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1 A Faster MWU Algorithm for Bipartite Matching

In the last lecture, we saw how to use the Multiplicative Weight Update (MWU) technique to approximate
the fractional matching LP. As we also discussed, almost everything covered in the previous lecture can be
readily generalized to solving other LPs if our goal is to find an approximately feasible solution (although
not necessary a feasible one with approximate objective). We now show how one can use more structure
about the problem at hand to improve upon the vanilla application of the MWU technique. Specifically, we
focus on the bipartite matching problem for this lecture.

1.1 Recap

Recall that the LP we would like to solve is the following:

max
x∈RE

∑
e∈E

xe

subject to
∑
e3v

xe 6 1 ∀v ∈ V

xe > 0 ∀e ∈ E; (1)

we know that this LP has an integral optimal solution (given the bipartiteness of the graph; see Lecture 8).

Based on this LP, and for every weight function w that assigns wv > 0 to each vertex v ∈ V , we define
the following oracle LP (here W :=

∑
v∈V wv):

max
x∈RE

∑
e∈E

xe

subject to
∑
v∈V

wv
∑
e3v

xe 6W
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xe > 0 ∀e ∈ E. (2)

Notice that this LP is simpler than the original LP in that instead of the n “hard” constraints of the original
LP—one for each vertex of the graph—we now only have a single constraint for their convex combination.

As we saw, the power of the MWU technique was that as long as we could solve the oracle LP efficiently,
we could also approximately solve the original LP, as captured by the following algorithm.

Algorithm 1. A MWU algorithm for the Matching LP.

1. For every vertex v ∈ V , let w
(1)
v = 1.

2. For t = 1 to T iterations:

(a) Let x(t) be any feasible solution to the oracle LP with weights w(t) according to LP (2).

(b) For every vertex v ∈ V , update:

w(t+1)
v =

(
1 + η ·

∑
e3v

x(t)e

)
· w(t)

v .

3. Return the final solution

x̄ :=
1

T
·
T∑
t=1

x(t).

The following lemma, proved in the previous lecture, captures the main property of this algorithm.

Lemma 1. For any ε ∈ (0, 1/2), if we run Algorithm 1 for T > 8ρ·lnn
ε2 iterations for

ρ > max
v∈V

max
t>1

∑
e3v

x(t)e ,

with parameter η = ε
2ρ , then the output solution x̄ satisfies∑

e∈v
x̄e 6 1 + ε for all v ∈ V .

The way we used Algorithm 1 and Lemma 1 in the previous lecture was the following: in each iteration,

we find the edge e = (u, v) with minimum weight w
(t)
e := w

(t)
u + w

(t)
v ; then, we let x

(t)
e to be min (n,W/we)

and x
(t)
f = 0 for all e 6= f . As we argued, this implies that for all t ∈ [T ],

∑
e∈E x

(t)
e > OPT, where OPT

is the optimum solution of LP (1). Thus, we also have
∑
e∈E x̄e > OPT (since x̄ is the average of x(t)’s).

Moreover, by Lemma 1, for ρ = n, we have that Algorithm 1 finishes in O(n lnn/ε2) iterations and finds a
solution x̄ that satisfies every constraint up to a (1 + ε) factor; finally, rescaling x̄ with a (1 + ε) factor, leads
to a fractional matching of size at least OPT/(1 + ε). Each iteration of the algorithm can be implemented
in O(n) time also, leading to an overall O(n2 log n/ε2) time for the entire algorithm.

1.2 A Strategy for Improved Algorithms

As we saw, “all” we need to be able to use MWU efficiently is the following:

• We should be able to solve the oracle LP (2) to achieve a solution which is (nearly) as good as the
original LP (1) (but not necessarily optimally for LP (2) itself). This ensures our output will also be
(nearly) optimal;
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• We would like to reduce the width parameter ρ (defined in Lemma 1) to be as small as possible –
this ensures the number of iterations will be as small as possible.

Let us now see how we can reduce the width for our particular bipartite matching LP.

As we proved earlier in the course (in Lecture 8), the integrality gap of LP (1) on bipartite graphs is
one. Thus, we can assume that there is always a matching MOPT of size OPT in the in the input graph G.
On the other hand, recall that Oracle LP (2), when stated with the weights of edges as sum of weight of its
vertices, is the following:

max
x∈RE

∑
e∈E

xe

subject to
∑
e∈E

xe · we 6W

xe > 0 ∀e ∈ E. (3)

Thus, we are saying that there is a matching MOPT in the graph G with the total weight at most W (no
matter what weights we are choosing for the vertices and thus, in turn, the weight of edges).

Now, consider our previous approach of picking the edge e∗ with minimum weight and setting xe∗ = OPT
and xe = 0 for all e 6= e∗ (we actually put a different value because we do not know OPT, but you can see
that had we known OPT, using this choice would have worked as well). We can think of this strategy as
follows: while MOPT has OPT edges with weight at most W , we can find a single edge with weight at most
W/OPT – thus, on this single edge, we are competing quite favorably with the optimum in terms of “bang
for the buck”: how much we contribute to objective value versus the main constraint of the Oracle LP. The
problem with this approach was that we needed to put a very large value on xe∗ and thus get a large width
ρ, which in turn led to a large number of iterations in the algorithm.

But, now suppose could pick k edges with total weight W/k for some k > 1. Can we again compete
favorably with the optimum solution? Yes; do we get a lower width? Not necessarily because the width is
determined by the largest x-value we put on a single vertex and not an edge. Thus, just picking k edges is
not enough. But what if these k edges form a matching? Then, indeed we can reduce the width to OPT/k
also by putting an x-value of OPT/k over each of these edges.

We use the following (slightly more general) lemma to formalize this.

Lemma 2. Let δ ∈ (0, 1/2) be any parameter and M be any matching in G with

w(M)

|M |
6 (1 + δ) · W

OPT
;

then, the solution x ∈ RE with xe = OPT/(1 + δ)|M | for e ∈ M and 0 outside M is feasible for the Oracle
LP (2) with objective value OPT/(1 + δ) and width (in this iteration), at most OPT/|M |.

Proof. For the feasibility, we have,∑
e∈E

xe · we =
∑
e∈M

OPT

(1 + δ) · |M |
· we =

OPT

(1 + δ)
· w(M)

|M |
6

OPT

(1 + δ)
· (1 + δ) · W

OPT
= W,

and thus the solution is feasible. For the objective value,∑
e∈E

xe =
∑
e∈M

OPT

(1 + δ) · |M |
= |M | · OPT

(1 + δ) · |M |
=

OPT

(1 + δ)
.

And finally, since M is a matching, each vertex v ∈ V is incident on at most one edge of M and thus∑
e3v

xe 6
OPT

(1 + δ) · |M |
6

OPT

|M |
,

concluding the proof.
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Again, the interpretation of Lemma 2 is that as long as we can find a matching such that on average, it
“spends” less weight per each than MOPT does (i.e., bang per buck competes with MOPT), we can turn it
into a feasible solution for the Oracle LP (2) with a competitive objective (we would like to set δ to be at
most Θ(ε) so that the final solution is still a (1 − O(ε)) approximation after scaling x̄ by a (1 + ε) factor).
Moreover, the width of this approach will depend on how large we can make |M | (the larger the better).

We now show two different strategies for obtaining better algorithms (with smaller width) using Lemma 2.

1.3 Reducing the Width: Approach One

Our first approach finds a matching M of size at least ε/4 ·OPT which satisfies the premise of Lemma 2 for
the parameter δ = ε. A key observation toward this algorithm is the following.

Claim 3. There are at least ε/2 · OPT edges e in MOPT such that we 6 (1 + ε) ·W/OPT.

Proof. Suppose not; then, the weight of the remaining edges is at least

(1− ε/2) · OPT · (1 + ε) · W

OPT
> W,

contradicting the fact that w(MOPT) 6W (as argued earlier).

Using this claim, we can do the following1 in Line (2a) of Algorithm 1: we consider all edges of G whose
weight currently is at most (1+ε) ·W/OPT; then, we run the greedy algorithm on this subgraph of G to find
a matching M . As we have proven earlier in the course, size of M is at least half of the maximum matching
in the subgraph, which itself, is of size at least ε/2 · OPT by Claim 3.

To analyze the algorithm, we have that the matching M returned above always satisfy the requirement
of Lemma 2 for δ = ε and thus, using that lemma, we can return a feasible solution x(t) for the Oracle LP (2)
in each iteration t ∈ [T ] of Algorithm 1 such that its objective value is at least OPT/(1+ε) and the resulting
width will be

ρ 6
OPT

|M |
6

OPT

ε/4 · OPT
=

4

ε
;

thus, we have reduced our width from n all the way down to O(1/ε) using this new algorithm for Line (2a)
of Algorithm 1. If we use this approach instead in Lemma 1, we will get an algorithm that converges in only
O(log (n)/ε3) iterations, and each iteration takes O(m) time for finding the desired subgraph and running
the greedy matching algorithm over that. Finally, the solution x̄ we find satisfies∑

e∈E
x̄e >

OPT

(1 + ε)
and

∑
e3v

x̄e 6 (1 + ε) for all v ∈ V .

Hence, by rounding down x̄ by a factor of (1 + ε), we obtain a feasible solution which is a (1 − O(ε))
approximation (to obtain a (1− ε)-approximation exactly, simply run the algorithm with a smaller value of
ε by a constant factor).

All in all, this gives us an algorithm for finding a (1− ε)-approximate fractional matching2 in

O(
log (n)

ε3
)

iterations of the MWU algorithm and

O(
m log n

ε3
)

time in total.

We now switch to an even more improved strategy for this problem.

1This step requires assuming that we actually know the value of OPT. One way of handling this is to binary search for OPT
as well; we do not cover this part in more detail as in the next part, we are going to prove an improved way of solving the oracle
LP which does not require this assumption anyway.

2We can also round this fractional matching into an integral one given the input graph is bipartite, but we skip that step.
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1.4 Reducing the Width: Approach Two

We now design an algorithm that solves the Oracle LP (2) with a width of only 2 (!), still in O(m) time.

Algorithm 2. A Better Oracle for the Bipartite Matching LP.

1. Sort the edges in the increasing order of their weights.

2. Let M = ∅. While w(M) 6W/2:

• Pick the lowest weight available edge e in M if both its endpoints are unmatched, and
otherwise skip this edge.

3. Return M as the final matching.

Lemma 4. Size of M in Algorithm 2 is at least OPT/2 for any choices of weights on the edges.

Proof. Let e1, e2, . . . , eOPT/2 be the first OPT/2 edges of M in the order added to M and o1, o2, . . . , oOPT

be the edges of MOPT sorted in the increasing order of their weight. We claim inductively that for every
i ∈ [OPT/2],

i∑
j=1

w(ej)︸ ︷︷ ︸
w(e6i)

6
1

2
·

2i∑
j=1

w(oj)︸ ︷︷ ︸
w(o62i)

;

in words, the total weight of the first i edges in M , denoted by w(e6i) is at most half the total weight of the
first 2i edges in MOPT, denoted by w(o62i).

The base case for i = 1 holds because w(e1) is smaller than all other edges in the graph and thus in
particular is half of the w(o1) + w(o2).

For induction case, suppose we are adding the edge ei in this iteration. Since e1, . . . , ei−1 is a matching,
each of these edges can be incident on at most two edges in MOPT. Thus, by the pigeonhole principle, among
the edges o1, o2, . . . , o2i−1, o2i, there are at least two edges that are not incident on any of these edges. Hence,
when picking ei, we could have alternatively picked any of these two edges, which means that weight of ei is
at most equal to the weight of each of these two edges. In particular, we definitely have,

w(ei) 6
1

2
· (w(o2i−1) + w(o2i)) .

Moreover, by induction, we have that

w(e6i−1) 6
1

2
· w(o62i−2).

Combining these two implies the induction hypothesis.

The lemma now follows from this because we have the weight of the first OPT/2 edges of M is at most
W/2 and thus the algorithm picks at least OPT/2 edges before terminating.

We can now use Algorithm 2 in Line (2a) of Algorithm 1. The matching M it returns satisfies the premise
of Lemma 2 for δ = 0 (since it has at least OPT/2 edges with weight at most W/2 and thus average weight
of an edge is at most W/OPT), and thus we get a feasible Oracle LP (2) solution with objective value at
least OPT and width OPT/|M | 6 OPT/(OPT/2) 6 2.

This way, by Lemma 1, we obtain a (1 + ε)-feasible solution x̄ to LP (1) with objective value at least
OPT in only

O(
lnn

ε2
)
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iterations (thus Θ(1/ε) fewer iterations than the previous algorithm). Each iteration also takes O(m logm)
time if we sort the edges directly using any sorting algorithm. We can in fact implement each iteration
in O(m) time also because the weight of an edge is simply determined by the number of times each of its
endpoints is matched so far, which is an integer; so, we can simply use Radix sort (or any other fast integer
sorting algorithm) to sort their weight in O(m) time. All in all, this gives us an algorithm with

O

(
m · lnn

ε2

)
runtime for returning a (1− ε)-approximate fractional matching.

1.5 An Even (Slightly) Better Algorithm for Additive Approximation

Finally, to show case an important feature (or rather “weakness” in the way we analyzed Algorithm 1), let
us show that if our goal is to settle for a slightly weaker approximation guarantee of outputting a matching
of size OPT− ε · n, instead of (1− ε) ·OPT, we can reduce the number of iterations to be independent of n,
i.e., remove the lnn-term3.

So, why did we need the lnn-term in the analysis of Algorithm 1 and in particular Lemma 1? This was
essentially because we were comparing the weight of a single constraint v which were violated, against the
entire potential function (a combination of n different weights). In other words, we should have run the
algorithm long enough such that even one violated constraint could overweight all n constraints. But, what
if we set our goal to make sure there are < ε · n violated constraints, namely,∑

e3v
x̄e > (1 + ε),

for < ε · n vertices v ∈ V . Why is this good enough for Θ(ε · n) additive approximation? Notice that
in Algorithm 2, we never violated a constraint with more than 2 so we always have∑

e3v
x̄e 6 2,

(because ρ = 2). Thus, after we have < ε · n violated constraints, we can simply remove all values of x
incident on their edges so they become feasible. But this means that we reduce the value of x̄ with at most
2ε ·n in total. Thus, after this modification, we obtain a solution which satisfies all constraints up to a (1+ε)
factor and its value is at least OPT− 2ε · n. This implies that we obtain a solution which is a OPT− 3ε · n
after re-scaling x̄ to become x̄/(1 + ε). Finally, to obtain an additive ε n approximation (instead of 3ε n, we
can simply start this algorithm with ε replaced by ε/3).

The final question is how many iterations we need to reduce the number of violated constraints to < ε ·n?
This is handled by the following lemma.

Lemma 5. For any ε ∈ (0, 1/2), if we run Algorithm 1 for T > 8ρ·ln (1/ε)
ε2 iterations for

ρ > max
v∈V

max
t>1

∑
e3v

x(t)e ,

with parameter η = ε
2ρ , then the output solution x̄ only violates the constraints of Eq (2) for at most ε · n

vertices.

Proof. In the last lecture (Claim 5), if in x̄, a vertex v violates constraints of LP (1) by more than (1 + ε)
at the end of Algorithm 1, then,

w(T+1)
v > exp

(
η · (1 +

ε

4
) · T

)
.

3We do not cover this at this point in the course, but this can also be turned into a (1 − ε)-approximation (as in, a
multiplicative guarantee and not only additive) using some more matching-related ideas.
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Let S be the set of all violating vertices and suppose towards a contradiction that |S| > ε ·n. We thus have,∑
v∈S

w(T+1)
v > ε · n · exp

(
η · (1 +

ε

4
) · T

)
= exp

(
η · (1 +

ε

4
) · T + ln ε+ lnn

)
.

On the other hand, we also proved in the last lecture (Claim 4) that the total weight at the end of the
algorithm is

W (T+1) 6 exp (η · T + lnn) .

Given that the LHS of the first equation is still upper bounded by the LHS of the next equation, we have

η · (1 +
ε

4
) · T + ln ε+ lnn 6 η · T + lnn,

which implies that

T 6
4 · ln (1/ε)

η · ε
.

Replacing η with its value finalizes the proof.

This implies that after running the algorithm for only O(ln (1/ε)/ε2) iterations, we obtain the desired
solution. In general, the ideas in this part can be very helpful for reducing the number of iterations to
something independent of n. Let us mention that ln (1/ε) factor of Lemma 5 is actually not necessary for
obtaining a solution of value OPT−O(ε) · n at the end; we leave this as an exercise for the reader.

We conclude our lecture by mentioning that the approach presented in this lecture was motivated by
the work of [AG11] although both our general formulation of the problem as well as our improved oracle
algorithm with constant width are different from that work.
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