

Proofs & Hardness of Approximation

Conclusion

Acknowledgements

33 / 72

Complexity Classes
NP: Set of languages L ⊆ {0, 1}∗ such that there exists a poly-time
Turing Machine V , such that:

x ∈ L ⇔ ∃w ∈ {0, 1}poly(|x |) s.t. V (x , y) = 1

BPP: Set of languages L ⊆ {0, 1}∗ such that there exists a poly-time
Turing Machine M, such that for every x ∈ {0, 1}∗, we have

Pr
R∈{0,1}poly(|x|)

[M(x ,R) = L(x)] ≥ 2/3

RP: Set of languages L ⊆ {0, 1}∗ such that there exists a poly-time
Turing Machine M, such that:

x ∈ L ⇒ Pr
R∈{0,1}poly(|x|)

[M(x ,R) = 1] ≥ 2/3

x ̸∈ L ⇒ Pr
R∈{0,1}poly(|x|)

[M(x ,R) = 1] = 0

co-RP: languages L ⊆ {0, 1}∗ s.t. L ∈ RP

34 / 72

Complexity Classes
NP: Set of languages L ⊆ {0, 1}∗ such that there exists a poly-time
Turing Machine V , such that:

x ∈ L ⇔ ∃w ∈ {0, 1}poly(|x |) s.t. V (x , y) = 1

BPP: Set of languages L ⊆ {0, 1}∗ such that there exists a poly-time
Turing Machine M, such that for every x ∈ {0, 1}∗, we have

Pr
R∈{0,1}poly(|x|)

[M(x ,R) = L(x)] ≥ 2/3

RP: Set of languages L ⊆ {0, 1}∗ such that there exists a poly-time
Turing Machine M, such that:

x ∈ L ⇒ Pr
R∈{0,1}poly(|x|)

[M(x ,R) = 1] ≥ 2/3

x ̸∈ L ⇒ Pr
R∈{0,1}poly(|x|)

[M(x ,R) = 1] = 0

co-RP: languages L ⊆ {0, 1}∗ s.t. L ∈ RP

35 / 72

Complexity Classes
NP: Set of languages L ⊆ {0, 1}∗ such that there exists a poly-time
Turing Machine V , such that:

x ∈ L ⇔ ∃w ∈ {0, 1}poly(|x |) s.t. V (x , y) = 1

BPP: Set of languages L ⊆ {0, 1}∗ such that there exists a poly-time
Turing Machine M, such that for every x ∈ {0, 1}∗, we have

Pr
R∈{0,1}poly(|x|)

[M(x ,R) = L(x)] ≥ 2/3

RP: Set of languages L ⊆ {0, 1}∗ such that there exists a poly-time
Turing Machine M, such that:

x ∈ L ⇒ Pr
R∈{0,1}poly(|x|)

[M(x ,R) = 1] ≥ 2/3

x ̸∈ L ⇒ Pr
R∈{0,1}poly(|x|)

[M(x ,R) = 1] = 0

co-RP: languages L ⊆ {0, 1}∗ s.t. L ∈ RP

36 / 72

Complexity Classes
NP: Set of languages L ⊆ {0, 1}∗ such that there exists a poly-time
Turing Machine V , such that:

x ∈ L ⇔ ∃w ∈ {0, 1}poly(|x |) s.t. V (x , y) = 1

BPP: Set of languages L ⊆ {0, 1}∗ such that there exists a poly-time
Turing Machine M, such that for every x ∈ {0, 1}∗, we have

Pr
R∈{0,1}poly(|x|)

[M(x ,R) = L(x)] ≥ 2/3

RP: Set of languages L ⊆ {0, 1}∗ such that there exists a poly-time
Turing Machine M, such that:

x ∈ L ⇒ Pr
R∈{0,1}poly(|x|)

[M(x ,R) = 1] ≥ 2/3

x ̸∈ L ⇒ Pr
R∈{0,1}poly(|x|)

[M(x ,R) = 1] = 0

co-RP: languages L ⊆ {0, 1}∗ s.t. L ∈ RP
37 / 72

Proof Systems
A proof system looks like this:

1 A prover and a verifier agree on the following:
The prover must provide proofs in a certain format
The verifier can use algorithms from a certain complexity class for
verification

2 A statement is given to both prover and verifier (for instance “Graph
G (V ,E) has a Hamiltonian Cycle”)

3 A prover writes down a proof of the statement
4 The verifier uses an algorithm of their choice to check the statement

and proof, and accepts or rejects accordingly.
5 NP as a proof system:

L ⊆ {0, 1}n is the language, verifier can use any deterministic,
poly-time Turing Machine

Given an element x , the prover gives a proof (also known as witness)
w ∈ {0, 1}poly(|x|)
Verifier picks a poly-time Turing Machine V and outputs{
TRUE , if V (x ,w) = 1

FALSE , otherwise

38 / 72

Proof Systems
A proof system looks like this:

1 A prover and a verifier agree on the following:
The prover must provide proofs in a certain format
The verifier can use algorithms from a certain complexity class for
verification

2 A statement is given to both prover and verifier (for instance “Graph
G (V ,E) has a Hamiltonian Cycle”)

3 A prover writes down a proof of the statement
4 The verifier uses an algorithm of their choice to check the statement

and proof, and accepts or rejects accordingly.
5 NP as a proof system:

L ⊆ {0, 1}n is the language, verifier can use any deterministic,
poly-time Turing Machine

Given an element x , the prover gives a proof (also known as witness)
w ∈ {0, 1}poly(|x|)
Verifier picks a poly-time Turing Machine V and outputs{
TRUE , if V (x ,w) = 1

FALSE , otherwise

39 / 72

Proof Systems
A proof system looks like this:

1 A prover and a verifier agree on the following:
The prover must provide proofs in a certain format
The verifier can use algorithms from a certain complexity class for
verification

2 A statement is given to both prover and verifier (for instance “Graph
G (V ,E) has a Hamiltonian Cycle”)

3 A prover writes down a proof of the statement
4 The verifier uses an algorithm of their choice to check the statement

and proof, and accepts or rejects accordingly.
5 NP as a proof system:

L ⊆ {0, 1}n is the language, verifier can use any deterministic,
poly-time Turing Machine

Given an element x , the prover gives a proof (also known as witness)
w ∈ {0, 1}poly(|x|)
Verifier picks a poly-time Turing Machine V and outputs{
TRUE , if V (x ,w) = 1

FALSE , otherwise

40 / 72

Proof Systems
A proof system looks like this:

1 A prover and a verifier agree on the following:
The prover must provide proofs in a certain format
The verifier can use algorithms from a certain complexity class for
verification

2 A statement is given to both prover and verifier (for instance “Graph
G (V ,E) has a Hamiltonian Cycle”)

3 A prover writes down a proof of the statement

4 The verifier uses an algorithm of their choice to check the statement
and proof, and accepts or rejects accordingly.

5 NP as a proof system:
L ⊆ {0, 1}n is the language, verifier can use any deterministic,
poly-time Turing Machine

Given an element x , the prover gives a proof (also known as witness)
w ∈ {0, 1}poly(|x|)
Verifier picks a poly-time Turing Machine V and outputs{
TRUE , if V (x ,w) = 1

FALSE , otherwise

41 / 72

Proof Systems
A proof system looks like this:

1 A prover and a verifier agree on the following:
The prover must provide proofs in a certain format
The verifier can use algorithms from a certain complexity class for
verification

2 A statement is given to both prover and verifier (for instance “Graph
G (V ,E) has a Hamiltonian Cycle”)

3 A prover writes down a proof of the statement
4 The verifier uses an algorithm of their choice to check the statement

and proof, and accepts or rejects accordingly.

5 NP as a proof system:
L ⊆ {0, 1}n is the language, verifier can use any deterministic,
poly-time Turing Machine

Given an element x , the prover gives a proof (also known as witness)
w ∈ {0, 1}poly(|x|)
Verifier picks a poly-time Turing Machine V and outputs{
TRUE , if V (x ,w) = 1

FALSE , otherwise

42 / 72

Proof Systems
A proof system looks like this:

1 A prover and a verifier agree on the following:
The prover must provide proofs in a certain format
The verifier can use algorithms from a certain complexity class for
verification

2 A statement is given to both prover and verifier (for instance “Graph
G (V ,E) has a Hamiltonian Cycle”)

3 A prover writes down a proof of the statement
4 The verifier uses an algorithm of their choice to check the statement

and proof, and accepts or rejects accordingly.
5 NP as a proof system:

L ⊆ {0, 1}n is the language, verifier can use any deterministic,
poly-time Turing Machine

Given an element x , the prover gives a proof (also known as witness)
w ∈ {0, 1}poly(|x|)
Verifier picks a poly-time Turing Machine V and outputs{
TRUE , if V (x ,w) = 1

FALSE , otherwise

43 / 72

Proof Systems
A proof system looks like this:

1 A prover and a verifier agree on the following:
The prover must provide proofs in a certain format
The verifier can use algorithms from a certain complexity class for
verification

2 A statement is given to both prover and verifier (for instance “Graph
G (V ,E) has a Hamiltonian Cycle”)

3 A prover writes down a proof of the statement
4 The verifier uses an algorithm of their choice to check the statement

and proof, and accepts or rejects accordingly.
5 NP as a proof system:

L ⊆ {0, 1}n is the language, verifier can use any deterministic,
poly-time Turing Machine
Given an element x , the prover gives a proof (also known as witness)
w ∈ {0, 1}poly(|x|)

Verifier picks a poly-time Turing Machine V and outputs{
TRUE , if V (x ,w) = 1

FALSE , otherwise

44 / 72

Proof Systems
A proof system looks like this:

1 A prover and a verifier agree on the following:
The prover must provide proofs in a certain format
The verifier can use algorithms from a certain complexity class for
verification

2 A statement is given to both prover and verifier (for instance “Graph
G (V ,E) has a Hamiltonian Cycle”)

3 A prover writes down a proof of the statement
4 The verifier uses an algorithm of their choice to check the statement

and proof, and accepts or rejects accordingly.
5 NP as a proof system:

L ⊆ {0, 1}n is the language, verifier can use any deterministic,
poly-time Turing Machine
Given an element x , the prover gives a proof (also known as witness)
w ∈ {0, 1}poly(|x|)
Verifier picks a poly-time Turing Machine V and outputs{
TRUE , if V (x ,w) = 1

FALSE , otherwise

45 / 72

Proof Systems - Completeness and Soundness

How good is a proof system?
1 Two parameters (aside from efficiency):

Completeness: correct statements have a proof in the system
Soundness: false statements do not have a proof in the system

2 NP as a proof system:

L ⊆ {0, 1}n is the language, verifier can use any poly-time Turing
Machine
Given an element x , the prover gives a proof (also known as witness)
w ∈ {0, 1}poly(|x|)
Verifier picks a deterministic, poly-time Turing Machine V and outputs{
TRUE , if V (x ,w) = 1

FALSE , otherwise

Completeness: x ∈ L ⇒ ∃w ∈ {0, 1}poly(|x|) such that V (x ,w) = 1
Soundness: x ̸∈ L ⇒ ∀w ∈ {0, 1}poly(|x|) we have V (x ,w) = 0

46 / 72

Proof Systems - Completeness and Soundness

How good is a proof system?
1 Two parameters (aside from efficiency):

Completeness: correct statements have a proof in the system
Soundness: false statements do not have a proof in the system

2 NP as a proof system:

L ⊆ {0, 1}n is the language, verifier can use any poly-time Turing
Machine
Given an element x , the prover gives a proof (also known as witness)
w ∈ {0, 1}poly(|x|)
Verifier picks a deterministic, poly-time Turing Machine V and outputs{
TRUE , if V (x ,w) = 1

FALSE , otherwise

Completeness: x ∈ L ⇒ ∃w ∈ {0, 1}poly(|x|) such that V (x ,w) = 1
Soundness: x ̸∈ L ⇒ ∀w ∈ {0, 1}poly(|x|) we have V (x ,w) = 0

47 / 72

Proof Systems - Completeness and Soundness

How good is a proof system?
1 Two parameters (aside from efficiency):

Completeness: correct statements have a proof in the system
Soundness: false statements do not have a proof in the system

2 NP as a proof system:

L ⊆ {0, 1}n is the language, verifier can use any poly-time Turing
Machine
Given an element x , the prover gives a proof (also known as witness)
w ∈ {0, 1}poly(|x|)
Verifier picks a deterministic, poly-time Turing Machine V and outputs{
TRUE , if V (x ,w) = 1

FALSE , otherwise

Completeness: x ∈ L ⇒ ∃w ∈ {0, 1}poly(|x|) such that V (x ,w) = 1

Soundness: x ̸∈ L ⇒ ∀w ∈ {0, 1}poly(|x|) we have V (x ,w) = 0

48 / 72

Proof Systems - Completeness and Soundness

How good is a proof system?
1 Two parameters (aside from efficiency):

Completeness: correct statements have a proof in the system
Soundness: false statements do not have a proof in the system

2 NP as a proof system:

L ⊆ {0, 1}n is the language, verifier can use any poly-time Turing
Machine
Given an element x , the prover gives a proof (also known as witness)
w ∈ {0, 1}poly(|x|)
Verifier picks a deterministic, poly-time Turing Machine V and outputs{
TRUE , if V (x ,w) = 1

FALSE , otherwise

Completeness: x ∈ L ⇒ ∃w ∈ {0, 1}poly(|x|) such that V (x ,w) = 1
Soundness: x ̸∈ L ⇒ ∀w ∈ {0, 1}poly(|x|) we have V (x ,w) = 0

49 / 72

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V
for which:

1 Given language L (the language of correct statements)

2 x ∈ L ⇒ there exists proof w such that Pr[V w (x) = 1] = 1

3 x ̸∈ L ⇒ for any ”proof” w , we have Pr[V w (x) = 1] ≤ 1/2

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs consists of languages L that
have a randomized poly-time verifier V such that

1 x ∈ L ⇒ ∃ proof w such that Pr[V w (x) = 1] = 1

2 x ̸∈ L ⇒ ∀ ”proof” w , we have Pr[V w (x) = 1] ≤ 1/2

50 / 72

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V
for which:

1 Given language L (the language of correct statements)

2 x ∈ L ⇒ there exists proof w such that Pr[V w (x) = 1] = 1

3 x ̸∈ L ⇒ for any ”proof” w , we have Pr[V w (x) = 1] ≤ 1/2

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs consists of languages L that
have a randomized poly-time verifier V such that

1 x ∈ L ⇒ ∃ proof w such that Pr[V w (x) = 1] = 1

2 x ̸∈ L ⇒ ∀ ”proof” w , we have Pr[V w (x) = 1] ≤ 1/2

51 / 72

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V
for which:

1 Given language L (the language of correct statements)

2 x ∈ L ⇒ there exists proof w such that Pr[V w (x) = 1] = 1

3 x ̸∈ L ⇒ for any ”proof” w , we have Pr[V w (x) = 1] ≤ 1/2

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs consists of languages L that
have a randomized poly-time verifier V such that

1 x ∈ L ⇒ ∃ proof w such that Pr[V w (x) = 1] = 1

2 x ̸∈ L ⇒ ∀ ”proof” w , we have Pr[V w (x) = 1] ≤ 1/2

52 / 72

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V
for which:

1 Given language L (the language of correct statements)

2 x ∈ L ⇒ there exists proof w such that Pr[V w (x) = 1] = 1

3 x ̸∈ L ⇒ for any ”proof” w , we have Pr[V w (x) = 1] ≤ 1/2

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs consists of languages L that
have a randomized poly-time verifier V such that

1 x ∈ L ⇒ ∃ proof w such that Pr[V w (x) = 1] = 1

2 x ̸∈ L ⇒ ∀ ”proof” w , we have Pr[V w (x) = 1] ≤ 1/2

53 / 72

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V
for which:

1 Given language L (the language of correct statements)

2 x ∈ L ⇒ there exists proof w such that Pr[V w (x) = 1] = 1

3 x ̸∈ L ⇒ for any ”proof” w , we have Pr[V w (x) = 1] ≤ 1/2

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs consists of languages L that
have a randomized poly-time verifier V such that

1 x ∈ L ⇒ ∃ proof w such that Pr[V w (x) = 1] = 1

2 x ̸∈ L ⇒ ∀ ”proof” w , we have Pr[V w (x) = 1] ≤ 1/2

54 / 72

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V
for which:

1 Given language L (the language of correct statements)

2 x ∈ L ⇒ there exists proof w such that Pr[V w (x) = 1] = 1

3 x ̸∈ L ⇒ for any ”proof” w , we have Pr[V w (x) = 1] ≤ 1/2

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs consists of languages L that
have a randomized poly-time verifier V such that

1 x ∈ L ⇒ ∃ proof w such that Pr[V w (x) = 1] = 1

2 x ̸∈ L ⇒ ∀ ”proof” w , we have Pr[V w (x) = 1] ≤ 1/2

55 / 72

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V such that

1 x ∈ L ⇒ there exists proof w such that Pr[V w (x) = 1] = 1

2 x ̸∈ L ⇒ for any proof w , we have Pr[V w (x) = 1] ≤ 1/2

PCP[r(n), q(n)] consists of all languages L ∈ PCP such that, on
inputs x of length n

1 Uses O(r(n)) random bits
2 Examines O(q(n)) bits of a proof w

Note that n does not depend on w , only on x .

Theorem (PCP theorem [AS’98, ALMSS’98])

PCP[log n, 1] = NP

56 / 72

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V such that

1 x ∈ L ⇒ there exists proof w such that Pr[V w (x) = 1] = 1

2 x ̸∈ L ⇒ for any proof w , we have Pr[V w (x) = 1] ≤ 1/2

PCP[r(n), q(n)] consists of all languages L ∈ PCP such that, on
inputs x of length n

1 Uses O(r(n)) random bits
2 Examines O(q(n)) bits of a proof w

Note that n does not depend on w , only on x .

Theorem (PCP theorem [AS’98, ALMSS’98])

PCP[log n, 1] = NP

57 / 72

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V such that

1 x ∈ L ⇒ there exists proof w such that Pr[V w (x) = 1] = 1

2 x ̸∈ L ⇒ for any proof w , we have Pr[V w (x) = 1] ≤ 1/2

PCP[r(n), q(n)] consists of all languages L ∈ PCP such that, on
inputs x of length n

1 Uses O(r(n)) random bits
2 Examines O(q(n)) bits of a proof w

Note that n does not depend on w , only on x .

Theorem (PCP theorem [AS’98, ALMSS’98])

PCP[log n, 1] = NP

58 / 72

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V such that

1 x ∈ L ⇒ there exists proof w such that Pr[V w (x) = 1] = 1

2 x ̸∈ L ⇒ for any proof w , we have Pr[V w (x) = 1] ≤ 1/2

PCP[r(n), q(n)] consists of all languages L ∈ PCP such that, on
inputs x of length n

1 Uses O(r(n)) random bits
2 Examines O(q(n)) bits of a proof w

Note that n does not depend on w , only on x .

Theorem (PCP theorem [AS’98, ALMSS’98])

PCP[log n, 1] = NP

59 / 72

PCP and Approximability of Max 3SAT

Definition (Max 3SAT)

Input: a 3CNF formula φ on boolean variables x1, . . . , xn and m
clauses

Output: the maximum number of clauses of φ which can be
simultaneously satisfied.

Theorem
1 The PCP theorem implies that there is an ε > 0 such that there is no

polynomial time (1 + ε)-approximation algorithm for Max 3SAT,
unless P = NP.

2 Moreover, if Max 3SAT is hard to approximate within a factor of
(1 + ε), then the PCP theorem holds.

In other words, the PCP theorem and the hardness of approximation
of Max 3SAT are equivalent.

60 / 72

PCP and Approximability of Max 3SAT

1 Let us assume the PCP theorem holds.

Let L ∈ PCP[log n, 1] be an NP-complete problem.
Let V be the (O(log n), q) verifier for L, where q is a constant

2 We now describe a reduction from L to Max 3SAT which has a gap.
3 Given an instance x of problem L, we construct 3CNF formula φx

with m clauses such that, for some ε we have

x ∈ L ⇒ φx is satisfiable
x ̸∈ L ⇒ no assignment satisfies more than (1− ε) ·m clauses of φx

4 Enumerate all random inputs R for the verifier V .

Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
For each R, V chooses q positions iR1 , . . . , i

R
q and a boolean function

fR : {0, 1}q → {0, 1} and accepts iff fR(wiR1
, . . . ,wiRq

) = 1.

61 / 72

PCP and Approximability of Max 3SAT

1 Let us assume the PCP theorem holds.

Let L ∈ PCP[log n, 1] be an NP-complete problem.
Let V be the (O(log n), q) verifier for L, where q is a constant

2 We now describe a reduction from L to Max 3SAT which has a gap.

3 Given an instance x of problem L, we construct 3CNF formula φx

with m clauses such that, for some ε we have

x ∈ L ⇒ φx is satisfiable
x ̸∈ L ⇒ no assignment satisfies more than (1− ε) ·m clauses of φx

4 Enumerate all random inputs R for the verifier V .

Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
For each R, V chooses q positions iR1 , . . . , i

R
q and a boolean function

fR : {0, 1}q → {0, 1} and accepts iff fR(wiR1
, . . . ,wiRq

) = 1.

62 / 72

PCP and Approximability of Max 3SAT

1 Let us assume the PCP theorem holds.

Let L ∈ PCP[log n, 1] be an NP-complete problem.
Let V be the (O(log n), q) verifier for L, where q is a constant

2 We now describe a reduction from L to Max 3SAT which has a gap.
3 Given an instance x of problem L, we construct 3CNF formula φx

with m clauses such that, for some ε we have

x ∈ L ⇒ φx is satisfiable
x ̸∈ L ⇒ no assignment satisfies more than (1− ε) ·m clauses of φx

4 Enumerate all random inputs R for the verifier V .

Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
For each R, V chooses q positions iR1 , . . . , i

R
q and a boolean function

fR : {0, 1}q → {0, 1} and accepts iff fR(wiR1
, . . . ,wiRq

) = 1.

63 / 72

PCP and Approximability of Max 3SAT

1 Let us assume the PCP theorem holds.

Let L ∈ PCP[log n, 1] be an NP-complete problem.
Let V be the (O(log n), q) verifier for L, where q is a constant

2 We now describe a reduction from L to Max 3SAT which has a gap.
3 Given an instance x of problem L, we construct 3CNF formula φx

with m clauses such that, for some ε we have

x ∈ L ⇒ φx is satisfiable
x ̸∈ L ⇒ no assignment satisfies more than (1− ε) ·m clauses of φx

4 Enumerate all random inputs R for the verifier V .

Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
For each R, V chooses q positions iR1 , . . . , i

R
q and a boolean function

fR : {0, 1}q → {0, 1} and accepts iff fR(wiR1
, . . . ,wiRq

) = 1.

64 / 72

PCP and Approximability of Max 3SAT
1 Enumerate all random inputs R for the verifier V .

Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
For each R, V chooses q positions iR1 , . . . , i

R
q and a boolean function

fR : {0, 1}q → {0, 1} and accepts iff fR(wiR1
, . . . ,wiRq

) = 1.

2 Simulate the computation fR of the verifier for different random
inputs R and witnesses w as a Boolean formula.

Can be done with a CNF of size 2q

Converting to 3CNF we get a formula of size q · 2q

3 Let φx be the 3CNF we get by putting together all the 3CNFs
constructed above

4 If x ∈ L then there is a witness w such that V (x ,w) accepts for every
random string R. In this case, φx is satisfiable!

5 If x ̸∈ L then the verifier says NO for half of the random strings R.

For each such random string, at least one of its clauses fails

Thus at least ε =
1

2 · q · 2q
of the clauses of φx fails.

65 / 72

PCP and Approximability of Max 3SAT
1 Enumerate all random inputs R for the verifier V .

Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
For each R, V chooses q positions iR1 , . . . , i

R
q and a boolean function

fR : {0, 1}q → {0, 1} and accepts iff fR(wiR1
, . . . ,wiRq

) = 1.

2 Simulate the computation fR of the verifier for different random
inputs R and witnesses w as a Boolean formula.

Can be done with a CNF of size 2q

Converting to 3CNF we get a formula of size q · 2q

3 Let φx be the 3CNF we get by putting together all the 3CNFs
constructed above

4 If x ∈ L then there is a witness w such that V (x ,w) accepts for every
random string R. In this case, φx is satisfiable!

5 If x ̸∈ L then the verifier says NO for half of the random strings R.

For each such random string, at least one of its clauses fails

Thus at least ε =
1

2 · q · 2q
of the clauses of φx fails.

66 / 72

PCP and Approximability of Max 3SAT
1 Enumerate all random inputs R for the verifier V .

Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
For each R, V chooses q positions iR1 , . . . , i

R
q and a boolean function

fR : {0, 1}q → {0, 1} and accepts iff fR(wiR1
, . . . ,wiRq

) = 1.

2 Simulate the computation fR of the verifier for different random
inputs R and witnesses w as a Boolean formula.

Can be done with a CNF of size 2q

Converting to 3CNF we get a formula of size q · 2q

3 Let φx be the 3CNF we get by putting together all the 3CNFs
constructed above

4 If x ∈ L then there is a witness w such that V (x ,w) accepts for every
random string R. In this case, φx is satisfiable!

5 If x ̸∈ L then the verifier says NO for half of the random strings R.

For each such random string, at least one of its clauses fails

Thus at least ε =
1

2 · q · 2q
of the clauses of φx fails.

67 / 72

PCP and Approximability of Max 3SAT
1 Enumerate all random inputs R for the verifier V .

Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
For each R, V chooses q positions iR1 , . . . , i

R
q and a boolean function

fR : {0, 1}q → {0, 1} and accepts iff fR(wiR1
, . . . ,wiRq

) = 1.

2 Simulate the computation fR of the verifier for different random
inputs R and witnesses w as a Boolean formula.

Can be done with a CNF of size 2q

Converting to 3CNF we get a formula of size q · 2q

3 Let φx be the 3CNF we get by putting together all the 3CNFs
constructed above

4 If x ∈ L then there is a witness w such that V (x ,w) accepts for every
random string R. In this case, φx is satisfiable!

5 If x ̸∈ L then the verifier says NO for half of the random strings R.

For each such random string, at least one of its clauses fails

Thus at least ε =
1

2 · q · 2q
of the clauses of φx fails.

68 / 72

PCP and Approximability of Max 3SAT
1 Enumerate all random inputs R for the verifier V .

Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
For each R, V chooses q positions iR1 , . . . , i

R
q and a boolean function

fR : {0, 1}q → {0, 1} and accepts iff fR(wiR1
, . . . ,wiRq

) = 1.

2 Simulate the computation fR of the verifier for different random
inputs R and witnesses w as a Boolean formula.

Can be done with a CNF of size 2q

Converting to 3CNF we get a formula of size q · 2q

3 Let φx be the 3CNF we get by putting together all the 3CNFs
constructed above

4 If x ∈ L then there is a witness w such that V (x ,w) accepts for every
random string R. In this case, φx is satisfiable!

5 If x ̸∈ L then the verifier says NO for half of the random strings R.

For each such random string, at least one of its clauses fails

Thus at least ε =
1

2 · q · 2q
of the clauses of φx fails.

69 / 72

Conclusion

Important to study hardness of approximation for NP-hard problems

Different hard problems have different approximation parameters

For hardness of approximation, need more robust reductions between
combinatorial problems

Proof systems, in particular Probabilistic Checkable Proofs, allows us
to get such strong reductions

Many more applications in computer science and industry!

Program Checking (for software engineering)
Zero-knowledge proofs in cryptocurrencies
many more...

70 / 72

Acknowledgement

Lecture based largely on:

Section’s 1-3 of Luca’s survey [Trevisan 2004]
[Motwani & Raghavan 2007, Chapter 7]

See Luca’s survey https://arxiv.org/pdf/cs/0409043

71 / 72

https://arxiv.org/pdf/cs/0409043

References I

Trevisan, Luca (2004)

Inapproximability of combinatorial optimization problems.

arXiv preprint cs/0409043 (2004).

Motwani, Rajeev and Raghavan, Prabhakar (2007)

Randomized Algorithms

Arora, Sanjeev, and Shmuel Safra (1998)

Probabilistic checking of proofs: A new characterization of NP.

Journal of the ACM (JACM) 45, no. 1 (1998): 70-122.

Arora, Sanjeev, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy
(1998)

Proof verification and the hardness of approximation problems.

Journal of the ACM (JACM) 45, no. 3 (1998): 501-555.

72 / 72

	Background and Motivation
	Why Hardness of Approximation?
	How do we prove Hardness of Approximation?
	Hardness of Approximation - Example

	Proofs & Hardness of Approximation
	Conclusion
	Acknowledgements

